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t-SPREADS OF PG(n,q) AND REGULARITY
L.R.A. CASSE, CHRISTINE M. O’KEEFE

Abstract. In this paper the theory of t-spreads of finite projective spaces is developed using

purely geometric methods. This is achieved using the classical Segre Vaniety over a finite
field.

1. INTRODUCTION

We shall i:ne concerned with t-spreads of PG(n, ¢), that is, partitions of the points of PG(n,
g) into pairwise disjoint ¢t-dimensional spaces. It is well known (see, for example, [9]) that
PG(n,q) admits a t-spread ifand only if t + 1 divides n+ 1 sowe write n=(s+ 1)(¢ +
1) — 1. Such a t-spread has w = ¢*(**D + g(s=DO*D 4+ 4 gt*1 + | elements.

The theory of t-spreads of PG(2t+ 1, q) has been developed from both an algebraic (or
coordinate) point of view, see [1], and a geometric point of view, see [5] and [15]. However
so far t-spreads of PG((s+ 1)(t+ 1) — 1,g) for s > 2 have only been studied from
an algebraic point of view, see [2] and [11]. In this paper we present a geometric theory of
t-spreads of PG((s+ 1)(t+ 1) — 1,q) using the classical Segre Variety over GF'(q).

In particular, we will be concerned with providing a geometric interpretation of the concept
of regularity for s > 2. When s = 1 regularity is defined as follows. A t-regulus in
PG(2t+ 1,9) 1saset R of ¢ + 1 pairwise disjoint t-dimensional subspaces such that a
line meeting three elements of R must meet every element of R. Such a line [ is called a

transversal line of R and meets every element of R in a unique point.

There 1s a unique transversal through each point of each element of R ; in particular, the
transversal lines of R are pairwise disjoint. The existence of t-reguli is well known; in fact
the non-degenerate quadrics of index t + 1 in PG(2t + 1,q) are covered by t-reguli.

If A, B and C are pairwise disjoint t-dimensional subspaces of PG(2t+ 1, g) thenthere
is a unique t-regulus R of PG(2t + 1,q) containing A, B and C (see [9]). A t-spread
W of PG(2t+ 1,q) is regularif for every triple A, B, C of elements of W, the t-regulus
determined by A, B and C 1s contained in W. Asin [9], a t-spread W of PG(2t+ 1,q)
1s regular if and only if for each line [ of PG(2t+ 1,¢q) not contained in any element of W,
the elements of W meeting [ form a t-regulus in PG(2t+ 1,q).

The purpose of this paper is to find a geometrical generalisation of the ideas of ¢t-reguli and
regularity applicable to spreads of PG((s+ 1)(t+1) —1,qg) for s > 2. This generalisation
includes the following definition of regularity of 1-spreads of PG(2s+1,q) fors > 1 given
in [10]. A 1-spread W of PG(2s+ 1,q) is regularifthe ¢ + 1 lines of W meeting a line
[, not contained in W, form a regulus in some 3-dimensional subspace of PG(2s+ 1,q).
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2. THE SEGRE VARIETY SV, .,

The Segre variety SV, ;. appeared first in the work of C. Segre in 1891 (see [14]), where
it was studied in projective spaces over infinite fields. For a discussion of the classical Segre
variety over an infinite field, see [6] or [12]. The theory is still valid over finite fields, giving
the Segre variety in the finite projective space PG((s+ 1)(t+ 1) — 1,q).

Here we investigate the behaviour of the Segre variety and some of its subvarieties over
the finite field GF'(¢g) . The Segre variety is defined as follows.

Let S, and S, be projective spaces of order ¢ and of dimensions ¢ and s respectively, and
suppose that they have as systems of homogeneous coordinates respectively (y,,v;,---,9,)
and (zy,2,,...,2,). Consider the projective space PG((s+ 1)(t+ 1) — 1,¢) with homo-
geneous coordinates (zy,, Tg;,---,T,,) . The set of points of PG((s+ 1)(t+ 1) — 1,q)
with Ty = YiZ; forall:=0,1,...,tand y =0,1,...,s is avariety called the Segre variety
SV s+1 M PG((s+ 1)(t+1) —1,9).

In the following, we will occasionally use semicolons in place of commas to break up the
coordinate (s + 1)(¢ + 1)-tuple (x4, zo;,---,2Z,,) INto ¢t + 1 blocks of s + 1 coordinates
each:

(Zog> Tots-+1 %053 T10s Tats -+ T1gs =3 Tpor Tela -+ s Tpg)-

This has no formal significance, it is just done for ease of notation.

Lemma 2.1. (/) The Segre variety SV, ., has two systems of linear subspaces of order
q lying on it. There are ¢° + ¢°~' + ...+ q + 1 spaces of dimension t, each in projective
correspondence with S, and each determined by one point (z4,2,,...,2,) of S,. There are

¢t + ¢~ + ...+ g+ 1 spaces of dimension s, each in projective correspondence with S and

each determined by one point (yy,y,,...,Y,) of S,.

(2) The spaces of each system are pairwise disjoint and there is one space of each system
through any given point of SV, ., ,., . Therefore a space of one system meets each space of
the other system in a unique point.

(3) The Segre variety SV, | 4. hasexactly (¢*+ ¢t~ '+ .. . +q+ D(g°+¢* ' +...+qg+1)
points.
Proof. (1) Fixapoint (z,, 2}, ..., 2,) of §;, and consider the set of points of SV, .., given
by

; J !, ! ! ! . ; / !
{(yﬂzﬂwyﬂzlu*'*1yﬂzgﬁy]zﬂ1ylzl1"':y]'331'*'&ytzﬂzygzlw*":yfzg)}

for yo,v,,-.-,¥ € GF(q), not all zero. This set of points is a ¢{-dimensional subspace
of PG((s+ ID(t+ 1) —1,q) since it is spanned by the t + 1 linearly independent points
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(“?:]:l'“‘:'v.'l:“'1“?IIr 0101“'10;0101'“:0;“';0:01"'30):

3&

(0,0,...,0;2y,2,...,2,;0,0,...,0;...50,0,...,0),

] 5?

(0,0,...,0;0,0,...,0;...;0,0,...,0;25,27,.-.,2,).

Y8

[t is in projective correspondence with the {-dimensional space S, with homogeneous
coordinates (y,,v,,...,Y,) . Thereare ¢°+¢*~'+...+q+1 choices for the point ( zg, 2}, .. .,
2!) of S,, so there are ¢° + ¢°~' + ...+ ¢ + 1 such t-dimensional spaces on SV, .. In

an analogous way we fix a point (y,,v;,...,y;) of S;, then the set of points of SV, .,
given by

; ! P ! P . ! ;
{(yﬂzﬂay{}zl:*'*:yﬂzsaytz[’}wylzlr*":ylzgs*":y;zﬂsytz]:“':ytzg)}

for zy,2,,...,2, € GF(q), not all zero, forms an s-dimensional subspace of the space
PG((s+ 1)(t+ 1) —1,q). Each such s-dimensional space is in projective correspondence
with the space S, with homogeneous coordinates ( z;, 2,,...,2,) .

(2) Given any two points (yg,¥y,---,¥;) and (yg,9y,-..,y,) of S,, the s-dimensio-
nal spaces that they detemine (as in (1)) are disjoint, and similarly any two elements of the

system of ¢t-dimensional spaces on SV,,, .., are disjoint. The point

13+

! f ! ! f !, ! f f ! f f. . [ r ! [
(Y020,Y02 -+ Y025 U120 Y120 sees Y1 2Zgs s YUpZ0r YsZyseeesYpZg)

lies on the t-dimensional space of SV,,, ,,, which is determined by the point ( 2y, 2}, ...,

z;) of S, and the s-dimensional space determined by the point (y;,v},...,v;) of S,, and
these spaces are unique. Conversely the t-dimensional space of SV,,, ., determined by

the point (z;,2],...,2,) of S, meets the s-dimensional space determined by the point
(Yo,Y1,---,¥;) of S, in the unique point

" Y S B B B Y A Y B B A .
(yufn:yuzla---ayuzsa%zg:ylzts---:ygi'ﬁa---13‘;3[1:?;1;311---1%33)

of SV o1
(3) The number of points of the Segre variety SV, .., is the number of elements of the
system of t-dimensional spaces multiplied by the number of points in such a t-dimensional
space. Alternatively, it is the number of elements in the system of s-dimensional spaces
multiplied by the number of points in such an s-dimensional space. o
The system of t-dimensional subspaces of SV,., ., will be called the first system of sub-
spaces and the system of s-dimensional spaces will be called the second system of subspaces.



4 L.R.A. Casse, C.M. O’Keefe

Lemma 2.2. (1) The first system of SV, ,., can be obtained by joining corresponding

points of t + 1 pairwise disjoint, projectively related s-dimensional subspaces in a space
PG((s+1)(t+1) —1,q). The second system of subspace of SV, ,., is obtained similarly
by joining corresponding points of s+ 1 pairwise disjoint, projectively related t-dimensional
subspaces of PG((s+ 1)(t+ 1) — 1,q).

(2) There is a unique Segre variety SV,,, .., containing any t + 2 s-dimensional sub-
spacesof PG((s+1)(t+1)—1,q),not+1 inahyperplane. Similarly, there is a unique Segre

variety SV,. | ,., containing s+ 2 t-dimensional subspaces of PG((s+ 1)(t+1) —1,q),
no s+ 1 in a hyperplane.

Proof. (1) We choose a convenient system of homogeneous coordinates for the space PG
((s+1)(t+1) —1,q) sothatthe { + 1 s-dimensional spaces are:

{(zg,2),-.-,2,0,...,0;...;0,...,0) : 2, € GF(q)}

{(0,...,0;29,2,,...,2,0,...,0;...;0,...,0) : 7, € GF(q))

{(0,...,0;...50,...,0; 24, 2,,...,2,) : ; € GF(q)}.

For z,,),...,2, € GF(q), not all zero, construct the t-dimensional space spanned by
the points

f f !, . .
(zg,Z7,---,2:0,...,0;...50,...,0),

3‘!

. - . f ! f
(0,...,0;...;0,...,0;zh,2",...,2.).

LA |

The set of t-dimensional spaces so constructed is the set of elements of the first system of
subspaces of a Segre variety SV,,, .., and they can be used to find the second system as in
Lemma 2.1 (1). Similarly we can choose homogeneous coordinates for the space PG((s +
1)(t+ 1) — 1,q), so that the given t-dimensional spaces are:

{(24,0,...,0;2,,0,...,0:x,,0,...,0) : z, € GF(q)}
{(0,z,,0,...,0,0,2,,0,...,0;...;0,2,,0,...,0) : z, € GF(gq))

{(0,...,0,24;0,...,0,2,5...50,...,0,z,) : z, € GF(q) }.
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For zj,...,z; € GF(q), not all zero, construct the s-dimensional space spanned by the
points

(2h,0,...,0;,2),0,...,0;...;2,,0,0,...,0),
(011:’[]:01"'10;Urmflaﬂ&"-:{};---;013:;10:"':0):

(0,...,0,25;0,...,0,2}:...;0,...,0,2)).

The set of s-dimensional spaces so constructed is the second system of subspaces of a
Segre variety SV, .., and can be used to find the first system of subspaces as in Lemma
2.1(1).

(2) Through a general point of PG((s+ 1)(t+ 1) —1,¢q) there passes a unique t-dimen-
sional space meeting each of t + 1 pairwise disjoint s-dimensional spaces, no t in a hyper-
plane. This space is called a transversal space to the s-dimensional spaces, and meets each of
the s-dimensional spaces necessarily in a unique point. So given t + 2 s-dimensional sub-
spaces of PG((s+1)(t+1)—1,q) ,no t+1 lying in a hyperplane, there are ¢°+¢*~ ' +.. .+
g+ 1 t-dimensional spaces meeting all of them, each in a unique point. These ¢-dimensional
spaces are pairwise disjoint and together with the s-dimensional spaces they are the first and
second systems of subspaces, respectively, of a Segre variety SV, .., . Similarly, given
s + 2 t-dimensional spaces in PG((s+ 1)(t+ 1) — 1,g),no s+ 1 in a hyperplane, there
are ¢* + ¢'~' + ...+ g+ 1 s-dimensional subspaces of PG((s+ 1)(t+ 1) — 1,q) meeting
all of them, each in a unique point. These s-dimensional spaces are pairwise disjoint and
together with the t-dimensional spaces they are the second and first systems of subspaces,
respectively, of a Segre variety SV, .., - o

We now investigate the properties of certain subvarieties of a Segre variety, an idea which
will become important later.

A subvariety SV,,, ., of a Segre variety SV,,, ., is a Segre variety where every ele-
ment of the first system of subspaces of the subvariety belongs to the first system of the variety,
and every element of the second system of subspaces of the subvariety i1s an r-dimensional
subspace of an element of the second system of the variety. In particular, a subvariety
SVii) r+y Of SViyy o4y liesinan ((r + 1)(¢ + 1) — I)-dimensional subspace of PG((s+

D{t+1)—1,q9).

Lemma 2.3. The Segre variety SV, ., ,., admits subvarieties SV, .., for every value of

with 0 < r < s.

Proof. Let S, be an element of the second system of subspaces of SV, .., . For any value
of r, with 0 < r < s, let S, be an r-dimensional subspace of §,. The elements of the

first system of SV,,, .., meeting S, in points of S, are the t-dimensional spaces of the
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first system of subspaces of a subvariety SV,., .., . Each element of the second system of
subspaces of SV,,, .., is found either by intersecting the elements of the first system of
SVi41 ,+1 With the elements of the second system of SV,,, ,,, or alternatively by finding
the r-dimensional subspace of each element of the second system of SV,,, .., which is

projectively equivalent to the subspace S, of S, under the original projectivity relating the
elements of the second system. o

3. t-REGULI OF RANK » AND REGULAR {-SPREADS

A regulusin PG(3,q) isaset R of ¢+ 1 lines such that any line which meets three elements
of R must meet every element of R . It can also be viewed as a set of g+ 1 lines forming one
set of generators of a hyperbolic quadric in PG(3, g) . It is this second characterisation of a
regulus in PG(3, ) which was used in [13] to generalise the idea of regulus in PG(3, q)
to a regulus of rank r in PG(2s + 1,q) where a regulus of rank r is the set of all lines of
the first system of subspaces of a Segre variety SV, ,,, . This can be generalised further to
t-reguli of rank r in PG((s+ 1)(t+ 1) — 1, q) as follows, making use of the Segre Variety
SVii) o+1 M PG((s+ 1)(t+ 1) —1,9).

For0 < r <s,letT% ! ... T!beasetof t+ | pairwise disjoint r-dimensional
subspaces which span a projective space PG((r+ 1)(t+ 1) — 1,q), and suppose there exist
t projective correspondences «; : r° -r* fori=1,2,...,t. The set of t-dimensional

subspaces of PG((r + 1)(t+ 1) — 1,q) formed by joining a point P of I'? to the corre-
sponding points P*1 P% ... P% of '' ' ... It respectively is called a t-regulus of
rank 7, and is denoted by R .

When the space PG((r+ 1)(t+ 1) —1,q) is asubspace of a projective space PG(n,q),
n>(r+1)(s+1)—1,wesaythat R_1isa t-regulus of rank r of PG(n, q), implying that
R, liesina ((r + 1)(t + 1) — 1)-dimensional subspace of PG(n,q).

By Lemma 2.2 (1) we have

Theorem 3.1. A t-regulus of rank v in PG(n,q) is the first system of subspaces of a Segre
variety SV, .., inasubspace PG((r+ 1)(t+ 1) — 1,q) of PG(n,q) and conversely. =

Corresponding to the subvarieties SV,., .., ofaSegre variety SV,,, .., , there are t-sub-

reguli of rank k of a t-regulus R, of rank r, for each 1 < k& < r. More precisely, the

elements of a {-subregulus R, ofarank k£ of R_ are all elements of R_ and each transversal
k-dimensional subspace of R, is a subspace of a transversal r-dimensional subspace of R _.

Corollary 3.2. (1) A t-regulus of rank r has ¢ + ¢"~' + ...+ g + | elements.

(2) There is a unique t-regulus of rank r through any r + 2 t-dimensional subspaces in
PG((r+ 1)(t+ 1) —1,9).nor+ 1 of which lie in a hyperplane.
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(3) A t-regulus R, ofrank r has q'+q'~' + ...+ q+ | transversal r-dimensional spaces,
that 1s, T-dimensional spaces which meet every element of R_ in a unique point.

(4) A t-regulus of rank r admits t-subreguli ofranksr—1,r—2,...,1,0. The number
of t-subreguli of rank k for 0 < k < v In a t-regulus of rank r is just the number of

k-dimensional subspaces of an r-dimensional projective space. o

Let R, be a t-regulus of rank » in PG((r + 1)(t+ 1) — 1,q). Any two t-subreguli
R, and R_ of R_ (of ranks say k£ and m respectively) are either disjoint or intersect in a
t-subregulus of R, (which is also a t-subregulus of R, and of R, ) of rank less than or
equal to the smaller of the two ranks k& and m.

As we now have a definition for a t-regulus of rank r, we can use it to introduce the idea
of different sorts of regularity of a t-spread corresponding to the different sorts of t-regulus
which it may contain.

A t-spread W of PG((s+ 1)(t+ 1) — 1,q) is t-regular of rank r for 0 < r < s if
given an r-dimensional subspace S, of the space PG((s+ 1)(t+ 1) — 1, ¢) not meeting any

element of W in more than one point, thenthe ¢+ ¢"~' + ...+ ¢+ 1 t-dimensional spaces
of W meeting it form a t-regulus of rank r. If there is no confusion then we say that W is
regular ofrank r . In particular, the ¢"+¢"~'+.. .+ ¢+ 1 t-dimensional spaces in the t-regulus
ofrank r lieinan ((r+ 1)(t+ 1) — 1)-dimensional subspace of PG((s+ 1)(t+1)—-1,q).

Examples 3.3. (1) Every t-spread of PG((s+ 1)(t+ 1) —1,q) isregular of rank 0. This is
because given any point (or 0-dimensional subspace) of PG((s+ 1)(t+ 1) — 1,q), there
1s a unique element of the ¢-spread through it, and this ¢-dimensional space is a t-regulus of
rank 0.

(2) For a t-spread of PG(2t+ 1,q) and for a 1-spread of PG(2s+ 1,q), regularity of
rank 1 coincides with the usual definition of regularity.

We now investigate the relationship between regularity of various ranks. First we need
to define geometric, an idea which appeared in [2] and [15]). A set W of pairwise disjoint
t-dimensional subspaces of PG(n, q) is geometric if for every pair of distinct elements X, Y
of W the elements of W are either contained in or are disjoint from the join (X,Y") of the
spaces X and Y. If W is a geometric t-spread then the elements of W contained in (X,Y)
form a ¢-spread of (X,Y'), called the t-spread inducedon (X,Y) by W. Itis known (see
[15]) that if the space P(G(n, g) contains a t-spread then it must contain a geometric t-spread,
which occurs ifand only if ¢t + 1 divides n+ 1.

Note that the first system of subspaces of SV, ., is geometric. To see this, let S;, S;

and S;' be elements of the first system of subspaces of SV,,, ., and suppose that P €
S; N (S;,S;). Let S, be the element of the second system of subspaces of SV, ,,, which

contains the point P of S}’ (see Lemma 2.1 (2)). Let Q =S, NS, andlet R=S;NS,.
It follows that, in S, P les on the line QR and by the projective relationship between
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the elements of the second system of SV, .., it follows that the points of intersection of S, ,
S; and S{' with any element of the second system of SV, , ,,, are collinear. Thus S,, S; and

S, are elements of the first system of subspaces of a subvariety SV, , and S;' C (S,, 5})
showing that the first system of SV, ., 1s geometric.

Lemma 3.4. Let S_ be an r-dimensional subspace of PG((s+ 1)(t+ 1) — 1,q) for some

integer v with 1 <r<s—1.Let R _beasetof " +q"~' + ...+ q+ | pairwise disjoint
t-dimensional subspaces of PG((s+ 1)(t+ 1) — 1,q) each meeting S_ in a unique point.
Then R, is a t-regulus of rank v if and only if it is geometric and, for each line | of S, , the
set of t-dimensional spaces of R. meeting | is a t-regulus of rank 1.

Proof. The result is true if » = 1 so suppose that 7 > 2 . Suppose first that R_ is a t-regulus
of rank r. Then it is the first system of subspaces of a Segre variety SV, ,,, contained in a
given subspace PG((r+1)(t+1)—1,q) of PG((s+1)(t+1)—1,q) and hence is geometric.
Now S, belongs to the second system of SV,,, .., by Lemma 2.3 and the set of elements of
the first system of SV,,,,,, meeting a line [ of S is the first system of a Segre subvariety
SV,,,, contained ina (2t + 1)-dimensional subspace of PG((r + 1)(t+ 1) —1,q), that
1s, a t-regulus of rank 1.

Conversely, since R _ is geometric, there exists a set of r+2 pairwise disjoint t-dimensio-
nal spaces, no r + 1 of which lie in a hyperplane (equivalently, any r + 1 of which span a
space of dimension ((r+ 1)(¢+ 1) — 1)). These determine a unique Segre variety with the
chosen t-dimensional spaces being elements of its first system of subspaces and S, being
an element of its second system of subspaces. Let S, be one of the chosen t-dimensional
subspaces and let P = S, N S, . By hypothesis, any line [ of S, through P determines a
Segre variety SV,,, , where the elements of the first system of subspaces of such a variety
are all elements of R _. But such a variety is a subvariety of SV, .., sotheelementsof R,

meeting S_ in points of | are all elements of the first system of SV,,, .., . Since the points

of S, can be exhausted by lines through P, the elements of the first system of subspaces of
SV, .+ areall elements of R, and the lemma is proved.

Lemma 3.5. Let W be a t-spread of PG((s+ 1)(t+ 1) — 1,q) which is regular of rank
r, for some r with | < r < s. Then W is regular of eachrank r — 1, r—2,...,1,0, and
if it is geometric then it is also regular of eachrank r+ |, r+ 2 ..., S.

Proof. Forsome valueof k with | < k < r-—1,letS,_, bean (r—k)-dimensional subspace
of PG((s+ 1)(t+ 1) — 1,q), not meeting any element of W in more than one point. This
lies in an 7-dimensional subspace S_ of the space PG((s+ 1)(t+ 1) — 1,¢) not meeting

any element of W in more than one point. The ¢"+ ¢"~' + ...+ ¢+ 1 t-dimensional spaces
of W meeting S_ a t-regulus of rank by assumption, andthe ¢"=* + ¢"*=! + .. . + g+ 1
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t-dimensional spaces of W meeting S__, are a subregulus of rank » — k by Lemma 2.3.
This shows that W is regular of eachrank » — 1, » — 2,..., 1 and it is regular of rank 0
since every t-spread is regular of rank 0 (see Examples 3.3).

Now since W is regular of rank » for some r with 1 < r < s — 1, then by the first

part of the lemma W is regular of rank 1. Let S_,,, forsome 1 < k < s — 7, be an

(r + k)-dimensional subspace of PG((s+ 1)(t+ 1) — 1,q), not meeting any element of
W in more than one point. There is exactly one element of W through each pointof S, ,,
and since W is regular of rank 1, the set of ¢ + 1 t-dimensional spaces of W meeting any
lineof S_,, 1sa t-regulus of rank 1. By Lemma 3.4, as W is geometric by assumption, the

set of t-dimensional spaces of W meeting S_,, is a t-regulus of rank (» + k) andso W is

regular of rank (7 + k). This shows that W is regular ofeachrank r+ 1, r+ 2 ,...,s. =
This lemma suggests the following definition. A ¢t-spread W in PG((s+ 1)(t+1)—1,q)
iIs called regularif it is regular of rank s, so it is necessarily regular of eachrank 0,1,... s.

We now show that, for a t-spread of PG((s+ 1)(t+ 1) — 1,q), the definition of regular
coincides with that of geometric.

Theorem 3.6. Let W be a t-spread of PG((s+ 1)(t+ 1) —1,q), s > 2. Then W is
geometric if and only if it is regular.

Proof. Let W be a geometric t-spread of PG((s+ 1)(t+ 1) — 1,q). Then W induces a
regular t-spread on any (2¢ + 1)-dimensional subspace (W, Wj} for distinct elements W,

and W, of W ([15], see [3], Result 6). Let [ be a line of PG((s+ 1)(¢t+ 1) — 1,q), not
contained In any element of W. Without loss of generality, suppose [ meets the elements
{W,,Wz,...,ww} of W. Then [ is contained in (W,,W,) and since {W,,W,,...,
W,.1} all have a point in common with (W, W, ) (which is their point of intersection with
l) then {W;,W,,...,W,,,} are all contained in (W,,W,) as W is geometric. As the

t-spread induced on (W,,W,) is regular, the set of spaces {W,, W,,..., W} form a
t-regulus which is a t-regulus of rank 1. Thus W is regular of rank 1 and geometric so by
Lemma 3.5, W is regular of rank s and hence regular.

Conversely suppose that W is a regular t-spread, then it is regular of rank 1. Choose
W, W, € W, with W; ¥ W,, and consider the (2t + 1)-dimensional space (W, W;). Any

line [ of (W, W;) meets g+ 1 elements of the t-spread W, which form a ¢-regulus of rank |

in some (2t + 1)-dimensional subspace of PG((s+ 1)(t+ 1) — 1,g). Thus if [ meets both
W, and W, then the elements of the t-regulus of rank 1 defined by [ all lie in (W, W),

since it has dimension (2¢ + 1). Now let P be any point of (W,, W), and suppose that

Pe W, ,where Kk #1,j. Thereisaline [ of PG((s+ 1)(t+ 1) ~ 1,q) through P which
meets both W; and W;. This is because the space (1, P) is contained in (W,. W) and has

dimension t + 1. Thus it meets W, in a point say (J. and the line [ = P(Q) passes through P
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and meets both W, and W;. In this way we can see that every point P € (W, Wj) lies on

some element 17/, of the t-spread W), and this element must be contained in (W;, W), and
W is geometric. =

There are many applications of the theory of regularity of ¢{-spreads of projective spaces
PG((s+ 1)(t+1) —1,q),some of which are suggested by the literature in the case of s = 1
or t = 1. Forexample, in [8] a well known result representation due to Bruck [4] of 1-spreads
of PG(3,q) is extended to regular t-spreads of PG((s+ 1)(t+ 1) — 1, q) . More precisely,
it is shown that a t-spread of PG'((s+ 1)(t+ 1) — 1,q) is regular if and only if there i1s a
certain s-dimensional subspace (to be called imaginary) of PG((s+ 1)(t+ 1) — 1,¢"*!)
meeting every element of the ¢-spread in a unique point. The proof of this result depends on
the theory of projective t-spread sets developed in [7].
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