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ON SOME CLASSES OF LOTOTSKY-SCHNABL OPERATORS
F. ALTOMARE, S. ROMANELLI

Dedicated to the memory of Professor Goltfried Kothe

Abstract. We study a sequence (L), ©Of positive operators associated with a sequence
(Yudnew Of real numbers in the unit interval, a lower triangular stochastic matrix P and a
positive projection T acting on the space of all continuous functions defined on a convex
compact subset of a locally convex Hausdorff space. These operalors are particular cases of
the so-called Lototsky-Schnabl operators. Under suitable assumptions on (4, ),..n, P and
T, we investigate the asymptotic properties of the sequence (L), and of ils iterates in
connection with the existence of a C, -semigroup of positive contractions.

INTRODUCTION

Starting with a positive projection acting on the space of all real-valued continuous functions
defined on a metrizable convex compact set, Altomare ([1], [2]) and Campit1 ([S], [6]) intro-
duced some sequences of positive operators which generalize the so-called Bernstein-Schnabl
operators and Stancu-Miihlbach operators.

These operators furnish examples of approximation processes in general (finite and infi-
nite dimensional) settings and they preserve most of the typical properties of classical Bern-
stein and Stancu polynomials. In this paper we continue to develop a similar idea and we
introduce another sequence of positive operators, by associating them again with a positive
projection. These operators are particular cases of the so called Lototsky-Schnabl operators,
which were firstly introduced by Schempp ([11]) and subsequently studied by Grossman ([8])

and Nishishiraho ([9], [10]).
We investigate the asymptotic properties of these operators and their iterates and we also

give some estimates of the order of convergence.

Finally, we show the existence of a positive contraction semigroup whose generator 1s
obtained as the generator of the C,-semigroup corresponding to the Bernstein-Schnabl oper-
ators multiplied by a suitable positive constant. All these results, together with those obtained

in [1], (2], [5] and [6], emphasize an unexpected and harmonious analogy among these oper-
ators, Bernstein-Schnabl operators and Stancu-Miihlbach operators.

1. LOTOTSKY-SCHNABL OPERATORS

Let X be a metrizable convex compact Hausdorff subset of some locally convex Hausdorff
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space and let us denote by C( X, R) the Banach lattice of all real continuous functions on X
endowed with the sup-norm topology and the natural order. Let M*(X) (resp. M(X))
be the set of all positive (resp. probability) Radon measures on X . Let us consider a linear
positive projection T" : C(X,R) — C(X,R) (i.e. T is alinear positive operator such that
T? =T).
Afer setting
H=T(C(X,R)),

let us suppose that
A(X) C H,

where A(X) is the space of all real continuous affine functions on X . In addition, let us
assume that forevery z € X, A € [0, 1] and h € H the function

(1.1) re X — h((1 —XA)T+ Az),

belongs to H .

We refer to [1] for some significant examples of such projections 7T°.

In the sequel we will use the following Korovkin-type theorem which has been obtained
by Altomare ({1]), Bauer ([3]), Grossman ([7]) and Schempp ([12]).

Theorem 1.1. Let (L), . be a net of linear positive operators acting on C(X,R) and
satisfying the following conditions
() im__, L (h) = h forevery h € A(X) (resp. lim__,_ L _(h) = h forevery
he H)
(2) lim
Then

L_(h*) = h?* forevery h € A(X).

n—oo

lim L,(f) = fV f€C(X,R) (resp. lim L,(f) =T(f)V f € C(X,R)).

Consider now an infinite lower triangular stochastic matrix P = (p,;),51 ;51 (1.€. an
infinite matrix of positive numbers satisfying p,; = 0 whenever j > nand } 2, p,; =
= i1 Py = 1 forevery n>1).

Then for every n > 1 we can define the mapping = : X" — X defined by putting for
every (z,,...,z,) € X™":
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Forevery x € X weshalldenoteby u, € M 1(X) the probability Radon measure on X
defined as follows:

p (f) =T(f)(z) forevery feC(X,R).

We introduce the linear positive operator Bmp.:. o C(X,R) — C(X,R) defined by

P
puttung forevery f e C(X,R) and z € X

Bmp.l,.,,,p_ (f)(z) = . fomd (® #I,i) ;

1=1

where p_; = p, forevery1=1,...,n.

The linear operator B is called the n—th Bemstein-Schnabl operator with respect

n-pnl.-.., Pmn
to the matrix P and the projection T" (see [1]). When P denotes the arithmetic mean Toeplitz

matrix, i.e. p,;, = - ifn>1andi=1,...,nand p,; = 0 if i > n, then we shall simply
use the symbol B_.

Moreover, let us recall that B_ is the classical n — th Bemstein operator, provided that
X coincides with the standard simplex X of R? (p > 1) (le. X, = {(zl,...,zp) €
€ RP|z; >0, Y7, z;, < 1}).

For other explicit expressions of Bernstein-Schnabl operators we refer to [1], [2] and [4].

Given a sequence (;);en in the unit interval [0, 1], for every n > 1 we define the
linear positive operator L_ : C(X,R) — C(X,R) by setting for every f € C(X,R) and
T € X

(1.2) L. (f)(z) = /“fa-:rnd (®UIJ) ,

=1

where v, ; denotes the positive Radon measure on X defined by putting for every f €
€ C(X,R)
v (F) = Np () + (1= X) f(=).

The linear operator L_ will be called the n — th Lofotsky-Schnabl operator with respect
to the matrix P, the projection T" and the sequence ( \;),;cn, according to the definition sug-
gested by Schempp in [11] and Grossman in [8].

In fact, Lototsky-Schnabl operators are defined in a more general manner (see (8], [11],
[9], [10)) and our operators L _ are particular cases of them; however the operators defined
by (1.2) seem more ductile in order to investigate the limit behaviour of their own iterates.
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Let us observe that

n

(13) L (@) =Y 0, B,y 4 (furz) (@),

r=0

where B, ,  isthe r —th Bemstein-Schnabl operator associated to the matrix P’ with

entries

pl, = Pu 1<h<r

2 i=1 P
forz € C(X,R) is obtained from f by putting for every y € X

1=r+ 1

nr:c(y) "_ (Epmy+ E Pps & ) )

and, finally, the a_ s are uniquely determined by the relations

ﬁ()\fy+l—}.r)=iumyr, y€R.
r=0 r=0

In particular, if we suppose A_ = A €]0, 1[ forevery n € N, then
~/n
(1.4) L(f)(z) =Y (T)f(l ~N""B,y . (fars) (8

r=0

The previous formulas allow to give an explicit form to the operators L, provided that

the operators B, are known (see Example 2.1 of [1], [2], [4]).
When X = [0,1] and P is the arithmetic mean Toeplitz matrix, we have that

09 nn@=3en 3 ()r(Ee (1-D)2) o

and,if A = X forevery n > 1,

(1.6) L (f)(z) = EZ( )( )x (1 =\)"™7 f(%+ (1—5) z> (1 — )P

r=0 h=0
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Therefore, for every x € X, we have

L (h*)(z) = Epi (M\T (B (z) + (1 = ),) h*(z)) +

3=1]

2 ( Z Pﬁpnj) h*(z) = zpi}‘iT (hz) (z)+

1<i<j<n 1=1

+ ipi- (1 =) h*(2) + (1 - ipi) h(z) =
1=1 §=1
"EPm}*T (h*) () + (Epm Epmi +1 —Epi-) h?(z) =
1

1=]

= h%(z) + ) piXN (T (h*) (z) — ki (z)), i.e
=1

(2.2) L, (k) = h* + (Epia) (T (W) - 7).

Accordingly

L2 (h?) = Epm)\lT (h?) + L, (h?) Epm

1=]

_Epmxir h2)+2pm,\j(h2 ( me ) h?+

=] 1=1

- ipi me hz) (1 — ipi{}‘i) h b=
i=1 '

. 1."1

—Ep AT (h?) +Epm :(lepm ) (h*) +

1=]

" 2
+ (1 H-Epi-)\‘-) h*
1=1
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More generally, for each m > 1 we obtain

Ly (h*) =
n m-—1 n k n m
Sl (S rere (-]
3=1 k=0 1= i=1

} (1 } (1 ‘ipih)m) T (W) + (1 —ipik,:)mhz -
= h* + (1 - (1 —ipi.,\,.)m) (T (h*) — h?).

Since

0 <ipi)\igi:pfﬁ <1,

s=1 g=1]

it follows that

(2.3) lim L™ (k%) = T (h?),

m—00

2X; = 0, then

. . . n
while, if lim__ 3 -, pr

(2.4) lim L™ (h*) = h?.

Soresults (1) and (2) follows from (2.1), (2.3), (2.4) and Theorem 1.1. Asregards assertion
(3), we can apply formula (2.3). Then, for every h € A(X) and for every n > 1 we obtain

n k(n)
(2.5 LE™ () =h* + [ 1 - (1 - Epi-}.i) (T (h*) — h?) .
1=1

Since

. k()
(1= -

1=1
—k(n) (ipfﬁxi) log (1 _ipi.A,.)
1=1

1=1

;

= exp <

A, =1

we can again conclude by using Theorem 1.1.
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Remarks 2.2.

(1) Let us observe that, under the above assumptions, the convergence of L toward the
identity operator was firstly proved by Grossman in [8].

(2) We can give some quantitative estimates of the convergence of the operators L and their
iterates by using some general results of Nishishiraho ([9], [10]). More precisely, from [9],
Theorem 4, we infer that

. 1/2
||Ln(f)—fI|£29 f (EP?&A{) ,
1=1

furthermore, on account of (2.2) and of Corollary 1 of [10] (in particular, see p. 623), we have
" my 1/2
LA - flI<¥ | £, (1 — (1 —Epf,,-x.-) ) <
i=1

o 1/2
<_: 1{’ f: (mzpi}";) )
1=1]

and

n m/2
1=1

where Q( f,-) and ¥(f,-) are suitable moduli of continuity of f (see [9] Definition 2 and
[10], p. 622).

Theorem 2.3. Under the above assumptions, let us consider the sequence (L, ), of Lotot-
sky-Schnabl operators associated with the arithmetic mean Toeplitz matrix, a projection T
and a sequence (X)), inthe unitinterval 10, 1[ suchthatlim___ L5°% ). = X where
A 15 a switable element of 10,1[. For every m > 1 let us introduce the subspace A_

generated by the set

‘4Hhi|hieA(X)1 1= 1,...,m},
L 1=1

andput A = U,.en A4,, - Assume that

(i) T (A,) C A(X),
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or alternatively,

(1) A(X) i1s fimite dimensional and T(A,_) C A, foreverym > 1.

Then there exists a strongly continuous positive contraction semigroup (T'(1)),5o oOn
C(X,R) such that for every t > 0 and for every sequence (k(n)) - Of posftivE inte-
gers sausfying

k
lim (n) = 1,
N—O0 n
we have
(2.6) lim ij“) =T(t) stronglyon C(X,R).
Moreover,

lim T(t) =T stronglyon C(X,R)

t—+00

and the generator of the semigroup (T(t)),.o IS the closure of the linear operator
s . D(Z) - C(X,R) defined by

Z(f) = lim n(L,(f) - f), (feD(2),

where
D(Z) := {g € C(X,R)| lim n(L (g) —g) exists in C(X,R)} |
Finally A C D(Z) and foreverym € N, m > 1, and hy,...,h, € A(X)

0, if m=1
Z(Hh:)= AT (hyhy) = hyhy) if m=2
i=1

A Elgi{jgm (T (hth;> _ h:'hj) H::ﬁ,j r=1 hr i!f m -;3 3.

Proof. Here we give only an outline of the proof, and we refer for more details to Theorem
2.6 of [1], where an analogous result was shown for Bernstein-Schnabl operators, i.e. A = 1
foralln> 1.

Now, without loss of generality, we can assume A, = A.

If fe A(X)=A(X),thenL (f)= fforeveryn>1landlim__ _n(L_ (f)—f)=
=0.Ifm>2and f=][., h, withh,,..., h, € A(X), forevery n > m we can wrile

3 s
fﬂﬂn=;1—lr: E E(Hh;‘,)Gprl'“(th:)Dan ,
m u=1 u=1

5]+-rr+3n=
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and
1 .
o 5 STk (T8
s;t+..+s,=m u=1
where in both formulas the last sum is extended to all subsets of integers jll e ,;’jl ey
jt,...,J2 € [1,m] such that {j;,...,7, }N...Nn{j},...,jr} = @; moreover, we will

use the convention that

{ ...,j,t} @ and Hh;—l

whenever some s, 1s equal to zero.
Now, denote by I the identity operator on C( X, R) and define

SI=A'IT+(1—k1)I’ 1-=1,...,Tl.
Let us observe that every S, 1S a positive operators such that
S;(H)(z) = v, ;(f),

forall feC(X,R), z € X and1=1,...,n. Then, we can apply a reasoning analogous to
that of Altomare in [1] provided that the operator T is replaced by S; forevery 1 =1,... ) n
As a consequence, we obtain

Lu(f) ~f= = X

{8, (H hﬁ> ..., (th:) (Hh}') (H h_,u) "
. u=l u=] u=1 .-i
where the integers j¥(v = 1,...,n) vary as above.

In particular, for m = 2 and n > m we deduce that

n(Ly(f) ~ f) = n(n%@ﬂ ;12—2 (\T(H + (1=2) f) - f) -

1=]

n(—%f+ ;12— (NT(H + (1 —X) f)) —
i=1

n

= —f+ =S+ (1-3) ) =

1=1]

1 n
==Y "2(TH - hH.
n i=1
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Therefore

lim 7 (L,(f) - f) = MT(f) - ).

For m > 3, let us observe that

R 1 if s=1and k=m-1,
lim n*™™

n—00 0 otherwise.

Then, repeating the combinatorial arguments used in 1], we deduce that the following
equalities hold

E{:ﬂﬂ(ffﬂ(f)—f): E (Sl (hihj)_hihj) ﬁ h, =

1<1<;<m r91,7,r=1
m
=\ Y (T (hth —~ hihj) I] &=
I<i<y<m riJj,r=1
™m
=x Y (7 (hh;)-n;) T b
1<i<j<m ryi,),r=1

Sotheinclusion A _ C D(Z) istrue; but, as a consequence of Weierstrass-Stone theorem,
the subalgebra A__ isdensein C(X,R) and hence D(Z) isdensein C(X,R) t00. Now, the
proof can be concluded applying a result of Trotter ([14], Theorem 5.3) under the assumption
(1) and a result of Schnabl ([13], Satz 4) under the assumption (ii).

3. AN EXAMPLE

We firstly note that if A denotes the generator of the semigroup indicated in Theorem 2.3, then
A = MA, where A, generates the semigroup coming from the Bernstein-Schnabl operators
associated with the projection T' (see [1], Theorem 2.6). Hence the abstract Cauchy problem

i—t:(t) = AAyu(t),
u(0) = uy € D(4,),

has a unique solution given by

u(t) = T()uy = lim L™y,
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where [nt] denotes the integer part of n¢ (this follows from (2.6) and from the fact that
lim #l = t). In many concrete situations when X C RP, p > 1, A, is an elliptic

n—00 n

differential operator, as it was proved in [1], section 3 (see also [2], [4]). If X = [0, 1],

then D(A,) = {f € &([0,1)) N F*(J0,1[)|lim__,. z(1 — z) f"(z) = lim __,,_ z(1 —
z) f"(z) = 0} and forevery f € D(A,) and z € [0, 1]

(z(l — z
Ay f(z) = + (2 )f"(I), 1f0 <z <1,

0 ifz=01.

e

In this case the operators L_ are defined as in (1.5) or in (1.6).
If X = B(zy,6) = {z € RP| || z — x4 ||< 6}, then A, is the closure of the differential

operator defined on gr (z) by

8% — || z — =y ||
2p

Bf(z) = A f(z),

where A denotes the Laplacian on X .
In this case, the n-th Lototsky-Schnabl operator is defined by putting for every f €

cC(X,R)andz € X

no 52“'”35—%”2 / / _
o bo,, ax  Jox

Lnf(m) = < f (I]++.,+Ir + (1 _ i) I] 5

. Tl
|z, —zPP...|[z, -z ]

| f(2) if ||z—2,|=6

(21) odo (z,) i |lz— 1z |I<

where o, denotes the surface area of the unit sphere of R? and o 1s the surface measure on

aX .

Note added in proof. The main results of this paper have been considerably extended in some
recent papers by Altomare (see, for istance, Mh. Math. 114, 1992, 1-13, or the paper «On
some approximation processes and thetr associated parabolic problems», which will appear
in Conf. Sem. Mat. Fis. Univ. Milano, 1994).

Moreover, a complete survey concerning the positive approximation processes associated
with positive projections can be also found in the forthcoming monograph «Korovkin-type
Approximation Theory and Applications» by F. Altomare and M. Campitl.
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