Note di Matematica Vol. XIII - n.1, 33-39(1993)

INTEGRATION OF FRENET EQUATIONS IN THE ISOTROPIC SPACE
I{" = P}, 500 BY MEANS OF QUADRATURES

JOHANN HARTL

The natural (=Frenet) equations for a curve in isotropic space with given isotropic curvature
and torsion are explicitly solved.

[f the curvature £ and torsion 7 of a three times continuously differentiable space curve c in
Euclidean space E° = P|3|m} are given as functions of the arc length of ¢, then (according

to the fundamental theorem of curve theory of Euclidean differential geometry) c is uniquely
determined up to (proper) motions. But until now it has not been possible, to integrate the
Frenet equations, which are used in the proof of this fundamental theorem, in order to deter-
mine c (or a curve congruent to ¢). For a twice continuously differentiable curve d in the
Euclidean plane E? = Pﬁna , whose curvature & is given as a function of the arc length of d,

this integration can be accomplished. In this case the Frenet equations for the moving frame
¢e,,e, Of d are
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where ' means differentiation with respect to the arc length of d. For any set of initial values,
the solution of this system of linear differential equations for the coordinates of ¢, and e,
with four equations and four unknown functions is uniquely determined. By suitably choosing
the initial values we effect that e ,, e, do not only solve the system of differential equations

but are also the vectors of a moving frame of a curve d in E? = Pflm , which has the arc

length of d as its parameter. Then d is the plane curve (which is uniquely determined up to
motions) with curvature k (as function of the arc length of d) and we have (up to motions):
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where ¢,,c, € R,c] +c3 = 1. Forthe coordinate vector r of the running point of the curve

as a function of the arc length of d we have in some cartesian coordinate system of E> :

(3) Nﬂ=a+/rdﬂﬂ®
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where a € R? is an integration constant.
A proof for this well known fact is found (with somewhat different notations) for example

in Strubecker [5], pp. 44-45.

A theorem analogous to the fundamental theorem of curve theory in the Euclidean differ-
ential geometry of E® or E* is known for many geometries. But an explicit integration of
the Frenet equations seems to be unknown even for such «simple» cases as the hyperbolic or
the elliptic plane geometry. Therefore it seems remarkable that in the oftenly studied isotropic

space [ g ) = PEE 1000 the explicit integration of the Frenet equations can be accomplished up

to quadratures. (For the two notations [ 3( " and Pf‘z oo Sompare for example Sachs [3], who

studies the isotropic space I_E,” in detail and gives extensive literature references, and Gier-
ing [1], who studies the isotropic space Pf‘z 1000 in the context of the more general theory of
Cayley/Klein-spaces and uses a unified notation for all Cayley/Klein-spaces. According to
Sachs the points of the absolute plane are not points of the 1sotropic space [ _-E " according to
Giering they are points of the isotropic space P}, 1000 > but they do not belong to the «Schau-
platz» of the different isotropic geometries, for example the isotropic motion geometry).

The curve theory in isotropic space Iﬁ” has been developed by Strubecker in [4]. The
Frenet equations for this isotropic space have been known since then ([4], p. 21) and are given
here in the notation of Sachs ([3], p. 108):

(4) t'=k- A,
(5) A'=_—k-t+71-b,
(6) b = 0.

There ¢, 7 and b are functions of the isotropic arc length s of an isotropic space curve ¢ with
curvature k£ and torsion 7, and ' means differentiation with respect to s. The coordinates of

b are constantly equal to (0,0,1). An attempt to integrate these Frenet equations, leads to the
following differential equation for the z-coordinate of the coordinate vector z of the space

curve in a suitable zyz-coordinate system

(7) k-z”’—k'-z”+k3-z’t kE-T

(see [4], p. 21). This differential equation seems not to have been explicitly solved until now.
(In spite of its most promising title in the context of this problem, Pavkovi¢’s paper [2] and

the preceding papers deal with a completely different question).
The parameter transformation

(8) u( 8) :=/ k(oc)d(o)
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together with the notation

T(s(u)) _Tou”
kou!
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(9) T(u) :=

(10) i=7.
(11) i=—t+T.b,
(12) b=6.

Here means differentiation with respect to u, a notation which is well known from curve
theory and is suitable in this context, and v~! is the inverse function of u. If we know a
solution of the system (10) - (12), we are able to substitute u(s) from (8) to get a solution of
the system (4) - (6).

Now we use the general notation of Giering [1] for all Cayley/Klein-spaces with parti-
tioned coordinate vectors for the running point of the curve as well as for the vectors of the
moving frame of the curve and get

fﬂ{] :=(1): flﬂ = (O): flﬂ :=(0)!
W) n) e
01 - y ) i1 - tz ’ 21 n, )
fﬂz o= (E), flz ‘= (tj): flz = (nj‘))r
T3 = (0),
el
3 - 0 ’
I3 = (1),

where z,y, 2z are the coordinates of the running point of the curve, ¢,,t,,t; the coordinates
of {,n,,n,,n, the coordinates of # and b, = 0,b, = 0,b; = 1 the coordinates of b in an

appropriate constant affine zyz — coordinate system in [ ;” . The system (10) - (12) reduces
o

(13) Ty = Iy,
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(14) Ty = =T,
(15) Ty = T,
(16) Ty = —%, + (T).

For the differential equations (13), (14) we get as general solution

(17) i =c - (c?s u) e - (—sm u)}
sin u - COS U

. —sin u — COS u

COS u Sin 4

Necessary for such a solution of the system (13), (14) to lead to a moving frame of a curve
IS c:f + c% = 1. But the solution (17), (18) 1s not very innovative, for (17) is by virtue of (8)
essentially identical with (2), and the ground plan

(19) T (8) = fﬂ1(50)+f z,,(u(o))do

of a space curve with curvature k(s) in isotropic space has already been explicitly known.
For as k( s) is in the same time the Euclidean curvature of the ground plan of the space curve,
the finding out of the ground plan is the same as the determination of a curve in the Euclidean
plane from its given curvature which has been described in the beginning of this paper in (2)
and (3) (see for example [4], p. 18).

As T, consist only of one coordinate, namely t,, the differential equations (15), (16)
lead to one inhomogeneous linear difterential equation of the second order with constant co-
efficients:

(20) fo+t, =T

Variation of constants yields

(21) t3p=sinu-/ T(u)*cc}svdv—cnsu*/ T(v) -sinvdv

0 Uy,

as a particular solution of (20). Therefore the general solution of the differential equation is

p— - p— —

(22) ty =sinu - d]+/ T'(v) -cosvdv| — cos u - d3+-/ T'(v) - sin vdv

(0 4]
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1000

with arbitrary real integration constants d,, d, .
Substituting u = u(s) by virtue of dv = k(p)dp yields

t; = sin (/.Jk(g)dg) - dy + /ST(H) - COS (/ﬂ k(g)dg) do

(23)

p—

— COS (/5 k(c:)dcr) - ldy + -/‘S'r(r:r) - SIn (/J k(c:r)dg) do

s

—

If we write down (19) and the integral over (23) explicity, we get the following

Theorem. Let [ be an open intervallin R,k : I - R aC'-andT: 1 - R a C°-
function with k(s)# 0 for all s € I. Then the coordinates of the C?>-curve of the isotropic

space | ; ) = P}, 1000 with the isotropic curvature k and the isotropic torsion T as functions

of the arc length, which according to the fundamental theorem of curve theory is uniquely
determined up to isotropic motions, are given in an appropriate affine xyz-coordinate system
as functions of the arc length by

20 o = sta) + ey [ cos ( [ k(M) o
e, [sin ( [ k(g)dg) o

(25)  u(s) = u(so) *+ ¢, -/:sin (f:k(g)dg) do+
e, -'/:cﬂs (/jk(g)dg) do,

(26) z(s) = z(sy) + d, *‘/“5 sin (-/g k(g)dg) do —

)

— d, -fscﬂs ([Uk(g)dg) do+
o [sin (/“k(g)d@) do- [ (o) -cos (/Ek(:x)dx) dodo -

0

_fscns (/ﬂ k(g)dg) do -./gfr(g) . sin (/.Qk(,\)d/\) dodo,

(
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where 1(sy),y(80),2(8y),d,,d, arearbitrary real constants and for c;,c, € R there is

only the condition c; + c5 = 1.

Remark 1: Looking at the above differential equation (7) of Strubecker ([4], p.23) for z, by
the substitutions

(27) w:=2,u:= /a k(o)do

0

we get the differential equation

-
(28) wtw= -

k

for w, and using the ground plan given by Strubecker in [4] we only have to solve the differ-
ential equation (28).

Remark 2: There are two differences between the Euclidean and the isotropic space which
are essential in this context and which effect that there is no similar method for the integration
of the Frenet equations in Euclidean space. In the first place the system (4) - (6) of the Frenet
equations in isotropic space is essentially simplified by omitting the third coordinate so that
the general solution of this simplified system is even already known from plane Euclidean
differential geometry. In the second place in isotropic space the parameter transformation
(8) leads to a linear differential equation (certainly inhomogeneous) of the second order with
constant coefficients and not (as in the Euclidean case) to a homogeneous linear differential
equation of the third order with variable coefficients, because the third vector of the moving
frame in isotropic space is constant and therefore does not contain an unknow function which
has to be determined from the Frenet equations.

Remark 3: There are some obvious applications of the above theorem. One example may

be pointed out: Ruled surfaces of type 1) in isotropic space I;” (compare [3], p. 193 1)
may explicitly be determined from their curvature, torsion and striction as functions of the
arc length of their curve of striction.
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