ON THE SPACE $\mathcal{K}(P, P^*)$ OF COMPACT OPERATORS ON PISIER SPACE P KAMIL JOHN

Dedicated to the memory of Professor Gottfried Köthe

By Pisier space we will mean an infinite dimensional Banach space P such that

- (i) On $P \otimes P$ the extremal ε -and π -tensor norms are equivalent.
- (ii) P and P^* are both cotype 2 spaces.

Such a space was constructed by Pisier [8]. It is not difficult to see then [3] that P is a Hilbert-Schmidt space in the sense of [2]. This means that $\mathcal{L}(P, l_2) = \mathcal{P}_2(P, l_2)$ where \mathcal{P}_2 denotes the ideal of absolutely 2-summing operators.

J. Johnson [5] proved the following result: For two Banach spaces E and F, the latter with the λ -bounded approximation property, there is a projection $p: \mathscr{L}(E,F)^* \to \mathscr{L}(E,F)^*$ satisfying

$$||p|| \le \lambda$$

$$\ker p = \mathcal{K}(E, F)^0$$

$$\operatorname{Im} p = \mathcal{K}(E, F)^* \qquad \lambda-\text{isomorphically}\,.$$

Hence we show this statement (3. Proposition) for the space E = P and $F = P^*$ where P is the Pisier space. This result cannot be obtained by Johnson's statement since Pisier spaces by Pisier's factorization theorem never have the approximation property.

Our proof depends on a compactness argument different from the one used in Johnson's paper. Next we list some of many properties equivalent to the fact that each bounded operator $f: P \to P^*$ is compact (1. and 2. Proposition). Finally we observe that $\mathcal{L}(P, P^*)$ may always be embedded into $\mathcal{L}(P, P^*)^{**}$, which is a result also similar to the corresponding result of J. Johnson.

In the following P_1^* , P_1^{**} denote the closed unit balls of P^* , P^{**} in its w^* -topologies. By measure we will mean any positive Radon measure on P_1^* and the set of all asuch measures will be denoted by M^* . By $\mathcal{K}(P,P^*)=\mathcal{K}$ or $\mathcal{L}(P,P^*)=\mathcal{L}$ we denote the space of all compact or bounded operators $f:P\to P^*$ respectively.

For the sake of simplicity we will suppose that the Pisier space P is separable in Propositions 3 and 4, so that $C(P_1^*)$ is separable.

We start with the following observation (cf. also [7]):

Proposition 1. Let P be a Pisier space. The following are equivalent

- a) $\mathcal{L}(P, P^*) = \mathcal{K}(P, P^*)$.
- b) $\mathcal{L}(P, l_2) = \mathcal{K}(P, l_2)$.
- c) There is no surjection of P onto l_2 .
- d) P does not contain isomorphically the sequence space l_1 .

70 Kamil John

Proof. Having in mind that $\mathcal{L}(P, l_2) = \mathcal{P}_2(P, l_2)$ the equivalence of b), c) and) follows immediately from [7, Proposition 3].

For the convenience of the reader we give here one of possible proofs: The implication a) \Rightarrow b) follows from the known fact (cf. e.g. [4]) that for any operator $A: P \rightarrow l_2$ we have

A is compact iff $A^*A: P \to P^*$ is compact.

b) \Rightarrow c) is trivially always true; c) \Rightarrow d) suppose that P contains a copy of l_1 . Let A be a surjection of l_1 onto l_2 . The operator A being absolutely summing it allows a continuous extension onto the whole space. We denote this extension again by A. Thus $A: P \rightarrow l_2$ is a surjection. d) \Rightarrow a): the assumption d) implies by Rosenthal's l_1 -theorem that each bounded sequence in P has a weak Cauchy subsequence. Now let $f \in \mathcal{L}(P, P^*)$.

Then f is fully complete. Indeed, (i) is equivalently expressed by the statement that every operator $f: P \to P^*$ is integral. Thus f is fully complete (cf. e.g. [1, 19.6.2]). This means that f takes weak Cauchy sequences into norm convergent ons. This finishes the proof.

Our aim is to show an analogy of a result of J. Johnson [5] namely that $\mathcal{K}(P, P^*)^*$ is a complemented subspace of $\mathcal{L}(P, P^*)^*$. We complement this result (and 1. Proposition) by

Proposition 2. The following are equivalent

- a) $\mathcal{K}(P, P^*) \neq \mathcal{L}(P, P^*)$
- b) $\mathcal{K}(P, P^*)$ is not complemented in $\mathcal{L}(P, P^*)$
- c) $\mathcal{K}(P, l^2)$ is not complemented in $\mathcal{L}(P, l^2)$.

Proof. If a) is satisfied then by the preceding proposition there exists a surjection $A: P \to l_2$. Then $\mathscr{L}(P, l^2) \neq \mathscr{K}(P, l^2)$ and [9, Theorem 6 or its Corollary] implies c). To show b) let $j: l_{\infty} \to \mathscr{L}(P, l_2)$ be the isomorphism defined in the proof of that result [9, Proposition 4]. By construction the operator j maps c_0 into $\mathscr{K}(P, P^*)$. Let i be the embedding of $\mathscr{L}(P, l_2)$ into $\mathscr{L}(P, P^*)$ given by $i(f) = A^*f$ where the dual A^* of A is evidently an embedding fo l_2 into P^* . Let us suppose now that p is a continuous projection of $\mathscr{L}(P, P^*)$ onto $\mathscr{K}(P, P^*)$. Then $S = p \circ i \circ j: l_{\infty} \to \mathscr{L}(P, P^*)$ is weakly compact since P does not contain complemented copy of l_1 and P^* does not contain a copy of l_{∞} (cf. [6, Corollary to Theorem 4]). Then the restriction of S to c_0 is again weakly compact, but evidently $S|_{c_0} = ij|_{c_0}$ is norm isomorphism which cannot be weakly compact - a contradiction.

Proposition 3. There is a projection p on $L(P, P^*)^*$ such that $||p|| \le c$ for some constant c, the range of p is c-isomorphic to $\mathcal{K}(P, P^*)^*$ and the kernel of P is the anihilator of $\mathcal{K}(P, P^*)$. Thus \mathcal{L}^* is the topological direct sum $\mathcal{L}^* = \mathcal{K}^0 + J_K(\mathcal{K}^*)$ where $J_K: \mathcal{K}^* \to \mathcal{L}^*$ is the isomorphic embedding.

The proof will be contained in the following observations:

1) (cf. e.g. [6]). Let X, Y be Banach spaces, $K = X_1^{**} \times Y_1^*$ (the cartesian product of the unit balls in their w^* -topologies).

Then any compact operator $f \in \mathcal{X}(X,Y)$ may be identified with $\tilde{f} \in C(K)$, where $\tilde{f}(x^{**},y^*)=x^{**}(f^*(y^*))$ for $x^{**}\in X^{**}$ and $y^*\in Y^*$. This identification is an isometric embedding of $\mathcal{K}(X,Y)$ into C(K).

2) Let $\mu \in M^+$, i.e. μ is a positive Radon measure on P_1^* . Let us denote by A_μ the canonical mapping $A_\mu: P \to L_2(P_1^*, \mu) = H_\mu$ given by $A_\mu x(x^*) = x^*(x)$. Observe that if $k\mu_2 \leqq \mu_1$, K>0, then $A_\mu = A_{\mu_1\mu_2}A_{\mu_2}$ where $A_{\mu_1\mu_2}: H_{\mu_2} \to H_{\mu_1}$ is induced by the identity embedding and $||A_{\mu_1\mu_2}|| \leqq \sqrt{k}$.

In this notation we now state

3) Every $f: P \to P^*$ may be expressed as a composition $f = A_{\mu}^* f_{\mu} A_{\mu}$ for suitable probability measure $\mu \in M^+$ and suitable $f_{\mu} \in \mathcal{L}(H_{\mu}, H_{\mu}^*)$. Moreover a constant c = c(P) exists depending only on the space P and not $f \in \mathcal{L}(P, P^*)$ such that $||f_{\mu}|| \leq c||f||$.

Indeed, the mapping f being integral by (i) we get the factorization f=BA through a Hilbert space l_2 and the estimate $||A||\cdot||B|| \le c_1||f||$ with some constant c_1 . Now P being a Hilbert-Schmidt space, the Pietsch factorization theorem gives probability measure $\mu_1 \in M^+$ and the factorization $A=S_1A_{\mu_1}$ where $S_1:H_{\mu_1}\to l_2$ and $||S_1|| \le P_2(A) \le c_2||A||$. Similarly $B^*|_P=S_2A_{\mu_2}$. Let $\mu=(\mu_1+\mu_2)/|\mu_1+\mu_2|$. Then $A_{\mu_i}=A_{\mu\mu_i}A_{\mu}$ and because $(B^*|_P)^*=B$ we get $f=A_\mu^*A_{\mu\mu_2}^*S_2^*S_1A_{\mu\mu_1}A_\mu$. Putting $f_\mu=A_{\mu\mu_2}^*S_2^*S_1A_{\mu\mu_1}$ we get the desired factorization.

4) The triplet $(f, \mu, f_{\mu}) \in \mathcal{L} \times M^{+} \times \mathcal{L}(H_{\mu}, H_{\mu}^{*})$ will be called suitable if $f = A_{\mu}^{*} f_{\mu} A_{\mu}$ where $f_{\mu} : H_{\mu} \to H_{\mu}^{*}$. The set of all suitable triplets will be denoted by V. Let us choose in each Hilbert space H_{μ} some orthonormal basis with the corresponding system of projections $\{P_{n}^{\mu}\}, P_{n}^{\mu}x \to x$ in the norm, $||P_{n}^{\mu}|| \leq 1$ and let us define for every suitable pair $(f, \mu, f_{\mu}) \in V$

$$f_n^{\mu,f_\mu} = A_\mu^* P_n f_\mu A_\mu \in \mathcal{K}(P,P^*) = \mathcal{K}.$$

- 5) The following is evident:
- a) If $(f, \mu, f_{\mu}) \in V$, $(g, \mu, g_{\mu}) \in V$ then $(f + g, \mu, f_{\mu} + g_{\mu}) \in V$ and $(f + g)_{n}^{\mu, f_{\mu} + g_{\mu}} = f_{n}^{\mu + f_{\mu}} + g_{n}^{\mu, g_{\mu}}$.
 - b) If $(f, \mu, f_{\mu}) \in V$ then $(f, \nu, f_{\nu}) \in V$ for all $k\nu \ge \mu$ and for some f_{ν} .
 - 6) For all $p \in P$ all $p^{**} \in P^{**}$ and for (every suitable (f, μ, f_{μ}) we have

$$\lim_{n \to \infty} ||f_n^{\mu, f_{\mu}}(p) - f(p)|| = 0 \quad \text{and}$$

$$\lim_{n\to\infty} ||(f_n^{\mu,f_{\mu}})^*(p^{**}) - f^*(p^{**})|| = 0.$$

72 Kamil John

This together with the identification of \mathcal{K} as a subspace of C(K) and the Lebesgue dominated convergence theorem implies: If $f \in \mathcal{K}$ then $f_n^{\mu, f_\mu} \vec{n} f$ weakly.

7) Let (f, μ, f_{μ}) and (f, ν, f_{ν}) be suitable triplets and let $\{n_k\}$ and $\{m_k\}$ be two sequences of natural numbers tending to infinity. Then $\lim_{k\to\infty} f_{n_k}^{\mu,f_{\mu}} - f_{m_k}^{\nu,f_{\nu}} = 0$ in the weak topology of the space $\mathscr{K}(P, P^*) \subset \mathscr{L}(P, P^*)$.

Indeed, from 6 follows

$$\lim_{k\to 0} ((f_{n_k}^{\mu,f_{\mu}})^*(p^{**}) - (f_{m_k}^{\nu,f_{\nu}})^*(p^{**})) = f^*(p^{**}) - f^*(p^{**}) = 0$$

and 1) together with Lebesgue dominated konvergence yield the statement.

8) For any $\Phi \in \mathcal{K}^*$ and any suitable triplet (f, μ, f_{μ}) we define $J(\Phi, f, \mu, f_{\mu}) = \lim_{k \to \infty} \Phi(f_{n_k}^{\mu, f_{\mu}})$ for some subsequence $\{n_k\}$ such that this limit exists. (Notice that $f_n^{\mu, f_{\mu}}$ is bounded in \mathcal{K}).

Now we claim that $J(\Phi, f, \mu, f_{\mu})$ depends neither on the choice of $\{n_k\}$ nor on μ and f_{μ} (such that $(f, \mu, f_{\mu}) \in V$). Indeed,

$$\lim_k \Phi(f_{n_k}^{\mu,f_{\mu}}) - \Phi(f_{m_k}^{\nu,f_{\nu}}) = \lim_k \Phi(f_{n_k}^{\mu,f_{\mu}} - f_{m_k}^{\nu,f_{\nu}}) = 0.$$

Here we used 7 of course.

Thus we may define

$$J(\Phi, f) = J(\Phi, f, \mu, f_{\mu})$$
 for arbitrary $(f, \mu, f_{\mu}) \in V$.

The statement contained in 3 implies that J is defined on the whole $\mathscr{K}^* \times \mathscr{L}$. Furthermore J is bilinear form on $\mathscr{K}^* \times \mathscr{L}$ (use 5): If $(f, \mu, f_{\mu}) \in V, (g, \nu, g_{\nu}) \in V$ we may suppose that

$$J(\Phi, f) = \lim \Phi(f_{n_k}^{\mu + \nu, f_{\mu + \nu}})$$
 and $J(\Phi, g) = \lim \Phi(g_{n_k}^{\mu + \nu, g_{\mu + \nu}})$.

Then $J(\Phi, f) + J(\Phi, g) = \lim_{n \to \infty} \Phi(f + g)_{n_k}^{\mu + \nu, f_{\mu + \nu} + g_{\mu + \nu}} = J(\Phi, f + g)$.

9) For $f \in \mathcal{L}(P, P^*)$ we define

$$p(f) = \inf\{||A_{\mu}||^2 ||f_{\mu}||; (f, \mu, f_{\mu}) \in V\}$$

and

$$|||f||| = \inf \left\{ \sum_{i=1}^{n} p(f_i); \qquad f = \sum_{i=1}^{n} f_i \right\}.$$

Then $|||\cdot|||$ is an equivalent norm on $\mathscr L$ and

$$||f|| \leq |||f||| \leq c||f||$$
.

Indeed, easily $||f|| \le p(f) \le c||f||$ by 3.

10) We have

$$|J(\Phi, f)| \leq ||\Phi|| \cdot |||f|||.$$

Indeed $J(\Phi, f) = \lim \Phi(f_{n_k}^{\mu, f_{\mu}}) = \lim \Phi(A_{\mu}^* P_n^{\mu} f_{\mu} A_{\mu}) \leq ||\Phi|| \cdot ||A_{\mu}||^2 ||f_{\mu}||$ for every $(f, \mu, f_{\mu}) \in V$. Thus

$$|J(\Phi, f)| \leq ||\Phi|| p(f)$$
.

- 11) $J(\Phi, f) = \Phi(f)$ for all $(\Phi, f) \in \mathcal{K}^* \times \mathcal{K}$. Indeed by 6) $f_n^{\mu, f_{\mu}} \to f$ weakly.
- 12) The bilinear form J on $\mathcal{K}^* \times \mathcal{L}$ gives rise to two canonically defined operators J_K and J_L :

$$J_K : \mathcal{K}^* \to \mathcal{L}^*; \ J_K \Phi(f) = J(\Phi, f)$$
$$J_L : \mathcal{L} \to \mathcal{K}^{**}; \ J_L f(\Phi) = J(\Phi, f).$$

13) J_K is c-isomorphism and $||\Phi|| \le J_K \Phi || \le c ||\Phi||$ for all $\Phi \in \mathcal{K}^*$. Indeed, the equality 11) implies

$$||\Phi|| = \sum \{|\Phi(f)|; f \in \mathcal{K}, ||f|| \le 1\} \le \sum \{|J(\Phi, f); f \in \mathcal{L}, ||f|| \le 1\} = ||J_K(\Phi)||.$$

On the other hand 10) and 9) yield

$$||J_K\Phi|| = \sum \{|J(\Phi, f); ||f|| \le 1\} \le ||\Phi|| \sup \{||f||; ||f|| \le 1\} \le c||\Phi||.$$

14) Let Re be the restriction map Re : $\mathscr{L}^* \to \mathscr{K}^*$. Then Re $J_K = \operatorname{Id} \mathscr{K}^*$ and $P = J_K$ Re is the projection in \mathscr{L}^* and $\ker P = \mathscr{K}^0$. Indeed, by 11) we have for any $f \in \mathscr{K}$

Re
$$J_K \Phi(f) = J_K \Phi(f) = J(\Phi, f) = \Phi(f)$$
.

Then $P^2 = J_K \operatorname{Re} J_K \operatorname{Re} = J_K \operatorname{Re} = J$.

Finally we have

$$P\Phi = J_K \operatorname{Re} \Phi = 0 \Leftrightarrow \operatorname{Re} \Phi = 0 \Leftrightarrow \Phi \in \mathcal{K}^0$$
.

The proof of Proposition 2 is finished.

Our last result is again inspired by [5, Lemma 2].

74 Kamil John

Proposition 4. There is an isomorphism of $\mathcal{L}(P, P^*)$ into $\mathcal{K}(P, P^*)^{**}$ whose restriction to $\mathcal{K}(E, F)$ is the canonical embedding.

Proof. The isomorphism $J_L: \mathcal{L}(P, P^*) \to \mathcal{K}(P, P^*)^{**}$ is defined by

$$J_L(f)(\Phi) = J(\Phi, f)$$
 for each $f \in \mathcal{L}(P, P^*)$ and each $\Phi \in \mathcal{K}(P, P^*)^*$.

Here J is the bilinear form on $\mathcal{K}^* \times \mathcal{L}$ defined in the point 8) of the preceding proof. From 10) and 9) we see that

$$||J_L(f)|| = \sup\{|J_L(f)(\phi)|; ||\phi|| \le 1\} \le |||f|| \le c||f||.$$

Thus $||J_L|| \le c$. For each $f \in \mathcal{K}(P, P^*)$ we see 11) that $J_L(f)(\Phi) = \Phi(f)$ showing the last assertion. Now let $\varepsilon > 0$ and $f : P \to P^*$ are given and let $x, y \in P_1$ be such that $||f|| - \varepsilon \le f(x)y$ then by 6)

$$||f|| - \varepsilon \leq \lim_{n \to \infty} f_n^{\mu, f_{\mu}}(x)(y) = \lim_{n \to \infty} (x \otimes y)(f_n^{\mu, f_{\mu}}) = J(x \otimes y, f) =$$

$$= J_L(f)(x \otimes y) \leq \sup_{n \to \infty} \{|J_L(f)|; ||\phi|| \leq 1\} = ||J_Lf||.$$

Added in proof. For substantially generalized version of the Proposition 3 see the forthcoming paper of the author: on a result of J. Johnson, Crechoslovak Math. Journal.

REFERENCES

- [1] H. JARCHOW, Locally convex spaces, Teubner, Stuttgart, 1981.
- [2] H. JARCHOW, On Hilbert-Schmidt spaces, Rend. Circ. Mat., Palermo (Suppl.) II, (2) (1982), pp. 153-160.
- [3] K. JOHN, Tensor products and nuclearity, Lecture Notes Math., 991, Springer (1983), pp. 124-129.
- [4] K. JOHN, Some remarks on the compact non-nuclear problem, London Math. Soc. Lect. Note Ser., 150 (1989), pp. 140-144.
- [5] J. JOHNSON, Remarks on Banach spaces of compact operators, Funct. Anal., 32 (1979), pp. 304-311.
- [6] N.J. KALTON, Spaces of compact operators, Math. Ann., 208 (1974), pp. 267-278.
- [7] R.I. OSEPIAN, A. PELCZYNSKI, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in L², Studia Math., 54 (1975), pp. 149-159.
- [8] G. Pisier, Counterexamples to a conjecture of Grothendieck, Acta Math., 151 (1983), pp. 180-208.
- [9] A.E. Tong, D.R. Wilken, The uncomplemented subspace K(E, F), Studia Math., 37 (1971), pp. 227-236.