A NOTE ON Σ -COMPLETE LOCALLY CONVEX SPACES

IGOR KLUVÁNEK, GERHARD MAY

Dedicated to the memory of Professor Gottfried Köthe

Let E be a separated locally convex topological vector space with topology τ . A sequence, $\{x_n\}_{n=1}^{\infty}$, of elements of E is said to have *finite variation* if

$$\sum_{j=1}^{\infty} p(x_j - x_{j-1}) < \infty,$$

for every τ -continuous seminorm, p, on E. Here and in the sequel, we put $x_0 = 0$.

A set, $A \subset E$, is said to be Σ -closed if the limit of every convergent sequence of elements of A having finite variation belongs to A.

A set, $A \subset E$, is said to be Σ -complete if every sequence of its elements having finite variation is convergent and its limit belongs to A.

In this note, we are concerned mainly with the Σ -complete locally convex spaces. Such spaces, or classes of such spaces, were studied already a long time ago, although this terminology was not necessarily used. For example, the celebrated theorem of C. Bessaga and A. Pełczynski about weakly unconditionally summable sequences, see [2], p. 98, can be reformulated by saying that a Banach space is Σ -complete in its weak topology if and only if it does not contain an isomorphic copy of the space c_0 . Banach spaces or general locally convex spaces which are Σ -complete in their weak topology play a significant role in the theory of vector valued measures and vector integration. In fact, G.E.F. Thomas seems to be the first to use, in [3], the term «weakly Σ -complete space».

We may note in this context that there exist Banach spaces which are Σ -complete but not sequentially complete in the weak topology. The space J of R.C. James is an example of such a space. For, if e_n , $n=1,2,\ldots$, are elements of its natural base, see [2], p. 25, then the sequence of vectors $\{x_n\}_{n=1}^{\infty}$, where

$$x_n = \sum_{j=1}^n e_j,$$

for n = 1, 2, ..., is weakly Cauchy but not weakly convergent, because $\{e_n : n = 1, 2, ...\}$ is a shrinking base. And yet, J does not contain an isomorphic copy of c_0 and, hence, by the

This work was carried out while the first named author held the position of a visiting professor at the Universität des Saarlandes sponsored by the Deutsche Forschungsgemeinschaft. This support is gratefully acknowledged.

94 I. Kluvánek, G. May

Bessaga-Pełczynski theorem, it is Σ -complete. So, the class of Σ -complete locally convex spaces is non-trivial and thus, it may be worth-while to study it in its own right.

We are going to show that in some well-known theorems on sequentially complete locally convex spaces, the assumption of sequential completeness can be relaxed to Σ -completeness. So we prove that every Σ -complete bornological space is an inductive limit of Banach spaces. We also prove the Banach-Mackey theorem under the assumption of Σ -completeness instead of sequential completeness, see [1].

A sequence, $\{x_n\}_{n=1}^{\infty}$, of elements of the space E is said to be *summable* if there exists an element, s, of E such that

$$s = \lim_{n \to \infty} \sum_{j=1}^{n} x_{j}.$$

If it exists, such an element, s, is unique and is called the sum of the sequence $\{x_n\}_{n=1}^{\infty}$.

Proposition 1. i) Let $x_n \in E$, $n = 1, 2, ..., x_0 = 0$. The sequence $\{x_n\}_{n=1}^{\infty}$ has finite variation if and only if, for every absolutely convex neighbourhood, U, of zero, there exists a sequence, $\{\lambda_j\}_{j=1}^{\infty} \in l^1$, such that $(x_j - x_{j-1}) \in \lambda_j U$, for every y = 1, 2, ...

- ii) Every sequence having finite variation is Cauchy. If the space E is metrizable, then every Cauchy sequence has a subsequence which has finite variation.
- iii) If a subset of E is sequentially closed, or sequentially complete, then it is Σ -closed, or Σ -complete, respectively. If the space E is metrizable, then a subset of E is sequentially closed, or sequentially complete, if and only if it is Σ -closed, or Σ -complete, respectively.
 - iv) Every Σ -complete subset of E is Σ -closed.
 - v) If the space E is Σ -complete, then every Σ -closed subset of E is Σ -complete.
- vi) A vector subspace, F, of E is Σ -complete, if and only if, every sequence, $\{x_n\}_{n=1}^{\infty}$, of its elements such that

$$\sum_{j=1}^{\infty} p(x_j) < \infty,$$

for every au-continuous seminorm, p, on E, is summable and its sum belongs to F.

Proof. We prove only that, if the space E is metrizable, then every Cauchy sequence in E has a subsequence with finite variation. So, let $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence in E and let $\{p_k : k = 1, 2, \ldots\}$ be a family of seminorms determining the topology τ .

Choose inductively strictly increasing sequences $\{m_1(n)\}_{n=1}^{\infty}$ of natural numbers, $l=0,1,2,\ldots$, so that

- i) $m_0(n) = n$, for every n = 1, 2, ...; and
- ii) for every $l=1,2,\ldots,\{m_1(n)\}_{n=1}^{\infty}$ is a subsequence of $\{m_{l-1}(n)\}_{n=1}^{\infty}$ such that

$$p_k(x_{m_1(n)}-x_{m_1(n-1)})<\frac{1}{2^{n+1}},$$

for every n = 1, 2, ..., l.

Now, let $m(n) = m_n(n)$, for every n = 1, 2, ... Then

$$p_k(x_{m(n)} - x_{m(n-1)}) < \frac{1}{2^n},$$

for every k = 1, 2, ... and n = k + 1, k + 2, ... Therefore, $\{x_{m(n)}\}_{n=1}^{\infty}$ is a subsequence of $\{x_n\}_{n=1}^{\infty}$ which has finite variation.

The Σ -closure, $\Sigma(A)$, of a set $A \subset E$ is defined to be the intersection of all Σ -closed subsets of E that contain A. A set, A, is said to be Σ -dense in a set, B, if $B \subset \Sigma(A)$.

Theorem 1. For every separated locally convex space, E, there is a Σ -complete space \hat{E} such that E is isomorphic to a Σ -dense subspace of \hat{E} . The space \hat{E} is unique up to isomorphims.

Proof. For \hat{E} take the Σ -closure of E in the completion of E.

The space \hat{E} of Theorem 1 is called the Σ -completion of E. As customary, the space E is identified with its image in \hat{E} . So, one writes simply $E \subset \hat{E}$.

A locally convex topology, ρ , on E is said to be Σ -linked with the topology τ if it is finer than τ , that is, $\tau \subset \rho$, and if there exists a base of neighbourhoods of zero for ρ consisting of absolutely convex sets which are Σ -closed with respect to τ .

Lemma 1. Let ρ be a locally convex topology on E which is Σ -linked with the topology τ . Then every sequence, $\{x_n\}_{n=1}^{\infty}$, of elements of the space E having finite variation with respect to ρ which converges in the topology τ to an element, x, of E also converges to x in the topology ρ .

Proof. Let U be an absolutely convex ρ -neighbourhood of 0 which is Σ -closed with respect to τ . Let $\{\lambda_j\}_{j=1}^{\infty} \in l^1$ be a sequence such that $x_j - x_{j-1} \in \lambda_j U$, for every $j = 1, 2, \ldots$ Let N > 1 be an integer such that

$$\sum_{j=N}^{\infty} |\lambda_j| < 1.$$

Then

$$(x_{n+k}-x_{n-1})\in\left(\sum_{j=n}^{n+k}\lambda_j\right)U\subset U,$$

for every $n = N, N + 1, N + 2, \dots$ and every $k = 1, 2, \dots$

96
I. Kluvánek, G. May

Now, for every $n=N,N+1,N+2,\ldots$, the sequence $\{x_{n+k}-x_{n-1}\}_{k=1}^{\infty}$ has finite variation with respect to both topologies, ρ and τ , and converges to $x-x_{n-1}$ in the topology τ . Moreover, $(x-x_{n-1}) \in U$, for every $n=N,N+1,\ldots$, because the set U is Σ -closed with respect to τ . Since U is an arbitrary member of a base of neighbourhoods of 0 for the topology ρ , the sequence $\{x_n\}_{n=1}^{\infty}$ converges in ρ to x.

Theorem 2. Let ρ be a locally convex topology on E which is Σ -linked with the topology τ . Then every subset of the space E which is Σ -complete with respect to τ is also Σ -complete with respect to ρ .

Proof. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of elements of a Σ -complete, in τ , subset, A, of the space E which has finite variation with respect to ρ . Because the set A is Σ -complete in τ , the sequence $\{x_n\}_{n=1}^{\infty}$ converges in τ to an element, x, of A. By Lemma 1, the sequence $\{x_n\}_{n=1}^{\infty}$ converges to x in the topology ρ .

Theorem 3. Let A be an absolutely convex, bounded and Σ -complete subset of the space E. Let F be the vector space spanned by the set A. Let q be the gauge of the set A in the space F. Then q is a norm which makes of F a Banach space.

Proof. Because it is absolutely convex, the set A is absorbing in F. Moreover, q is a norm on F because A is a bounded set. Hence, the topology, ρ , induced by the norm q is finer than the relative topology, $\tau|F$, induced by τ on the space F. The collection of sets $\{\varepsilon A : \varepsilon > 0\}$ is a base of neighbourhoods of zero for the topology ρ . It consists of absolutely convex sets which are Σ -complete with respect to $\tau|F$. By Theorem 2, for $\varepsilon > 0$, the set εA is Σ -complete with respect to the topology ρ , that is, with respect to the norm q, and, hence, it is complete. Because every q-Cauchy sequence in F is bounded, it is contained in a set εA , for some $\varepsilon > 0$, and, therefore, it is q-convergent.

We are grateful to the referee for turning our attention to an interesting consequence of Theorem 3. Namely, it implies that a Σ -complete locally convex space is locally complete, that is Mackey sequentially complete.

This notion is of course derived from the notion of a locally convergent sequence and the related notion of a locally Cauchy sequence. Let us recall that a sequence $\{x_n\}_{n=1}^{\infty}$ of elements of the space E is said to be locally convergent to x if there exists a closed, bounded and absolutely convex set $A \subset E$ such that $x_n \in A, n = 1, 2, \ldots, x \in A$ and, if q is the gauge of the set A in the space spanned by A, then $q(x_n - x) \to 0$ as $n \to \infty$; see [1], §28, 3.

So, we can obtain many consequences of Theorem 3 by merely listing the properties of locally complete spaces. We would like to mention just two such corollaries of Theorem 3, viz., that a Σ -complete bornological space is ultrabornological and that the conclusion of the

Banach-Mackey theorem holds for all Σ -complete and not only sequentially complete locally convex spaces.

REFERENCES

- [1] G. KÖTHE, Topological vector spaces, Vol. I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 159, Springer-Verlag, Berlin-Heidelberg-New York, 1969.
- [2] J. LINDENSTRAUSS, L. TZAFRIRI, Classical Banach Spaces I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 92, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [3] G.E.F. THOMAS, L'intégration par rapport à une mesure de Radon vectorielle, Séminaire Choquet (Initiation à l'Analyse), B 10 (1967/68).

Received December 28, 1990 and in revised form August 2, 1991

I. Kluvánek

Okruzná 28

82104 Bratislava

Czechoslovakia

G. May FB 9 Mathematik Universität des Saarlandes D-66041 Saarbrüchen Germany