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ON HOMOMORPHISMS BETWEEN LOCALLY CONVEX SPACES
S. DIEROLF, D.N. ZARNADZE

Dedicated to the memory of Professor Gottfried Kéthe

Homomorphisms f : E — F between locally convex spaces E, F, i.e. continuous linear
maps which are open onto the range, occur quite often and they are nice to handle. Unfor-
tunately, the stability properties of the class of homomorphisms are poor. For instance, a
homomorphism f : £ — F will in general not remain a homomorphism, if £ and F' are
endowed with, for instance, their strong topology; the transpose f* : F' — E’ will usually
not be a homomorphism, and the behaviour of the bitranspose is still worse. The investigation
of homomorphisms has a good tradition, in fact, it goes back to Banach and was dealt with
afterwards by Dicudonné, L. Schwartz, Grothendieck and Ko6the (see for example [12]).

The purpose of this article 1s twofold:

first, to study the stability behaviour of the class of homomorphisms with a bit of a sys-
tematic touch (see (1.4), (1.8), (2.3), (2.5)); and second, to apply new methods and results
from the recent development of the structure theory of Fréchet, LB— and L F'-spaces to the
context of homomorphisms.

For instance, we obtain a(nother) characterization for the quasinormability of Fréchet
spaces F by the property that for every monomorphism ;7 : E — F with F Fréchet, ;
recmains a homomorphism for the topology of uniform convergence on strongly compact sets
bothon K and on F' (see (1.9), (1.10)).

Proposition (2.7) presents a gencral background for the fact that for the famous quotient
map g : E — ¢! with E Fréchet Montel, the transpose is not a monomorphism for the weak
(sic!) topologies.

In section 3, where we deal with the bitranspose of homomorphisms, we give an example
of a quotient map ¢ : E — F with E Fréchet such that ¢ : E" — F" is not a homomor-
phism between the strong biduals. Finally, we present a fairly general condition on a strict
L F'-space, under which its strong bidual will again be an L F'-space.

Notations. Given a locally convex space £ = (E,Jd ) and a linear subspace L C E, we
denote by 3 NL therelative topology inducedby 3 on L andby J /L the quotient topology
on the quotient E/L . Foradual pair {(E, F') wedenoteby o( E, F), B(E,F), 7(E, F) the
corresponding weak, strong and Mackey topology on F, respecuvely. o F, E), B(F, E),
r( F, E) are defined analogously. Forasubset A C E let A°:= {y € F: |[{a,y)| <1 for
all a € A} be the polar of A; in order to avoid misunderstandings, we will sometimes write
more precisely A°F .

For a locally convex space E, let E' denote its topological dual and E" = (FE',
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B(E', E))’ its bidual. For a linear continuous map f : E — F between locally convex
spaces, we will write f*': F’ — E' for its transpose and f : E" — F" for its bitranspose.

Forasubset A C E let I' A denote its absolutely convex hull and [ A] its linear span. If
A =T A wewnte p, for the corresponding Minkowski functional on [ A].

A locally convex space E 1s called locally complete, if for every closed bounded subsct
A=1ACFE, thespace ([ A],p,) 1scomplete.

A linearmap f : F — F between two locally convex spaces is called a homomorphism,
if 1t 1s contnuous and open onto its range. Injective homomorphisms are called monomor-
phisms.

Inductive Iimits of a sequence of Banach resp. Fréchet spaces will be called L B-spaces
resp. L ['-spaces.

1. THE BEHAVIOUR OF HOMOMORPHISMS UNDER A CHANGE OF
TOPOLOGIES

1.1. Let E, F be locally convex spaces and let f : E — F' be a linear map. Then f is
a homomorphism if and only if in the canonical factorization of f (where E/ker f carries

the quotient topology and f( E') the relative topology) the linear bijection _)? is a homeomor-
phism.

FE ey F
g TJ

o

E/ker f g, f(E)

Qur aim in this section is to investigate what it means that a homomorphism f : K — F
remains a homomorphism if the topologies on E and F are changed in a suitable way. In

this direction we have for example

1.2. Let E, F be locally convex spaces, let f . E — F' be a continuous linear map, and put
L:=ker f, L°:= L°F f(E)°:= f(E)°F

(@) If f is a homomorphism asamap (E,B(E,E")) — (F,B(F, F')), then

1) on E/L the topologies B( K, E")/l and B( E/L, L°) coincide and

ii) on f(E) the topologies B(E,E")Y N f(E) and B(f(E), F'/ f(E)®) coincide.

(B) If f 1s a homomorphism as amap E — F, and if both 1) and 11) are satisficd, then f is
a homomorphism as amap (E, B(E, E")) — (F,B(F, F")) .

Proof., We have the following canonical factorization of f:
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F

(E/L,B(E/L,L®) -5 (f(E),B(f(E),F'/f(E)°)

F A

q/ N
(E,B(E,E")) id id (F,B(F,F"))
q "\ ~ /7

(E/L,B(E,E"Y/L) -5 (f(E),B(F,F')n f(E))

where all the maps indicated by arrows ar¢ continuous.
() If f:(E,B(E,E")) = (F,B(F,F")) is a homomorphism, then by (1.1) the map

f: (E/L,B(E,E)/L) — f(E),B(F, F'YN f(E)) is alinear homemomorphism, whence
the two 1dentity maps indicated in the diagram are also homeomorphismes.

(B) It f: E — F i1sahomomorphism, then f: E/L — f(E) is a linear homo-

morphism, whence f : (E/L,B(E/L,L°) — (F(E),B(f(E),F'[/f(E)°)) is also a
homeomorphism. If in addiuon both 1) and i1) are satisficd, we obtain that

f : (E/L,B(E,E"Y/L) — (f(E),B(F,F') N f(E)) is again a homeomorphism,
which implies that f : (E,B(E, E)) — (F,B(F, F')) is a homomorphism. "

1.3. Statement (1.2) can of course be considered as a special case of the following general
concept (cf. [6, p. 128-131]). let & be a (covariant) functional topology, i.e. a functor in
the category LCS of locally convex spaces and linear continuous maps of the following form

(E,J) ~r~~ % ~~r~r> (B % (J3)) forevery locally convex space (E, 3 )

% ( f) = f forevery continuous linear map f .

In other words, & changes only the topology of a locally convex space in such a way
that the continuity of linear maps 1s preserved. There 1s a multitude of well-known examples
of such functorial topologies, such as the formation of the associated (quasi) barrelled, (ul-
tra) bomological, nuclear, or Schwartz space topology, and, of course, the formation of the

corresponding weak, strong, Mackey topology etc.

Proposition 1.4. Let & be a (covariant) functorial topology in LCS, let £ = (E,Jd),
F = (F ,®) be locally convex spaces, let f : E — F be a linear continuous map, and
denote L .= ker f.

() If f is a homomorphismasamap (E, & (J)) — (F, % (®)), then

i) on E/L the topologies % (3 )/L and % (3 /L) coincide and

i) on f(E) the topologies & (® )N f(E) and & (® N f(E)) coincide.

(B) If f isahomomorphismasamap (E,J) — (F,®) and if both 1) and 11) are satisfied,
then f is a homomorphismasamap (E, Z(J)) - (F,%(®)).
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The proof is completely analogous to that of 1.2 making use of the following factorization

of f

i

(E/L,ZB(Z /L)) L (f(E),Z(F N f(E))

F

q./ N
(E, % (J)) id id (F, % (%))
q "\ J i

’ ]

(E/L,Z(I)/L) - (f(B),Z(F)nf(E))

Remarks 1.5. (a) Obviously, the same as in (1.4) can be done for functorial topologies in

the category TV S of topological vector spaces.
(b) The two «commutativity properties» 1) and i1) in (1.4) are valid for the formation of the

weak topology (Kothe [13; § 22, 2, (1) and (3)]) as well as the associated Schwartz-space-
topology (Swart [19; 3.4 and 3.7]) and the associated strongly nuclear topology (Jarchow [11;
21.9.4.b] and [7; p. 28-29]). On the other hand, for the majority of functoral topologies &
the commutativity properties 1) and 11) fail. For instance, ii) will necessarily fail if the fix
class of £ is not stable under closed subspaces. Moreover, even if fix £ is stable under
quotients, 1) may fail as the example in [7; p. 36-38] show (cf. also Jarchow, loc. cit.).

A somewhat weaker statement 1s the following

Corollary 1.6. Let & be a (covariant) functorial topology in LCS which is refining (i.e.
Z(J) DI foreverylocally convex space (E,3)). Let E=(E,3), F=(F, %) be
locally convex spaces such that E € fix & andlet f: E — F be a homomorphism. Then
f:(E,J) - (F,Z(¥)) is again a homomorphism.

Remark. The hypothesis that £ is refining is essential as Jarchow [11; 21.9.4, end of proof]
shows - for & to be the associated nuclear topology.

1.7. In order to have a closer look at a special subclass of functorial topologies, consider a
functor A4 from LCS to the category SET of sets and maps of the following shape.

For every locally convex space E = (E,J ) let A4 (E) be asetof o( E', E)-bounded
subsets of E’ such that - whenever E, F' are locally convex spaces and f : E — F is lincar
and continuous - we have f'(_£(F)) C 4(E), and % assignsto f themap f*| 4 (F) :
A4 (F) — % (F). Then for every locally convex space ( E,J ) the topology J A Of

uniform convergence on all sets in % ( E) is a locally convex topology on E, and clcarly

B 5 (E,3) rririmin> (E,g}_}g(m)
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defines a functonal topology in LCS in the sense of (1.3).
Examples of functorial topologies & , are, of course, the formation of the weak, the

strong, the Mackey topology, the topology B*(FE,E’) of uniform convergence on all
B(E’, E)-bounded subsets of E’, and - among others - the topology v( E, E’) of uniform
convergence on all A( E’, E)-precompact subsets of E'. By Kothe [13; § 21, 7, (2) and
(3)] the topology ~( E, E') is the strongest «polar» topology on E (i.e. has a 0-basis of
o( E, E")-closed sets) which coincides with o( £, E') on all bounded subsets of E.

For the formations of the Mackey topology E ~~~~> ( E,7( E, E')) and of the weak
topology E ~~~~> (E,oc(E, E")), respectively, property i) in (1.4) is always satisfied
(see [13; § 22, 2, (3)]), but not for the formation of the strong topology £ ~~~~> (F,
B(E,E")) (see [8; example]). The next statement will characterize condition ii) in (1.4) for
functorial topologies & .

Proposition 1.8. Let & ; beafunctorial topology as describedin(1.7),let E, F be locally
convex spaces and let f . E — F be an injective and continuous linear map. Tfae

(a) f is amonomorphism as amap (E,J ngs}) ~ (F,gld,g(ﬁ.)).

(B) Forevery B € 4(E) thereis C € % (F) such that the o( E', FE) -closed abso-
lutely convex hull of f*(C) contains B.

Proof.

(B) <= Vpe 8 (py3cetmB C (O <=V g pToet(mB° D f(O) =

=7 (C) ﬁvﬁgﬁw}acwgm}cﬂnf(fa) C f(B°) < (a). .

It 1s well known that («) holds for the formation of the weak topology and fails for
many other functorial topologies of type & , such as B,8* 1, even if f(E) is closed
in F'. We will now investigate this question for the above introducted topology F ~~~>
~~n~> ( E, v(E, E")) in the context of Fréchet spaces.

Proposition 1.9. Let E, F be Fréchet spaces such that E is quasinormable, and let f
E — F be a monomorphism. Then f is a monomorphism as a map ( E,v(E,E")) —
— (F,7y(F, F")).

Proof. We will show that (1.8) (B) is satisfied. Let B C (E',B(FE’, E)) be compact.
As (E',B(E', E)) is a boundedly retractive L B-space, there is an absolutely convex 0 —
nbhd U in E such that B is a compact subset of the Banach space E,. generated by
U° C E'. Thereis an absolutely convex 0 —nbhd V in F' suchthat f(E)NV = U. By the
Hahn-Banach Theorem f* generates a continuous surjection from the Banach space Fy,. gen-
erated by V° C F' onto E,., hence a quotient map. By the theorem of Banach-Dieudonné
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there is a compact set A in Fy,, such that f*(A) = B. As F|,, embeds continuously into
(F',B(F', F)), A isacompact subset of ( F' B(F',6 F)) satisfying f'(A) = B. o

In contrast to (1.9) we have

Proposition 1.10. Let E| F' be Fréchet spaces such that F is quasinormable and E is not
quasinormable, and let f : E — F be a monomorphism. Then f is not a monomorphism as
amap (E,v(E,E')) — (F,~(F, F")).

Proof. 'We will show that (1.8) (3) 1s violated. We have the continuous surjective trans-
pose f* : (F',B(F',F)) = (F',B(F',F")) — (E',B(FE',E")). By Bonet [1; The-
orem] the LB-space (E',B(E', E")) is not boundedly reretractive. According to Neus
[15], (E', B(FE', E™)) is not compactly retractive. Thus there is a compact subset B of
(E',B(E', E")), which is in particular a compact subset of ( E', B( E’, E)) such that - when-
ever X 1S a Banach space continuously included in (E', B( E', E™)) - the set B is not a
compact subset of X .

Let A be any compact subset of (F',B(F', F)). As (F',B(F', F)) is boundedly re-
tractive, there is a Banach space Y which is continuously included in ( F¥, B( F', F')) such
that A is a compact subset of Y. Then f*( A) is a compact subset of the Banach space
X = Y/(Y nker f) and X is continuously included in ( E',B(E', E")). Therefore

ft(A) = f'(A) does not contain B. .

For surjective homomorphisms we only have the following negative result:

Example 1.11. If (£, J ) is a Montel space, then clearly I = ~4( E, E') . Moreover, for a
normed space ( F, ¥), we have that ¥ = ~(F, F') if and only if F' is finite dimensional (if
dim F' = oo, the norm and the weak topology do not coincide on the unit ball).

Therefore, let e.g. E be Grothendieck-Kothe’s Fréchet Montel space admitung F =
= (2',]| - ||;) as a quotient. Then the corresponding quotient map ¢ : £ — F isnot a
homomorphism asamap (E,~y(E, E")) — (F,~( F, F")).

Curiously enough, we could not find out whether for any Banach space E and a quotient
map ¢ : £ — E/L =: F,q remains open for v( E, E') and ~y( F, F'), respectively.

2. ABOUT THE TRANSPOSE OF A HOMOMORPHISM

2.1. Let E| F be locally convex spaces and let f: E — F be a continuous linear map.

@ ft: (F' o(F F)) — (E o(E E)) is a homomorphism if and only if f(F) Is
closed in F'. In fact, f* is a weak homomorphism if and only ifon F'[ f( E)° the topologies
o(F',F)/f(E)° and o( F'/ f( E)°, f(E)) coincide.
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(b) If f is even a monomorphism, then f' . (F',7(F', F)) — (E',7(E',E)) is open if
andonly if f(FE) 1sclosed in F. See Kothe [13; § 22.2, (4)].

2.2. Symmetrically to (1.4) let & be a contravariant functorial topology in LCS, i.e. a

functor in LCS of the following form E ~ %1 ~> (E', £ (E)) for every locally convex

space E and Z'(f) = f* for every continuous linear map f : E — F .

In other words, £~ assigns a locally convex topology to the dual E’ of a locally convex
space E in such a way that the transpose of a continuous linear map will be continuous
with respect o the assigned topologies on the duals. Examples of contravariant functorial
topologics Z( E) are, for example, the formation of 8( E', E), B(E,E"), o( E', E"), or
the bornological topology associated to S( E’, E) . Other examples, which do not only depend
on the dual pair (F, E’), would be the topology of uniform convergence on all precompact
subscts of F, and also the so-called inductive topology on E’, which is by definition the
strongest locally convex topology on E' such that for every 0 — nbhd U in E the inclusion
([U°]),py.) — E’ is continuous. We abbreviate E ~~~> E: , = ind,_ ([U°],py.) .

Proposition 2.3, Let % be a contravariant functorial topology in LCS, let E, F be lo-
cally convex spaces and let f : E — F be a homomorphism. Then ' : (F', %(F)) —
— (K, 2L(FE)) isa homomorphism if and only if

1) on (ker f)° the topologics & ( E/ker f) and £ (E) N (ker f)° coincide and

if) on F'[ f(E)° the topologics Z( f(E)) and £ F)/f(E)° coincide.

Proof. The canonical factorization f = 7 o fs.:: g (see (1.1)) leads to the factorization f* =
= g‘mf’o;’t, where the surjection 7t : (F', 2(F)) — (f(E), 2 (f(F))) and the injection
" ((E/ker f)', Z(E/ker f)) — (E',%4(E)) are continuous, and the bijection ff :
(f(E)Y,Z(f(E))) — ((E/ker f)', &(E/ker f)) is a topological isomorphism. This
implics the assertion. -

As an application we would like to menton: a homomorphism f : EF — F between
locally convex spaces E, F' leads to a homomorphism f* : F!, — E!, if and only if the
canonical inclusion ( E/ker f)! . — E! , is a monomorphism.

Proof. Condition ii) in (2.3) is satisfied, because the natural injection j* : F! , — f(E)., is
a quotient map. In fact, by Hahn-Banach Theorem we have for every 0 —nbhd U =1"U i1n
F that s8(U°F) = (U N f(E))°/E); hence the assertion follows by the transitivity of final
topologics in LCS. .

For the Kothe-Grothendieck-Fréchet-Montel space E admitting a quotient map g : £ —
— ¢! we obtain that ¢* is not a monomorphism for the inductive topologies (note that for a



34 S. Dierolf, D.N. Zamadze

Fréchet space E we have (E)., = (E',B(E', E"))).

2.4. Analogously to (1.7) we obtain a subclass of contravariant functorial topologies £ in

the following way:
For every locally convex space E let H( E) be a sct of bounded subsets of E such that -

" |

whenever E, F are locally convex spaces and f : E — F 1s linear and continuous - w¢
have f(#(E)) C B(F). Then, for every locally convex space E the topology 3 @ p

of uniform convergence on all sets in £ ( E) is a locally convex topology on E', and clcarly
X o E~~~>(ELJI B (gy) defines a contravariant functorial topology in LCS' in the

sense of (2.2). Parallel to (1.8) we have

Proposition 2.5. Let £ g be a contravariant functorial topology in LCS as described in
(2.4), let E, F be locally convex spaces and let f . E — F be a surjective and continuous
linear map. 1fae

(a) f' isamonomorphismasamap (F',3 @ ) — (E'\3 ®g)-

(B) Forevery B e F(F) thereis C € H( E) such that the closed absolutely convex hull
of f(C) contains B.

The proof is completely symmetrical to that of (1.8).

Let us return to the functorial topology E ~~~> f(FE),, for amoment. Let £ be a
Fréchet space and let L C F be a quasinormable closed subspace. Then the quouent map q -
E — FE/L lifts bounded sets (i.e. VB C E/L bounded 3JA C E bounded such that g(A) C
C B) (see DeWilde [5]), whence ¢* : (L°,B8(L°, E/L)) — (E',B(E’, E)) is a monomor-
phism on account of (2.5). Moreover, as L is quasinormable, (E'/L°, B(E'/L°, L)) is an
LB-spacc. As B(E',E")Y/L° D B(E',E)/L° D B(E'/L°, L) and B(E' | E") is LB, we
obtain that the natural surjection (E',B8(E',|E)) — (E'/JL°,B(E'/L°, L)) is a quoticnt
map. Consequently, L" can be identified with L°° := L°F°E" and (E/L)" corresponds
to E"/L°. The quotient map ¢* : (E",B(E",E")) — (E"/L°°,B(E" EY/L%) =
= (E"/L*,B(E" /L, L") lifts bounded sets, as ker ¢** = L° = L" is the bidual of a
quasinormable Fréchet space, hence quasinormable. From this we get that ¢° : (L°, A(L°,
(E/L)")) — (E',B(E', E")) is again a monomorphism (via (1.8)). Since G , = (G',B
(G',G")) for every Fréchet space G we obtain that ¢* : (E/L)., — E!, is a monomor-
phism.

Our next aim is to investigate the special case of the strong topology K ~~~> (E',
(E',E)).

[t should be mentioned that Palamodov [16] and also Zarinov [20] gave the following
characterization in terms of duality functors: the transposc of a homomorphism f : £ — F
between locally convex spaces in @ homomorphism for the strong topologies if and only 1f
there 1s a sct M such that _@Z’fl{(kcr fy=0and &,,(f(E))=0.

We will first concentrate on the class of Fréchet spaces.
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2.6. Let E be a Fréchet space and L. C E a Fréchet subspace.

For the inclusion j : L — E we have: if L is distinguished, then the surjection j;* :
(E',B(E',E)) — (L',B(L', L)) is continuous and open (note that here A(L', L) is an
L B-space topology and B( E’, F) admits the stronger L B-space topology B(E', E")). If
(L',B(L',L)) admits no discontinuous bounded linear form, then at least j*
(E',o(E' E")) — (L',o(L',L")) will bc a homomorphism.

On the other hand, if L 1s not distinguished but £ 1s distinguished (we may choose E
o be a countable product of Banach space), then j* : (E' B(E',E)) — (L',B(L',L))
1s clearly not open, and if (L', 8(L’, L)) admits a discontinuous bounded linear form and
(E',B(E', E)) doesnot, then j*: (E',o(E',E")) — (L',o(L',L")) is not open.

For the quotiecnt map ¢ : £ — FE/L we have: if L 1s quasinormable or if E/L is a
Montel space, then g lifts bounded sets (see DeWilde [5] and Kothe [13; § 21.10.(3)]) which
implics that ¢* : (L°,8(L°,E/L)) — (E',B(E', E)) is a monomorphism. For instance,
this situauon is sausfied if £ 1s a Schwarts space or if F is Banach. It also holds for the case
that E is a product of the space w = K™ and a Banach space X, as wsa shown in [21]. In
[22] 1t was proved that for a Fréchet space E Uae

1) E is topologically isomorphic to the product X x Y where X is Banach and Y is
either w of finite dimensional.

11) Every closed subspace of E 1s a quojection.

On the other hand, the often mentioned quotient map ¢ : E — £' of the Kothe-Grothen-
dieck-Fréchet-Montel space E onto £' has a transpose ¢* : (£',]| - ||..) — (E',B(E', E))
which is certainly not a monomorphism. In fact, ¢* is not even a monomorphism for the
weak topologies corresponding to the strong topologies, which was utilized in Bonet-Dierolf
[2; Example 4]. We would like to model a gencral background of this phenomenon.

Proposition 2.7, Let X be a Fréchet space and let Y C Z C X be closed subspaces
such that Z is reflexive but Z]Y 1is not reflexive. Then for the quotient map q : X —
— XY, the transpose ¢ : ((X/Y),c((X/Y) ,(X/Y)")) - (X', 0(X',X")) isnota
monomorphism.

Proof. We have the following commutative diagram

(X', B(X', X™) XL BX XY —(Z2,B2,2) =(Z',7(Z 2Z))
’[qt / qt lpt
(YoX' B(Y°X' X]Y)) (Y°F B(Y°Z Z/Y)) 24, (Y°? 17(Y°? Z/Y))

of canonical continuous linear maps, where p : Z — Z/Y denotes the quotient map. Since
Z/Y is not reflexive, there is a linear form ¢ on Y°Z = (Z/Y)' which is B(Y°Z Z[Y)-
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continuous, but not (Y °?, Z/Y)-continuous. Then, y o s is a continuous lincar form on
(Y°X' B(Y°X', X/Y)). Assume, thercis ¢ € X" suchthat Yog' = pos.

We first show that ylker »=0.Let h € ker r = Z°X" C ¢'(Y°X'); thereis g € Y°X
such that h = ¢*(g) and we obtain (¢, h) = (¢,q¢'(g)) = (¥ o ¢',g) = {p,s(g)) = 0 as
p'(s(g)) = r(h) = 0 and p* is injective.

Now, since r : (X', 8(X", X")) — (Z2',B8(Z’,2)) is open (note that both space arc
L B-spaces), we find a continuous linear form 5 on (Z2',8(Z2',Z)) suchthat nor = .
Since 7 is also 7(Z’, Z)-continuous, the linear form n o p* is (Y °%¢, Z/Y)-continuous.
We will prove that 5 o p' = p, which yields a contradiction to the choice of . In fact, since
s is surjective it suffices to verify that nopos=norog'=¢og = pos. .

So the transpose of a homomorphism between Fréchet spaces will by far not bc a homo-
morphism for the strong topologies on the dual, even if one deals only with distinguished
Fréchet spaces (in (2.7) we may choose all spaces distinguished: Z Montel, Z/Y = ¢!, and
X a countable product of Banach spaces). In contrast to this we have in the dual setting the
following positive result (cf. also Floret, Moscatelli [9]):

Proposition 2.8. Let E bea DF-space, F an arbitrary locally convex space,and f : E —
— F' a homomorphism. Then ft: (F',B(F' F)) — (E' B(E' E)) is again a homomor-
phism.

Proof. ¢ . E — E/ker f satisfics (2.5) (), as E isa DF-space. This implics that the first
of the two conditions considered in (2.3) 1s satisfied. Since f( E) 1s again a DF-space we
obtain from [17; (4.1)] that also the second condition in (2.3) 1s satisfied (see also Kothe [13;
§ 29.5, (1) and (2)]. =

We will finish this sectuon with a few remarks about the contravariant functorial topology
E ~~~> (E' ~(F' E)) (where 4( E', E) dcnotes the topology of uniform convergence
on all B( F, E')-preccompact subscts of F).

Remarks 2.9. (a) Let F' bealocally convex space which is p-complete (i.e. closed precom-
pact subsets are compact), let M C F be aclosed linear subspaccand let 7 : M — F' denote
the inclusion. Then j* @ (F' 4(F', F)) - (M',v(M', M)) is a quoticnt map according to
Kothe [13; § 22.2 (3)].

(b) Let E, F' be locally convex spaces and let f : £ — F be a homomorphism. Fur-
thermore, assume that F' is p-complete, that E/ker f is complete and that for every com-
pact subsct A of E/ker f there is a compact subset B in E such that ¢(B) D A (where
q: E — E/ker f denotes the quotient map). Then f* : (F', ~(F', F)) — (E',v(E', E))
1S a homomorphism.
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The condiuons on E and F/ker f are satisfied, if E is a Fréchet space or a D F'-Montel-
space (cf. also Schaefer [18; p. 22]).

3. ON THE BITRANSPOSE OF A HOMOMORPHISM

Let E be a locally convex space and let I, C F be a linear subspace.

The bidual L" can be canonically identified with a subspace of L°° = L°E°E" - E" .
In gencral L" 1s strictly contained in L°°: let L be a Fréchet space whose strong dual ad-
mits a discontinuous bounded lincar form and let E' be a countable product of Banach spaces.
Furthermore, the inclusion 1 : (L", B8(L",L")) — (E,B(E", E")) nced not bec a monomor-
phism: choose F refiexive and L C FE closed and non-barrelled.

We would like to mention, that in general the inclusion 1 : L" — E" i1s a monomorphism
for the so-called natural topologies on L" and E" . In fact, it suffices to prove that for every

0 —mbhd U=TU in Ewchave UnL """ cTF ' nr c20n’"" . Bu
this follows easily from the fact that (U N L)® C U*® N L* C (1T°+ Lo ZF)e =

= ( %U” + L*}GEH'E})“ C 2(U N L)°° (where polars are formed with respect to the dual pair

(E", E'Y; note that U° is o( E', E))-compact).

For the bitranspose ¢** of the quotient map ¢ : E — E/L we have ker ¢ = L°°, whence
¢ ( E") can be canonically identified with a subspace of (E/L)" . In general the inclusioon
¢*(E") C (E/L)" is strict: choose E reflexive such that E/L is not reflexive. In (3.4) we
will see that ¢* : (E", B(E",E")) — ((E/L)",B((E/L)",(E/L)")) need not be open
onto its range even if E 1s a Fréchet space.

Remarks 3.1. Lct E, F' be locally convex spaces and let f : E — F be a continuous linear
map.

(@ f* : (E",0o(E",E)) — (F",o(F",F")) is a homomorphism if and only if
fYF") isclosedin ( E', B(E', E)), as follows immediately from (2.1) (a).

Morcover, f*'(E") isclosed in (F",o(F",F")) ifandonlyif f': (F',o(F',F")) —
— (FE', o(F', E")) 1s a homomorphism, as again follows from (2.1) (a).

If f is even a homomorphism from E into F, then f'(F") = (ker f)° is closed in
(E',o(E' E)), hence f* : (E",0(E",E")) — (F",o(F", F')) is a homomorphism.
The converse 1s not true as the following example shows: let /' be a D F'-space which 1s not
bornological, let K be the assoctiated bornological space to F' and let: f : £ — F' be the
identity map which is not a homomorphism. But f* : (F' B(F', F)) — (E',B(E' E))
is a monomorphism and (¥, B(F', F)) is complete, whence f* : (E", o(E",E")) —
— (F",o(F", F")) is a homomorphism.

(b) Assume that f* : (F',o(F', F")) — (FE' o(E',E"™)) is a homomorphism. Then
% has o( F", F")-closed range, and we obtain f*( F')° = ker f% (this is always true),
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fECE™ = (ker fH)°F = f(E)°° = f(E)" (where for the last equality we again use the
fact that f* : (F',o(F’',F")) — (E',0(E’, E")) is ahomomorphism).

Now the results of section 2 can be applied to the homomorphism f* : (F', o(F', F™)) —
— (E' o(E,E")).

We will formulate the special case of the strong bidual.

3.2. Let £, F belocally convex spaces and let f : E — F be a homomorphism. Tfae
) fro(F,B(F'F)) — (E',B(E',E)) and f* : (E",B(E",E")) — (F",B(F",F'))
arc both hormomorphisms.
i) B((ker f)°, E/ker f) = B(E', EY N(ker f)°
BUF, FY/F(E)® = B(F'/f(E)°, f(E))
B((ker f1)°, F'[ker f') = B(F", F') N (ker f*)°
B(E",EN/fI(F)°=B(E"/f{(F)°, fF[(F)).

3.3. Let E, F be Fréchet spaces and let f : . — F be a homomorphism.
i) If f is amonomorphism, the continuous surjection f* . (F',B(F',F)) = (E',B(E', E))
need not be a homomorphism (sece (2.6)), but it lifts bounded scts, whence by (2.5) the bitrans-
pose ft* : (E",B(E",E")) — (F",B(F",F")) is a monomorphism.
if) If f is surjective and f* : (F',B(F' F)) — (E' B(E' E)) is a monomorphism (i.c.
f lifts bounded scts with closure), then f** : (E",B(E", E")) — (F",B(F",F")) is a4
continuous lincar surjection between Fréchet spaces, hence a quotient map.

The following example shows that the hypothesis about f* is essential.

Example 3.4. Let (E,),.n bc a projective sequence of reflexive and separable Banach
spaces such that its projective limit E := proj E,_ is not quasinormable (¢.g. E = T1£°N
Ne2(2%), sec(3]),and let j : F — [l .n E, =: F be the natural embedding. According to
[4; Prop. 1 and its proof] the pair £ C F docs not have the bounded decomposiuon prop-
erty, whence the induced map ¢ @ £°(F) — £°(F/E), (z,)pen — (2, + F) o 18 NOL
open onto its range, i.¢. not a homomorphism. On the other hand, p : ¢, (F) — ¢, (F/E),
(T )pen M (z, + E) - Is continuous and open, and g = p' (note that F* and F/E arc
reflexive Fréchet spaces whenee ¢y (F)" =2 _(F) and cy(F/E)" =2 _(F/F).

3.5. Let E,F be DF-spaces andlet f : E — F be a homomorphism.

1) If f is a monomorphism and E is quasibarrelled, then f* @ (F',B(F' F) — (F',
B(E' E)) is a quoticnt map and for every bounded subsct A of (E',B(E', E)) there is
an equicontinuous, hence bounded subset B of ( F', B( F', F)) such tht f*(B) D A. Now
(2.5) implies that f* : (E",B(E",FE")) — (F",B(F", F')) is a monomorphism.

i) If f is surjective and if (F',B(F', F)) is distinguished (c.g. if ' is a retractive I, B—
space), then f'* - (E" ,B(E", E")) — (F",B(F" F")) isopen (scc (2.8) and (2.6)).
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[n contrast to this statement, let F* = ind _, F, be Kothe’s incomplete L B-space whose
strond dual 1s not disunguished, and let ¢ : @F, — F denote the canonical quotient map.
Then g% @ &( F" ,B(F" ,F.)) — (F",B(F",F")) is surjective but not a homomorphism
as 1ts domain is an L B-space and its range is not.

In particular, the bidual of an L B-space need not be an L B-space, whereas the bidual of
a rctractive resp. strict L B-space 1s a retractive resp. strict L B-space.

Our next aim 1s a similar investigation of strict L F'-spaces.

3.6. Let (F,),.n beanincreasing sequence of Fréchet spaces such that for every n € N the
inclusion j, : F, — F ., Isamonomorphism,andlet F' := ind__, F_ bethe correspsonding

strict I, F'-space.

We recall a few items from [2; p. 24-25], which are due to Grothendieck: ( F', 8( F', F))
can naturally be identified with proj,_ (F,,B(F,, F,)) (wr. 10 (j; : Fr.i — Fl)pen )-
The biduals (F", B(F",, F,)),cn form an inductive sequence w.r. to the menomorphisms
JECF" B(F" F)) = (F"_,,,B(F" ,,,F.)), and their union is the space F".

Thus we have a continuous identity id: F",, := ind__ (F"_,B(F"_,F))) — (F",
B(F",F")) =: F", (where, by the way, F"._, = (F',B(F', F)) , in the sense of the
inductive topology treated in § 2).

(@) The natural inclusions 1, : F" | = (F" ,B(F",, F,)) — F", are all monomor-
phisms, whence F"_, is a strict L F'-space.

(b) If j& & Fiyyy i= (Fayy,0(Foyy , F'hy)) — (Fio,a(Fi, F",)) =: Fy, is open for
all ne N, then F",_, and F"; have the same bounded sets.

() If F,, :=(F,,B(F,, F,)) isbornological forall n € N, then Fy := (F', B(F', F))
1s bornological, hence F", 1s complete.

The following statement generalizes [2; Prop. 3 (1)] to the case of an arbitrary strict
L F-space, cf. also the examples 2 and 4 in [2].

Proposition 3.7. Let F = ind F,_ be a strict LF-space as introduced in (3.0) (we keep all
the notations of (3.6)). Assume that the following two conditions are satisfied

i)y F,,—F,, isopenforallne N .
i) For all n € N the space F° := ker j! C F!,, provided with the relative topology
B, = pB(F.,,, F.)NF° isdistinguished.

n+tl

Thenid : F", , — F", i1s a topological isomorphism, 1.e. F'", 1s a strict L F'-space.

Proof. We first remark that for every n € N one has j : F,,,, — F,, open <= F" =

= (ker j))°F st «—= F" is closed in (F" ,,,0(F",,,,FL,,) < (F2,B,) =
= F" ., /F",. Next we note that for every n € N the quotient map ¢, F"ml,b —

— (F"_JF" ,B(F" ., /F" , F?)) is acontinuous linear surjection from a Fréchet space
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onto a metrizable locally convex space. In fact, because of i) we have (F?,8.) = F"_, /F"_
and ( F, B.) has a fundamental sequence of bounded sets.

Clearly, g, open <= the strong dual of (F?,S.) is barrelled <= the strong dual of
(F;,B,) 1s complete.

Thus 1) and 11) imply that forall n € N,
(*) ¢, 1s aquotient map from F" ., ; onto the strong dual of (Fy?,8,) .

Now,let U =T'U bea O —nbhd in F"; ;. We will show that U isa 0 — nbhd in F".
There exists a sequence (U, ),y Of O —nbhds U, in F"_; suchthat )" U, CU.

We will show by induction: there is a sequence (B,), . Of bounded sets B, = I' B, in
F,, suchthat j;(B,,;) = B, and By c (1 - 5x) Y om 1 U, forall n € N. In fact:
there is B, C Fj, bounded such that BTF"‘ C 7U,;. Now assume, that By, ..., B, have
already been constructed. As j, @ F,,,; — F,, lifts bounded sets, there is A C F,,,
bounded such that j}(A4) = B,. V := A"’ =1 NU,,, isa0 — nbhd in F"__,,. Because
of (*) there is a bounded subset C C (Fy,8,) suchthat C%'wi C 5tV + 7.

B.., == T'(AUC) is an absolutely convex bounded subset of F),, ,, and because of
C ckerjt wehave ji(B_,,) = j:(A) = B,.

Furthermore, B2H, ™' C AF w1 0 CoF'»1 ¢ A°F'wi N ( sV FL)

n+ 1l

ﬂFllm ]

Let o € B_,,™' . Then there are ¢ € 2(25_1)1/ and n € F"_ suchthat ¢ = ¢ + 7.

Therefore

1 F“ ] F-u
—_ . " O wt ] " I O !l —
n= ¢€Fnﬂ<2(2n_l)V+A )CFHH<+2(2H_1))A
= (14— FE(AYF =1+ : BF'
2(2»-1)/°" 2(2" — 1) i

1 ] - 1 e
] — — =
< (1 5m—) (1-28) 2 Va= (130w D0

m=1 m=

where the last inclusion follows by induction hypothesis. Consequently, ¢ = n+ ¢ €
€ (1= 5or) Yome1 Upi + 505=5Uns1 C (1 = 557) Y2 U, . This finishes the «proof by

induction».
As F; = proj_ .5 there is a bounded subset B in F suchthat p (B) = B, (n€ N),

where p_ : F' — F! is the transpose of the inclusion F, — F. B°F" isa 0 — nbhd in F",

and B = J,en Pa(B)° = Unen Ba' " CUnen Somet U C U .
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