Note di Matematica Vol. XII, 49-67 (1992)

REMARKS ON THE WEYL QUANTIZEED RELATIVISTIC HAMILTONIAN
TAKASHI ICHINOSE (*)

Dedicated to the memory of Professor Goltfried Kothe

1. INTRODUCTION

In this note we consider the same Weyl quantized relativistic Hamiltonian f , of a spinless
particle as in [7], [8], but with a smgular magneuc vector potential A(z) , corresponding to
the classical relativistic Hamiltonian (e.g. Landau-Lifschitz [14])

(1.1) V2 (p—A(z))2 + m2c®,  (p,z) € R*xRY,

where ¢ > 0 1s the light velocity and m > 0 is the mass of the particle. We assume for the
magnetic vector potential A : R¢ — R% A(z) = (A,(z),...,A (z)), that

(1.2) A(z)isin L% for some § > 0.

loc

Then the Weyl quantized relativistic Hamillonian with magnetic fields or relativistic mag-
netic Schrédinger operator H , = H3™ corresponding to the classical symbol (1.1) is defined
through

([H,4 — mc*]u)(z)

~ lim /| | [e=WAE Dy (1 4 o) — u(z)]nl dy)
r y|>r

(1.3)

|

- ‘EIE‘f (e~ WA YD (1 4 y) — u(z)
ly|>r

— Iy<1y¥(9; — 1A(2)) w(2)In(dy), u € CF(RY).

Herethe » | O limit will be takenin L. I'11,1<1y 18 the indicator function of the set {|y| < 1},

and n(dy) = n°™(dy) is a o-finite measure on R%\{0} dependent on the light velocity
¢ > 0 and mass m > 0, called the Lévy measure. It behaves as O(|y|~(¢*?)dy near y = 0
and is a bounded measure on {|y| > 1}, and is, in fact, given by

d+ 1 d+1 d+1
Z(Zﬂ)“Tc(mc)+|y]“ z H(dﬂm(mdy[)dy, m > 0,
1.4 dy) = + d+ 1
(1.4) n( dy) -l ( ; )clvl““i‘*”dv, m=0,
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where K (z) is the modified Bessel funcuon of the third kind of order v and I"(2) the
gamma function. The second equality in (1.3) is due to rotational invariance of the Lévy
measure n(dy) .

The aim of this note 1s to discuss the nonrelativistic limit (¢ — oo) and zero-mass limit
(m | 0) for H, — mc? . The usual factor 1/c in frontof A(zx) in (1.1) is omitted (cf. [4])
so that it can be kept fixed in the limit ¢ — oo.

In Section 2, justifying the definition of the Weyl quantized relativistic Hamiltonian H ,,
we state the main results, and, in Section 3, give their proof. Section 4 gives some further
results on H , defined through the quadratic form.

2. RESULTS

We assume that A(z) satisfies the condition (1.2), unless otherwise specified.
The following proposition justifies the definition of (1.3).

Proposition 2.1. The | O limit in (1.3) exists in the sense of convergence of L* , and
H , defines a symmetric operator in L2(R %) with domain C°(R 4y which is bounded from
below by mc* . Moreover, if

(2.1)

A(z)is in Li® for some § > 0 and / y(A(z + y/2) — A(z))n(dy) is in L.,

0<]yl<]
then

((H, — mc*lu)(z) = --f [e= WA y( 1 4 4) — u(z)

ly|>0

— I ey ¥(8, —iA(z))u(z)In(dy), u€ CFP(RY).

(2.2)

Notice that the condition (1.2) implies by the Calderon-Zygmund thcorem (e.g. [22]) that

r|0

(2.3) lim/ (A u/2) — A
r<iyv|< .

exists in the sense of convergente of L2*® andsoof L_. Therefore (2.1) is a slightly stronger
requirement than (1.2), in the sense that (2.1) assumes integrability of y( A(z+ y/2) — A(x))
with respect to n( dy) , which turns out to yield integrability of the intcgrand on the right-hand

side of (2.2).
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The definition of H , through (2.2) has been given first in [7], [8], when

(2 .4) A(z)and / |A(z + y/2) — A(2)|ly|n( dy) are locally bounded , &
0<lyl<!

P ="
b |
- . o ._I i
. ! e
o T ey :
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! i ’
| . e
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o

together with the proof of its essential selfadjointness on CP(R ). It is not yet known

whether H , defined by (1.3) and/or (2.2) is essentially selfadjoint on C°(R ¢) , although it is
the case, as to be shown in a forthcoming paper [10], if A(z) satisfies a condition somewhat
stronger than (2.1) but weaker than (2.4), i.e. that A(z) 15 in le;f for some & > 0 and

Jocpict [W(A(z + y/2) — A(z)) |n(dy) isin L}, .
For A(z) = 0, (1.3) and (2.2) become

(Hou)(z) = (\/—{:z.ﬁ. + m?ctu(z)) ()

(2.5) :
= mc“u(zx) — ./|‘| ﬂ[u(z+ y) —u(z) — I{lyl{l}yazu(m)}n(dy),
y|>

which is, by Fourier transform, equivalent to the Lévy-Khinchin formula

(2.6) V2p? + m2ct = me? — '/|’|>o[8£py — 1 =TI, qyipylnldy).
v

for the conditionally negative definite function \/c2p? + m?¢* —mc? (e.g. [11], [18]). Here
note that I{Iuifﬂ} may be replaced by I{M{T} for any » > 0. The last member of (2.5) exists

also for bounded u € C®(R?%).

When A(zx) is sufficiently smooth with bounded derivatives |0%A(z)| < C,,a =
= (a,...,ay), |la|=a,+...+ ay > 1, H, may be defined as the Weyl pseudo-differential
operator 1, :

(Hju)(z) =

(2.7)
=(27) "¢ ././eitr"”}P\/cz (p— A (I; y))z + m?2ctu(y)dydp, u € F(RY,

where the integral on the right is an oscillatory integral (e.g. [19]). Of course, H , agrees
with /Y, when (2.7) makes scnse.
Now we consider the nonrelativistic imit problem. For the nonrelativistic magnetc

Schroédinger operator

(2.8) HYE = (2m)~'(—id — A(z))?
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Leinfelder-Simader [15] (cf. [1, p. 11]) proved its essential selfadjointness on Cg§o( R%), if
(2.9) A(z)isin L}, and 0A(z) = 8,A,(z) + ...+ 0;A,(z)isin L _.

This 1s a definitive result in the sense that the condition (2.9) is minimal to assure that j;" ft

(2.8), defines a linear operator in L2(R %) with domain Coo( Rd) . The second half of the
condition (2.9) may be thought of as the nonrelativistic limit (¢ — oo) of that of the condition
(2.1). In fact, should it hold uniformly for ¢ > 1 that

f YAz + y/2) — A(z))nE™(dy)
0<|yl<l

=/ y(A(z +y/20) — A(z)) n' "™(dy) is in Lﬁx,
0<ly|<c 1/c

with a suitable integrability condition on the integrand, we should get 0A(z) € Lfm by
tending ¢ — oo.

Theorem 2.2. (Nonrelativistic limit ¢ — oo ). Put m = 1 and write H, as HS. Assume
that A(x) satisfies (2.9). Then as ¢ — oo,

(2.10) [HS — *lu— HYBy inL?,  foruc CP(RY).

Next we consider the zero-mass limit problem.

Theorem 2.3. (Zero-mass limit m | 0). Put c =1 and write H, as H}' . Assume A(zx)
satisfies (1.2). Then

(2.11) ILH? — mlu— Hou|| < 2m]|u||, foru e CP(RY).
where || - || is the L* norm. Moreover,as m | 0,
(2.12) ([HY — mlu,u) T (Hyu,u), for u € CP(RY).

Remark 1. Some consequences of Theorems 2.2 and 2.3 are mentioned, when H , 1S
essentially selfadjoint on C?(Rd) . Denote the unique sclfadjoint extension of /7, by the

same H , and that of H¥# by the same H¥£. Then by Kato [12, VIII, Cor. 1.6, p. 429], the
convergence of (2.10) in the nonrelativisuc imit implies the strong resolvent convergence

(2.13) (IHS = c*1 =2 = (HYR -0~ ¢ - oo,



Remarks on the Weyl quantized relativistic hamiltoman 53

for every nonreal X\, which is, by Kato [12, IX, Theorem 2.16, p. 504], equivalent to the
convergence of the semigroup and unitary group

(2.14) exp{—t[HS — c*]1} - exp[—tHYH], t>0,

(2.15) exp{—it[ HS — c*]} —exp[—it HY "], teR,

as ¢ — 0o, on L?'(le) uniformly on bounded intervals of ¢.
The same is true for the convergence in the zero-mass limit. (2.11) implies

(2.16) ([H? —m] =\~ =(H =0T, m |0,

for every nonreal A, which 1s equivalent to

(2.17) exp{—t[HT — m]} —exp[—tH,], t>0,

(2.18) exp{—it[H? — m]} —exp[—itH3], teR,

as m | oo, on L%(R%) uniformly en bounded intervals of .

Remark 2. When A(z) is sufficiently smooth and bounded together with its derivauves
of sufficiently higher order, Ichinose [5] (cf. [6]) showed (2.14) (and hence (2.15)), using the
path integral representation of the semigroup exp{—t[ Hj — c*]1} established in [9] to prove
its convergence in the nonrelativistic limit to the Feynmann-Kac-It6 formula (e.g. [20]) of the
semigroup exp[ —tH ¥ #].

Remark 3. Nagase-Umeda ([16], [17]) proved, for A(z) sufficiently smooth with
|0°A(z)| < C_, |a|] > 1, an estimate slightly weaker than (2.11) for the pseudo-differential
operator HY as well as its essential selfadjointness.

Remark 4. In Section 4 we refer to the definition of the Weyl quantized relativistic Hamil-
tonian or relativistic magnetic Schrédinger operator H , through the corresponding quadratic
form. But our H , differs from the square root

(2.19) V2 (=18 — A(z))? + m2 A

of the nonegative selfadjoint operator ¢?(—18 — A(z))? + m?*c*, whether both H, and

c*(—id — A(z))? + m?c* are defined as operators or through quadratic forms.
For the nonrelativistic limit for (2.19), De Angelis and Serva [2] has made a probabilistic

treatment.
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3. PROOFS

First we collect here the notations to be used in the following proofs of Proposition 2.1, The-

orems 2.2 and 2.3.
By ||f||, we denote the L?-norm of a function f(z) in R¢, while the L? -norm simply

by ||f]|. For a compactset K in R, |K| stands for the volume of K, and for » > 0, put
K_={zx e R%dist(z,K) < r}.Put]|f o = I fllocky» 1 <P < 0o. Fora >0 put

(3.1) n = f ol *n(dy),
0<lyi<l

(3.2) N, = ly|*n(dy) .

ly|>1]

We see from the behavior (1.4) of the Lévy measure n(dy) that n_, o > 0, and N, are

finite. Note that N, 1s denoted in [8] by n__.
In the following, when we need to emphasize the c- and/or m -dependence, we shall write

n(dy) = n(y)dy,n, and N_ as n°™"(dy) = n®™(y)dy,n7™ and NJ™, respectively.

Proof of Proposition 2.1, We assume (1.2). We may suppose that 0 < 6 < 2. Let u €
CP(R %) and let K be the support of u, which is compact.

First we show H , is a linear operator in L?(R %) with domain C$°(R %) . Rewrite (1.3)

as
(H, u)(z) = {mc?-u(z) — ./|-| O[u(:c+ y) —u(zx) — I{Iy!{zl}yazu(z)]n(dy)}
y|>
+_/ — (e VA _ 1yu(z + y)n(dy)
ly|>1
+ / —(e7WAEVD _ 14 iy A(z + y/2))u(z + y)nl dy)
0<]yl<1
(3.3)

+f iyA(z + y/2) (u(z + ) — u(z)) n(dy)
0<|y|<1

rlim [ iy(Az+9)/2) - A@)u(z)n(dy)
r<|ylkl

r]0

4
= (Hou)(z) + ) (L;u)(2).
j=1

By (2.5), Hyu 18 In L?. So we must show that the Ij-u. belong to L2(R%),j=1,2,3,4.
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We can obtain by the Schwarz and Holder inequalities

17y u]] < 2 Nollul],

(2+5) /2
1 uf| < 3”6{2||A||2+6,K| [0,

(3.4)
11 ull < m (Al &, 104l < 1K 725 O m || Al s 4, 110t oo,

”}4 U I < CK“"”]Z K Hu”m é CK[J(IIﬁxzm*-a)”‘l”?,-rﬁ,ff ”u”m
i 1
Here, to get the estumate for Izu , USC 1S made of

le ™™ — 1+ 4t| < 3t|*9/2, 0<6<2.

In the first inequality for I,u we have used the Calderno-Zygmund theorem (e.g. [22]);

C, > 0 is a constant independent of A and dependent on K. When A(zx) sausfies (2.1)

rather than (1.2), we sec the expression for [, u is valid with 1im f replaced by /
r<|yj<] 0<lyl<l]

r]0
and have ||[,u|| < C(A, K)||u||,,» with a finite constant

> 1/2

)

-
K

Next 1o see that H , is a symmetric operator on C°(R %) , put
(3.5)
(H,u)(x) = L* - liilg(ffﬂlru)(z)

f V(A(z + y/2) — A(z))n(dy)
0 <jy|«]

r|0

= L% — lim {mczu(z) —/ [e~ WA/ (x4 y) — u(z)]n(dy)]» ,
ly[>r

u € CP(RY),

Hence (H ,u,v) = IiE}l(Hﬂjru,u) = liln[;l(u, H,,v) = (u,H,v), for u,v € CP(RY).

Finally, we show that H, — mc? is nonegative. Let u € C(?‘D(Rd) and u (z) =
= /|u(z)|?> + €2,e > 0. Then u, is C* and bounded. Note that —|u(z)||u(z + y) [+
+|u(z)|? > —u(z)u(z+ y) + v (z)*, and dlu(z)|* = Au.(z)?. By taking a subse-

quence r | O if necessary, we have for a.c. x (for simplicity, writing (( A 4 — mc?)u)(z)
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and ((H, — mcz)uE)(x) as (H, — mc?)u(z) and (H, — mcz)uﬁ(z),resmctively)

Re[u(z)(H, — mc?)u(z)]

= Z*I{u(:n)(HA ~ mc?)u(z) + u(z)(H, — mc?)u(z)}

=2 ljﬂ}l{u(z)(}{ = mc*)u(z) + u(z)(H,, — mc?)u(z)}

3.6 .
(3.0 2 lllIEl fil [—|u(z) |ju(z + )|+ |u(x)]* + 2_1I{M{I}yﬂu(z)]z]n(dy)
r yi>r

> v/l’l [—u (z)u (z+ y)+ uE(m)z + 2‘“11{|”|{1}y6u5(z)2]n(dy)
y|>0

= u_(z)(Hy — mc*)u (z).

Since w = u, — ¢ is in C,(Hy — mc*)u, = (Hy — mc*)w is in L?, so that the last
member of (3.6) equals

w(z)(Hy — mc?)w(z) + e(Hy — me?)w(z).
Therefore, integrating the inequality between the first and last member of (3.6), we have
(u,(H, — mcz)u) > (w,(Hy — mcz)w) >0

proving Proposition 2.1.

In connection with Proposition 2.1 we should like to insert here acomment on [8, Lemma
2.3, pp. 273-277]. The former extends part of the latter, since the latter assumes that A(x)
satisfies (2.4), a less general condition than (1.2). However, the proof of this lemma contains

some erroneous arguments, although all of 1ts statements are correct. In fact, to establish the
estimate [|1; (&), x < C(K))||ull, x, [8,(2.20), p. 275], we cannot make such a change

of the integration variables =z + y = z'. The argument in [8, p. 275, lines 1-7 from the top]
should read as follows: We use the Schwarz inequality to get

nn(s)nz,xg{f dx (f (27 [yP|ACz + y/2) [P+
K, e<]y|<]

+ [yl|A(z + y/2) — A(z + y)I]Lﬂ'"(dy))

x/ (27 [P ACz + 9/2)
e<|yl<l

1/2
+ |y||[A(z + y/2) — A(z + y) [l]p(z + y)u(z + y) Iﬂ’"(dy)}
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and hence obtain
i, (&) lz x < [27 a(Ky) 20l + (b(K,) + b(K,))]|lpull, < CCK ) |lull; k.,

with [8, (2.5, a, b)] as well as the fact that [8, (2.5b)] implies

E(K) ESUp/ |A(z + y) — A(2)]||ly|n™(dy) < oo
zeK JO<yl«]

for every compact set K . The same care should be taken in showing

i d ]
151 () loo,k, < CCEDlullooy  and Iz ()]leox, < Cr [llulloo+ D 1185ulleo |
- '?=1 -

[8, p. 277, lines 3-5 from the top] and (8, (3.46), p. 287]. However, a simpler proof of this
lemma can be given, using the same decomposition (3.3) of H ,u as in the proof of Proposition
2.1.

To prove Theorems 2.2 and 2.3 we need some properties of the Lévy measure n(dy) =
= n°M(dy) = n°™(y)dy, (1.4), where n°™(y) is the density function of n“™(dy) with
respect to the Lebesgue measure dy, as in the following lemma.

Lemma 3.1. For m > 0,

[ gy =1m, 1<i<a
ly|>0

(3.7)
f ly|* n°“™(dy) = d/m.
ly|>0
As ¢ — 00,
(3.8) g™ =f Y2 rem(dy) — 0,
ly|>1
(3.9) n, " = / Iy’ n©™(dy) — 0.
0<|y|«]

(it) For ¢ > 0, the function n“™(y) is increasing as m | 0,
(iii) For ¢ > 0,

(3.10) / (7™ (y) — 10 (y))dy = —mc?.
ly|>0
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Proof. (1) We show the second half of (3.7), (3.8) and (3.9); the first halt of (3.7) follows from
its second half. We have

oo

ji.l : Iylznc,m(dy) - Gdsdmu-l : p(d+1:|f2 K(d_*,”’;z(p)dﬁ
yi>

— E(Zﬂ)—(d+1}f28dm—lz(d—-l}fzﬂ_lle—' (; + 1)

= =42 (;— + 1) S,m~ =d/m,

d\ o
where C, = 2(2 ) ~(¢*D/2 and §, = 27n¥/°T (-5) is the area of the (d— 1) -dimensional

unit sphere. In the second equality we have used an identity for K (2z) [3, Chap. 7, 7.7.3,
(27), p. 51]. Similarly we have

o0

fli::-l |ylzﬂc'm(dy) = Gdem_l plar i K(a1y2(p)ap,
ViZ

mc

which converges to zero as ¢ — oo, showing (3.8). We get (3.9), since
'/;{lﬂ‘:l Iy|3 nc,m(dy) — Cdem-Z C-—l '/'.J p(d+3)f2 K{d+1)f1(p) dp

converges to zero as ¢ — oo, because the integral on the right is bounded by 2(¢*D/2T

(d; : ) , by use of the same identity for K, (2) as used above.

(i) By (1.4) we have
n(y) = Gdcd+2md+l(mclv[)_(d”m K(d+1)/2(mﬂ|v|)-

Therefore, for |y| > 0,

d _
Cy' 7—n"™(y) = ¢ {<d+ Dm(mely)) =% K gy1y 2 (mely))
d
d+ 1 _(d+1)/2
+m Elyld(mc]yp [(mcly|) K(d+l)f2(mc|y|)]}

= ¢ m(mcly]) V2 [(d+ 1) K 441y 2 (mncly])

— mc|y|K (g3 ,2 (mcly]) ]

—(d—

= —c**m*(mcly|) N2 K(4_1y,2(mcly]) <O.
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Here we have used, 1n the second equality, the identity
271 (d/d2) (27K (2)] = =2~V K, (2)
[3, Chap. 7,7.11, (22), p. 79] and, in the last equality, the identity
2vK (2) — 2K ,,,(2) = —2K,_,(2)

[3, Chap. 7,7.11, (25), p. 79]. This proves that n>™(y) is decreasing as m increases or the
desired assertion.
(i11) The assertion is trivial for m = 0. For m > 0, we obtain from the proof of (ii)

T
d
— o’ ds
.[:} s ( U)

—C /ﬂ s¢(scly]) DK 4y (scly)ds

n“™(y) — 1 (y)

Then
_/ [n°™(y) — n°°(y)]dy
ly|>0

deSdazﬁ ds-/{] ﬂ(d_l}ﬁﬂ(d_nﬁ(ﬂ)dﬂ*

st (£) < nd

where in the last equality we have again used the same identity for K (z) as above [3, Chap.
7,7.7.3, (27), p. 511.

Proof of Theorem 2.2. Write n(dy) as n°(dy) . Let u € CP(R9) and let K be the support
of u. Since

(HYBu)(z) = =271[8% — i(8,A)(z) — 21A(z)d, — A(z)*]u(z),

we have with (3.7)
(3.11) ([HS - — HYBJu)(x)

i {h_/ [u(z + ) — u(z) = Iy nyvo ulz)In(dy) + 2_153“(I)}
y|>0

. _/ (e~ WA /D _ 1u(z+ y)n‘:(dy)}
- Yyl21

+ &./‘ [e VAL Y/ _ 14
. 0 <yl

+ iyA(z + y/2) Ju(z + y) n°(dy) — 27" A(z)*u(z) }
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f iyA(z + y/2)(u(z + y) — u(z))n’(dy) — 1A(zx) @Iu(fﬂ)}
0<jyl<l

+ {limf 1y(A(z + y/2) — A(z))u(z)n(dy) — 2_11(8IA)($)U(I)}
r<|y|<l

We want to show that all ﬂju, 1 <7 < 5,ontheright of (3.11) converge to 0 as ¢ — oo.
We use the notations at the beginning of this section,
For A, u: This term refers to the difference between the free relativistic and nonrelativistic

Schrodinger operators. We have

(3.12) 1A ]| = [[(V=c2A + ¢ —P)u+ 27" A4

which 1s by Fourier transform equal to

IIL(V/c2p? + c* — ) —271p* 14| = ( P’ *Ei)a.
Vip/ot+1+1 2 |
tending to zero as ¢ — oo, where #.(p) 1s the Fourier transform of
w(z) : (p) = (2ﬂ)-df2fe‘wu(z)dm

For A, u: By the Schwarz inequality we can show
(3.13) 145 uf| < 2 Ngllul],

which tends to zero as ¢ — oo, because N§ < Ny — 0, by Lemma 3.1, (3.8).
For A, u: Decompose it into three terms

(Ayu)(z)

T ./ [(e7WAED _ 14 iyA(z + y/2))
0<yl«l
+ 2 N yA(z))*u(z + y)n°(dy)

(3.14a) +2"‘f (yA(2))2(u(z + v) — u(z))n<(dy)
0<yl<1 -

—2-1f (yA(2))?u(z) n(dy)
ly|>1

3
=) (A5,u)(z).
k=1
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Here we have used not only (3.7) but also f yjyknc(dy) =0 for j#k,1 <j,k<d,so

ly1>0

that f (yA(z))*n(dy) = A(z)?. We estimate these three Aq u. As for A, u, we first
ly|>0

make the change of variables y = y'/c (write y again instead of ¢'), noting f f(y)
0<]y|<]

n°(dy) = c* f f(y)n'(dy), and then apply the mean value theorem to get
0 <|yl<c

(A3, u)(z)

|
:/ [(yA(z + yﬂc))z,/ (1 — §)e~"0/vA+Y/29 gp _ 2 =1 (4 A(2))?]
O<yl<c 0
X u(z + y/c)nl(ciy).

Hence we obtain by the Schwarz inequality with (3.7)

1Ay ull < 472wl { [ i
0<|yl<e

X dx
(3.14b) -/e‘ﬁ
2"'1 1}2

|
f (1 — )~ /wA=r929gp _ 2 -1 (§A(z))?| ¢
0

o

(JA(z + y/2¢))*

with § = y/|y|. The dz-integral over K, on the right of (3.14b), which is a function of y,
is bounded for all y and ¢ with |y| < ¢ and ¢ > 1, and convergentto 0 as ¢ — oo, because,
as y — 0, A(z+ y/2) is convergentto A(z) in L} as well asa.e. Since |y|*n' (dy) is by

(3.7) a finite measure on R “\{0}, it follows by the Lebesgue bounded convergence theorem
that the |y]|*n! (dy) -integral on the right of (3.14b) tends to zero as ¢ — oo. For the other
Ay, u and A;,u we can also show

(3.14¢c) 1855 ull < 27 5 [|All3 &, 10l

and

(3.14d) ||Az; ul| < zulsz“AHi,ffHaU”w
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both of which tend to zero as ¢ — oo, because Ny — 0 and n§ — O, by Lemma 3.1. Thus

with (3.14abcd) we have shown A,u — 0 in L? as ¢ — oo.
For A, u: Decompose 1t into three terms:

(Asu) ()

=='_[ yA(z + y/2)(u(z+ y) — u(z) — (yd,) u(z))n(dy)
0<lyi<l
. if YAz +y/2) — A(2))(v8.) u(z)r(dy)

0<|yl<]

—ff (yA(2))(y8,)u(z) 7 (dy)
ly|>1

3
=) (Agu) (),
k=1

where we have used (3.7) and ./ yjyknc(dy) 0 for j#k,1 < 7,k < d, or

jy[>0

f (yA(z))(yd,) u(z)n’(dy) = A(z)d,u(z). By the Schwarz inequality we have
ly|>0

(3.15b) |Agull <27 % 5 ||All, k, sup 118,08, ullo,
1<, k<d

Agull < d'/2 ( [ i
(3.15¢) Pelvl<e

1/2
--/;(d:r:|A(z:+ v/zc)—ﬂ(l')’z) 104

(3.15d) 1Ag u|| < Ny||4|]; kll0ul|e

where to get (3.15¢c) we have used (3.7) and made the change of variables y = y'/c. Itis
clear that as ¢ — oo, A; u and A,;u tend to zero, because n; and Ny — 0. To see
A4y u — O, we apply analogous arguments used for A;, u in (3.14b). The dz-integral over
K on the right-hand side of (3.15¢), which is a function of y, is bounded for all y and ¢ with
ly| < ¢ and ¢ > 1, and convergent to 0 as ¢ — oo, because, as y — 0, A(z + y/2) is
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convergent to A(z) in L{ _ and hence in LZ_ as well as a.e. Since |y|*n' (dy) is by (3.7)

a finitc measure on R %\{0}, its integral on the right-hand side of (3.15c) converges to 0, as
c — oo, by the Lebesgue bounded convergence theorem, yielding A,, u — 0. Thus we have
shown A,u — 0.

For Asu: Let x(z) be a nonnegative C® function with compact support such that
x(z) = 1 on K, and supp x C K,. Note that if JA(z) is in Lfm,ﬁ(x(z)ﬂ(:ﬂ)) 1S
in L?. Then we have

(3.16) 145 ul| < 6°CH)|uf|o,

with

2 1/2
§°CK) = lim (/ m) |
r]0 K

where note that A(z) € Lfm implies A(z) € L7, so that the limit (2.3) exists in the sense

loc *

/ iy(A(z + y/2) — A(z))ne(dy) — 2~ idA(z)
r<|yl<l

of convergence of L. With (xA)(z) = x(z)A(z) we obtain

5C(K)2
2
- lim[ / iv((xA)(z+ y/2) — (xA)())n(dy) — 2" i8(xA)(z)| da
rl0 Jk [Jr<lyl<!
2
< limf / iy((xA) (z + y/2) — (xA)(z))n°(dy) — 27 18(xA4)(z)| d,
Tlﬂ Rd r‘:lﬂ'l‘:l
which is, by the Parseval formula, equal (o
| N _ 2
limf / L™ _ 1)((XA) (p)r(dy) + 27 p(xA) (p)| dp
rl0 R ¢ r<|yl<]
| . . 2
=f / L™ — 1)y((xA) (p)n(dy) + 27 p(xA) (p)| dp,
R¢ |J0<]yl<)
because the integral / i[ e — 1]1yn°(dy) exists for each fixed p. Since we have from
0 <yl

(2.6)

/ i[ePY? — 1)yn‘(dy) =
0<jy|<1

2 “ | .
SRy /S / i€/ yn(dy),
Viep/2)2 + ¢t Jye
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we get by the triangle inequality and the Parseval formula

, 1/2
2
5°(K) <27 f - — 1| p(xA)(p)| d
(K) < (\/(q;/z)M& )p(x )(p)| dp
) 1/2
+(f/ ie'PV/2 y(x A) (p) n(dy) dp)
ly|>1
, 1/2
1 e —
<2-! f —1)axA (| dp|  + NNxA,
\/(p/Zc)2+l

= 27M|[(1 = (20) 72A) 12 — 118(xA) || + NE|IxAll,

which tends to zero as ¢ — oo, by the Lebesgue dominated convergence theorem or the
strong convergence [(1 — (2¢)72A)~1/2 — 1] -0, and because N < N5 — 0, by (3.8).
3

It follows with (3.16) that A;u — 0. This completes the proof of Theorem 2.2.

Proof of Theorem 2.3. First we show the first assertion. Let u € C§°(R 4y . By Lemma 3.1
(i), n{®™ (dy) = n®(dy) — n™(dy) is a positive measure on R*\{0} if m > 0. We have

|Hpu — [HY — m]u||’

= lim /d:l::
rl0

2
= Ty<1y¥(0; — 1A(z)) u( z)]n(ﬁ*m}(dy)‘

fl () — u(o
yl=r

2

= lim infff (e~ WA y(z 4+ y) — w(z) 0™ (dy)| dz
jy| >

r]0

2
dz

gliminff/IJ (Ju(z + )| + [u(2) ) nO™ (dy)

r]0

< lim inf/dz f 7 9™ (dy) (lu(z+ y)| + ]u(:ﬂ)|)2nm'm)(dy)’ .
0 yI>T [yl>r

It follows with (3.10) that

||HEu—[HA"—m]u]|glimléan[ n ™ (dy)||ul| < 2m||ul].
T ly|>r
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Next we show the second assertion. Let 0 < m < m'. The proof will proceed analo-

gously with the arguments used to prove H, > mc* in the proof of Proposition 2.1.

Let u € CP(RY) and u (z) = v/|u(z)|?> + €2, > 0. Then u_ is C™ and bounded.
By taking a subsequence r | O if necessary, we have, forae. =,
(3.17)

Re[u(z)(H? — m)u(z) — w(z)(HT — m)u(z)]

= ljﬂ} 2~ -/lyl}r(—u(z)[E—:yA{.erZ}u(m +y) —u(zx) — I{lylf_]}y(az —1A(z))u(z)]

+ u(z) [V u(z 4 y) — u(z) — I, 0,0(8, + iA(2)) u(z) ) ™™ (dy),

where n{™™) (dy) = n™(dy) — n™ (dy) is a positive measure on R d\{(} },by Lemma3.1.
(i1). It follows that the right-hand side of (3.17) is larger than or equal to

lilrg /|| [—|u(z)||u(z + v) |+ |u(z)|* + 2*1{{iqul}ymu(:r)|2]n(’“'m’](dy)
r y|>r

>/ [—u (2)u (z+y)+ urg(m)2 +2! ]{lylﬂ}yaus(m)z]ntm'm’)(dy)
ly|>0

=u(z)(Hy —m)u(z) —u (z)(Hy — m'Yu (z).

Thus

Re[u(z)(HT — m)u(z) — w(z) (HT — m')u(z)]
> u, (z)[(Hy —m) — (Hy — m')]u (x).
Integrating both sides we get
(u, (HF —m)u) — (u,(HF —m)u) > (v, [(HF —m) — (HF —m)]u,) >0,

ending the proof of Theorem 2.3.

4. NOTES

If the magnetic vector potential A : R¢ — R® is in L.*® for some § > 0, we can de-
finc the Weyl quantized relativistic Hamiltonian with magnetic fields or relativistic magnetc
Schrodinger operator, denoted by H ;™ again, as the sclfadjoint operator associated with the

closed quadratic form

hS™ [u,u] = mGZHuHZ
] ' - + c,m
(4.1) + 5—]/ |7 = RACTE My (1) — u(y) P - n*™(z ~ y)dady,
|z—y|>0

u € QLhY"],
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with domain Q[ hji'“] , which is the subspace of L%2(R %) of the functions u such that the
integral on the right-hand side of (4.1) is finite. Here n®™(s) 1s the density functuon of the
Lévy measure n~™(dz), (1.4): n°™(dz) = n°“™(2)dz. In view of the elementary inequality
le= — 1] < 2|t|(1*9/2 0 < § < 1, it can be shown that C’?(Rd) 1S not only a subspace
of Q[A’,™] but also a form core of H,™.

If A(z) isin L2 _, the nonrelativistic magnetic Schrodinger operator H V& can also de-

loc ?

fined through the quadratic form
(4.2) ANAu,u] = (2m) 7 [|(—18 — A)u||?

(See Kato [13], Simon [21] and also [15], [1, p. 8]).
For the nonrelativistic limit (¢ — oo) and zero-mass limit (m | 0) for A", it will be

shown that if A(z) isin L%, then

loc *

hil[u,u] = GZHUHZ - hﬁfﬂ[u,u], as c¢c—oo(m=1),

for u € C(RY), and if A(z) is Li*® for some § > 0, then

loc
hi{m[u,u] — m||u[|2 1 hh’n[u,u], as m]O0(c=1),
for u € CP(R?), with

0 < h'[u,u)l — [A,™[u,u] — m||u|*] < 2m||u|f*, forue CP(RY).

Here together with Theorems 2.2 and 2.3, we see¢ that the convergente 1n the zero-mass limit
1S monotone as quadratic forms, while this does not seem to be valid for the convergence in
the nonrelativistic limit.

Note added in proof. In another forthcoming paper: T. Ichinose and T. Tsuchida, On esscntial
selfadjointness of the Weyl quantized relativistic Hamultonian, it has been proved that ff ,

in (1.3) 1s essentially selfadjoint on Cﬁ“(Rd) under the assumpton (1.2), so that all the
assertions in Remark 1 to Theorems 2.2 and 2.3 are now truc.
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