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CONVEX OPERATORS ON RIESZ SPACES
AND THEIR DUALITY

SHOZO KOSHI
Dedicated to the memory of Professor Gottfried Kothe

1. In this note, we shall explain a new duality theorem concerning convex operators from a
Riesz space E to another Riesz space F'. Riesz space means here a vector lattice. Duality
theorems on convex operators from a topological vector space to a Dedekind complete Riesz
space 1s considered by many authors [1], [5]. But the key point in these argument is to fix the
range space F', so that we can not treat dual operator as an operator from dual space F* 1o
E* , but we can deal with dual operators from F* to E* in this new theory.

We shall explain only main idea of the theory in this note. At first we shall consider a
band preserving convex operator ¢ from a Dedekind complet Riesz space E into a Dedekind
complete Riesz space F'.

A linear sublattice N of a Dedekind complete Riesz space E' is called a (projection) band
if

N+ N+t =E

where N1 is an orthogonal complement of N . By the above decomposition, we can define
a projection operator [ N] from E onto the projectionband N with [N]Jz =z, forz € E
and

I=I1+$21 I1EN,:E2€NJ-

We have the following property for N .

[N][N] =[N]

and
[N]E = N.

It is known that every projection operator is order continuous i.e. [N]z, — [N]z for
all order convergent directed system {z, } with z, T z.

It is known that all projection bands in F can be considered as a Boolean lattice and this
Boolean lattice is complete since E' i1s Dedekind complete.

Two Dedekind complete Riesz spaces F and F' are called band-isomorphic if there exists
an isomorphism between two Boolean lattice of projection bands of £ and F' as a Boolean
lattice structure, i.e. there is a correspodnence N to N’ by the isomorphism of Boolean
lattices of projection bands for E and F.
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2. An operator ¢ from E to F' is called band preserving if
¢[N]=[N']¢

for all projection bands N and N’ where N and N’ are corresponding by the isomorphism,
when E and F' are band isomorphic to each others.
We have the following lemma.

Lemma 1. If ¢ is band preserving from E to F, then
p(z+y)=¢(z)+¢(y) if |z|N|y|=0 (s.e.x Ly)

and ¢(zx) L ¢(y). Moreover, $(0) = 0.

In the following, we assume that every Riesz space E or F in this note is a Nakano space.
A Dedekind complete Riesz space E 1s called a Nakano space if there exists a functional m
on E such that

1) 0 <m(z) <+o00 forz e F,

2) if m(ax) =0 forall > 0,then z = 0 and m(azx) is a convex function of real «,

3) forany z € F, there exists > 0 such that m(az) < +00.

4) |z,| < |z,| imply m(z,) < m(zx,),

5) z 1Ly mmply m(z + y) < m(z,),

6) z, T imply m(z) = sup, m(zx,),

7) if z, T and sup m(z,) < oo, then z = sup z, exists in F.

Last property is called monotone complete or Lebeque property.

Also we assume the Boolean lattices of projection bands of E 1s non-atomic, i.e. for every
noN-zero projeétjon [ N] is always devided into two non-zero projections orthogonal to each
others with [N] = [N;]+ [N,] and N; L N,.

In this situation, Shimogaki proved the following:

Lemma 2. Let F be a Dedekind complete non-atomic Nakano space and ¢ be a band pre-
serving operator from E to E . Then there exist an element ¢ > 0 and a positive number -y

such that

|p(z)| < ¢+ 9|z forall z€E.

From this lemma, we can easily see that ¢ is order bounded i.e. forall z € F, there exists

sup{|¢(a)|; la| < |z]} in F.
For the continuity of convex band preserving operators, we have the following lemma.
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Lemma 3. Let E and F be band isomorphic Nakano spaces and let ¢ be a band preserving
convex operator from E to F. Then, z, | 0 imply ¢(z,) — O (in order).
¢ 1s called convex if

p(az + fy) < ad(z) + Bo(y)
forz ye Eanda, >0 witha+ 8=1.

Let A be aset of directed system and z, (A € A) is order convergent to 0 if

supminf z, = inf supz, =0.
po A2H BAou

We write z, — 0 (in order) if z, is order convergent to 0.

Proof. Let a be aposituve elementof £ and [/ be an order idcal generated by a. Any element
z of I, can be represented by integral form of a continuous function on a Stoncan compact
space whose elements arc maximal 1deals consisting of Boolean algebra of projecuons on £
Since ¢ 1s an band preserving convex operator {from F to F', ¢(z) can be represented by
integral form

o(z) = [ Gla(s),5)ds

G (a, s) being a funcuon of o and s, where x(s) 1s a continuous function on maximal ideal
space with

T = fz(s) ds (mtegral form of z).

We can prove that F'(«, s) 1s a convex function of real variable «.

We know that every convex function of rcal variables is always contnuous.

[tis easy tosec that z, | O then ¢(z,) = _[G( z(s),s)ds — 0, by the methode used in
(2], since ¢ transforms an order bounded set of F to an order bounded set of F' by Lemma
2.

We say that z, 1s order convergent to z if z, — x 15 order convergent to 0.

3. In the following we assume further that Dedekind complete Nakano spaces are always
regular 1.e. there are sufficienly many order continuous linear functionals 1n these spaces.
Let £ and F' be two Dedekind complete Nakano spaces and E* and F* are the totality of
order continuous linear funcuonals on £ and F' respectively. We assume more E and F
are band isomorphic to each others. We know that £* and F* are also Dedekind complete
Nakano spaces.

Let L,( E, F) are the totality of order continuous band preserving linear operators from
E to F'. We see easily that L, ( E, F') 1s a Dedekind complete Riesz space.
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Lemma 4. Let E and F be Dedekind complete regular Nakano spaces. Then, there ex-
ists a Dedekind complete Riesz space D such that D is band isomorphic to E, F, E*, F'*,
L,(E,F),L,(F*, E*) and isomorphic to dense ideal of each of E,F, E*, F* L,(E, F),
L,(F*, E*) respectively.

Proof. Since every Riesz spaces K, F\ E*, F*, L,(E, F') and L,(F*, E*) are band isomor-
phic, we can consider these spaces are imbedded in universal space of almost continuous

functions in a locally compact Stonean spaces.
Let D be the intersection of these 6 spaces up to isomorphism. Then, DD has the desired

property.
Now we shall define the dual of the convex operator ¢ from E to F'.

¢ (A) = sug{A(:r:) — ¢(z)} for Ae L,(E,F)
I€E

So, if we restrict ¢* in D, we can consider ¢* i1s considered as a convex operator from a
dense ideal of F'* to E™. But, ¢* is not necessary band preserving in general. But, we have

Lemma 5. Let ¢* be the dual of the convex operator ¢ from E to F'. Then, ¢* — ¢*(0) is
a band preserving convex operator on D .

In the same way, we can defined ¢** as the dual operator of ¢*. Then we have the fol-
lowing duality theorem.

Theorem 6. Let ¢ be a convex operator from E to F. Then we can define the dual operator
¢* as the convex operator from F* to E* whose domain is a dense ideal in F'*. Moreover,

we have

¢ (z) = ¢(z) forallze E.

Proof of this theorem 1is followed by the usual argument 1n convex analysis.

4. To illustrate the theorem, we shall state here some example of usual function spaces so that
the convex operator ¢ and its dual convex operator ¢* are defined on whole spaces E or F™*.

We shall consider L, (0,1) space and L, (0, 1) space with 1 < p,;,p, < +00. Let ¢
be a convex operator from Lp1 to Lp2 . The, there exists a function ¢(u,t) defined on reals
u and ¢t € (0, 1) such that

B = (f(1),1)  for feL (0,1).
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If ¢ 1s band preserving, ¢(0,t) =0 forallt € (0,1).
For the dual operator ¢* of ¢, we can find a function ¢*(u,t) of two variables of real u
and t € (0, 1) such that

¢"(9)(t) = ¢°(g(2),1).
Let g, and g, be 1/p, + 1/g, and 1/p, + 1/g, . Then L} =L, and L; =L, .

By Lemma 2, we have the following proposition.

Proposition 7. Let ¢ be a band preserving convex operator from LP] {0 Lﬁ and ¢(u,t) be

a function with ¢( f)(t) = ¢(f(t),t). Then, we have the following condition: there exist
a € L, and a positive number vy, with

|p(u, )| < Iu(r‘,)|+fyllu:IF'*”“1 for all uw and t

If the domain of ¢* is L ., » then we have some b € qu and a positive number ~, with

|0 (v, t)| < |B(E)] + 7y, |v]%/

where ¢*(v,t) is afunction with ¢*(g)(t) = ¢*(g(1),1).

Moreover, we must have
(3) Pl +p5 —ppa(py + 1) 20

(or equivalently ¢f + g3 — q,¢,(gq; + 1) > 0).

Conversely, if (1), (2) and (3) are satisfied, then ¢ and ¢* are defined on whole spaces on
L, and L, respectively.

Proof is only an elementary calculation, so it is omitted.

Finally, we remark that we can extend this theory to more general setting. I will write the
extended theory in another paper with more precise proofs.
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