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ON THE SPACE S (P, P*) OF COMPACT OPERATORS ON PISIER SPACE P

KAMIL JOHN -

Dedicated to the memory of Professor Gottfried Kothe i

By Pisier space we will mean an infinite dimenstonal Banach space P such that

(1) On P ® P the extremal g-and m -tensor norms are equivalent.

(11) P and P* are both cotype 2 spaces.

Such a space was constructed by Pisier [8]. It is not difficult to see then [3] that P is a
Hilbert-Schmidt space in the sense of [2]. This means that £ (P,l,) = ¥, (P,l,) where
&, denotes the ideal of absolutely 2-summing operators.

J. Johnson [5] proved the following result: Fortwo Banach spaces E' and F', the latter with
the X -bounded approximation property, there is a projection p : £ (E F)* — £ (E, F)*
satisfying

Il < A

kerp= F(E, F)°
Imp=%(E,F)" A—isomorphically .

Hence we show this statement (3. Proposition) for the space £ = P and FF = P* where P
is the Pisier space. This result cannot be obtained by Johnson’s statement since Pisier spaces
by Pisier’s factorization thecorem never have the approximation property.

Our proof depends on a compactness argument different from the one used in Johnson’s
paper. Next we list some of many properties equivalent to the fact that each bounded operator
f: P — P*iscompact (1. and 2. Proposition). Finally we observe that % ( P, P*) may
always be embedded into % ( P, P*)**, which is a result also similar to the corresponding
result of J. Johnson.

In the following P, P'* denote the closed unit balls of P*, P** inits w* -topologies. By
measure we will mean any positive Radon measure on P;" and the set of all asuch measures
will be denoted by M* . By B (P, P*) = % or £ (P, P*) =/ we denote the space of all
compact or bounded operators f : P — P* respectively.

For the sake of simplicity we will suppose that the Pisier space P 1s separable 1n Propo-
sitions 3 and 4, so that C( P;") 1s separable.

We start with the following observation (cf. also [7]):

Proposition 1. Let P be a Pisier space. The following are equivalent
a) X (P,P*)=%(P P*).
b) XL (P, =%(PLl,).
c) There is no surjection of P onto I, .
d) P does not contain isomorphically the sequence space L, .
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Proof. Having in mind that #°(P,l,) = 9°,( P, l,) the equivalence of b), c¢) and ) follows
immediately from [7, Proposition 3].

For the convenience of the reader we give here one of possible proofs: The implication a)
=> b) follows from the known fact (cf. e.g. [4]) that for any operator A : P — [, we have

A is compact iff A*A: P — P is compact.

b) = ¢) 1s trivially always true; ¢) = d) suppose that P contains acopy of [,. Let A be a
surjection of [, onto [, . The operator A being absolutely summing it allows a continuous
extension onto the whole space. We denote this extension againby A. Thus A: P — [, isa
surjecuon. d) = a): the assumption d) implies by Rosenthal’s [, -theorem that each bounded
sequence in P has a weak Cauchy subsequence. Now let f € £ (P, P*).

Then f 1s fully complete. Indeed, (1) 1sequivalenty expressed by the statement that every
operator f : P — P* 1sintegral. Thus f is fully complete (cf. e.g. [1, 19.6.2]). This means
that f takes weak Cauchy sequences into norm convergent ons. This finishes the proof.

Our aim is to show an analogy of a result of J. Johnson [5] namely that & ( P, P*)* is a
complemented subspace of £ (P, P*)*. We complement this result (and 1. Proposition) by

Proposition 2. The following are equivalent
a) (P, P*)+%(P,P*)
b) (P, P*) is not complemented in £ ( P, P*)
c) FH(P,1*) is not complemented in £(P,1*).

Proof. 1f a) 1s satisfied then by the preceding proposition there exists a surjection A : P — [, .

Then Z(P,1*)# % (P,[?) and [9, Theorem 6 or its Corollary] implies ¢). To show b) let
j il — Z(P,l,) be the isomorphism defined in the proof of that result [9, Proposition
4]. By construction the operator j maps ¢, into % (P, P*). Let ¢ be the embedding of
F(P,,) into Z(P, P*) given by i(f) = A*f where the dual A* of A is evidently an
embedding fo L, into P*. Let us suppose now that p is a continuous projection of £’ ( P, P*)
onto % (P, P*). Then § = poioj:l_ — £ (P, P*) is weakly compact since P does not
contain complemented copy of [, and P* does not contain a copy of [ (cf. [6, Corollary
to Theorem 4]). Then the restriction of § to ¢, 1S again weakly compact, but evidently
S|., = 1j]., is norm isomorphism which cannot be weakly compact - a contradiction.

Proposition 3. There is a projection p on L( P, P*)* such that ||p|| < ¢ for some constant
c, the range of p is c-isomorphic to % (P, P*)* and the kernel of P is the anihilator of

F(P,P*). Thus & is the topological direct sum &* = x4+ J (F") where Jy
FT — L7 is the isomorphic embedding.

The proof will be contained in the following observations:
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1) (cf. e.g. [6]). Let X, Y be Banach spaces, K = X * x Y* (the cartesian product of
the unit balls in their w* -topologies).

Then any compact operator f € 4 (X,Y) may be identified with f € C(K), where
f(:r:”, y*) = z**(f*(y*)) for ** € X** and y* € Y*. This identification 1s an 1sometric
embedding of Z(X,Y) into C(K).

2) Let y € M™,ie. u is a positive Radon measure on Py. Let us denote by A# the
canonical mapping A, : P — L,(P,p) = H givenby A z(z*) = z*(z). Observe that

. 4-_—:: _ . . .
if ku, = p,, K > 0, then A, = AFl#IAﬂz where Amuz ; H,u: — Hﬂ: 1S induced by the

<
M H2 H = \/E

In this notauon we now state
3) Every f : P — P* may be expressed as a composition f = A;f”AH for suitable

identity embedding and || A

probability measure 4 € M* and suitable f,u € Z( H,, H}). Moreoveraconstant ¢ = c( P)

exists depending only on the space P and not f € & ( P, P*) such that 1Pl < || fl-
Indeed, the mapping f being integral by (i) we get the factorization f = BA through a

Hilbert space I, and the estimate ||A||-||B|| S ¢,||f]| with some constant ¢, . Now P being a

Hilbert-Schmidt space, the Pietsch factorization theorem gives probability measure 4, € M™

and the factorization A = §/ A, where S| : H, — L, and ||S||| S P,(4) E o||A]].

]
Similarly B*|, = S; A, . Let p = (py + py)/|py + p,|. Then A4
(B*|lp)* = Bweget f=A A7 58A4, A, Puung f = A, 5 S5A,, wegetthe
desired factorization.
4) Thetriplet (f, u, f,) € Lx M x &( H,, H}) willbe called suitableif f = A7 f A
where f, © H, — H. The set of all suitable triplets will be denoted by V. Let us choose in
each Hilbert space H , some orthonormal basis with the corresponding system of projections

= AM’A# and because

{P¥}, Pz — z inthe norm, || P#|| € 1 and let us define for every suitable pair ( f, u, f,) €
eV
fale = AP fA € H(P,P) =%

5) The following is evident:
pJuta,

a) If (f,p,f,) €V,(g,p,9,) €V then (f+g,u,f,+9,) €V and (f+ g)n =

_ fﬂ+f,. + gu.g,;
b) If (f,pu,f,) €V then (f,v,f,) €V forall kv Z u and for some f,,.
6) Forall p € P all p** € P** and for (every suitable ( f,u, f,) we have

lim ||f27(p) ~ f(p)][=0  and

lim [|(f£%)*(p™) — F1(p™)|| = 0.

n— o0
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This together with the i1dentification of % as a subspace of C( K) and the Lebesgue domi-

nated convergence theorem implies: If f € % then f,f L n f weakly.
7) Let (f,u, f,) and (f,v, f,) be suitable triplets and let {n.} and {m,} be two se-

quences of natural numbers tending to infinity. Then lim f,i'f # — f%5 = 0 in the weak

k—oo Mk
topology of the space % (P, P*) C & (P, P*).
Indeed, from 6 follows

lim (CF) " (0™) = (f20)* (™) = £1(5™) = £(2™) = 0

and 1) together with Lebesgue dominated konvergence yield the statement.
8) For any @ € 7" and any suitable triplet ( f,pu, f,) we define J(P, f,u, f,) =

= lim ®( f,’t,i’)r *) for some subsequence {n,} such that this limit exists. (Notice that f, o s

k—o00

bounded in %).
Now we claim that J(®, f, u, f,) depends neither on the choice of {n,} noron x and

fp (such that ( f, u, f”) € V). Indeed,

m

lim & (f,7) — @ (f22) = lim (o — f1F) =0,

Here we used 7 of course.
Thus we may define

J(@,f) =J(P, f,u,f,) forarbitrary (f,pu,f) €V

The statement contained in 3 implies that J is defined on the whole %™ x % . Furthermore
J is bilinear form on &~ x £ (use 5): If (f,u, f,) € V,(g,v,9,) € V we may suppose
that

,u+v.gw)

J(®,f) =lim (L") and J(®,q) = lim D (gh

Then J((I),f) + J((D,g) = lim q)(f'*' g)r};i+v.fy+p+§p+l' — J((D‘f‘I' g) .
9) For f € &£ (P, P*) we define

p(f) = inf {||A,|*IIf: (foe, £,) €V}

and

n ™

I1£]l = inf {me); =S At
1=1

I:=1 -
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Then ||| - ||| is an equivalent norm on % and

1AL S A E el f])-

Indeed, easily ||f]| S p(f) < || f]| by 3.
10) We have

7(P, NI 1A

Indeed J(®, f) = lim CD(ff,i'f“) = lim®(APEYS A) S ||| - 1A% £,]] for every
(f,1,f,) € V. Thus
7(@, HI S NIP]Ip(S).

11) J(D,f) = D(f) forall (¥, f) € F* x % . Indeed by 6) f2* — f weakly.
12) The bilinear form J on %™ x £ gives rise to two canonically defined operators J
and J, :
Jy : B = 7, Jp®(f) =J(P, f)

J,: & > FZ7 J f(®)=J(D,f).

13) J, is c-isomorphism and ||®P]|| S J,®@|| S c||®]| forall ® € %™
Indeed, the equality 11) implies

@] =) {IPHLEFeFNAMEIS D {II(@, )i f € ZBFAIS1} = [T (D)]-

On the other hand 10) and 9) yield

17x @Il =) _{l7(@, A IS 1} (@[ sup{|[IAI IS 1} S ]| ®]:

14) Let Re be the restricion map Re : &° — %", Then Re J, = 1d &~ and P =
= J, Re is the projection in &£ and ker P = " . Indeed, by 11) we have forany f € %

Re Jy®(f) = Jc@(f) = J(P,f) =P(f).

Then P* = J,ReJyRe =J Re =J.
Finally we have

PP=J,Red=0«Red=0scH

The proof of Proposition 2 18 finished.
Our last result 1s again inspired by {5, Lemma 2].
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Proposition 4. There is an isomorphism of £ ( P, P*) into J6( P, P*)** whose restriction
to Z(E, F) is the canonical embedding.

Proof. The isomorphism J,; : &£ (P, P*) — % (P, P*)** is defined by
J (NH(DP)=J(D,f) foreach feF(P,P*) andeach P € (P P*)".

Here J is the bilinear form on 2%~ x £ defined in the point 8) of the preceding proof. From
10) and 9) we see that

NI, (O = sup{|T,CHD L Nel S 1Y S IAN S clAl-

Thus ||J, || S ¢. Foreach f € % (P, P*) we see 11) that J ()(P) = ®(f) showing the
last assertion. Now let € > 0 and f : P — P* are given and let z,y € P, be such that

Ifll — € S f(z)y then by 6)

1£]l = & < lim f2%(2)(y) = lim(z @ ) (f27*) = J(z®y, f) =
= J(H(z®y) S sup{|J (NGl S 1} =||T,fll-

Added in proof. For substantially generalized version of the Proposiuon 3 see the forthcom-
ing paper of the author: on a result of J. Johnson, Crechoslovak Math. Journal.
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