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THEORY AND PRACTICE OF DIRICHLET SERIES
WITH FUNCTIONAL EQUATION

ANDREAS GUTHMANN

Let a : N — C be an arithmetical function and

&

(1) 99(5)=Eu(n)n_3,s=-::r+it,a?50‘

n=1

be its associated Dirichlet series.

We consider the class D of Dirichlet series satisfying the following conditions:

I) The series (1) converges absolutely for 0 > o, > 0 (o, not necessarily minimal).

II) a)There exist constants A > 0,0 < r < o, and integers r, > 0,7, > 0 with
ry + 75 > 0, such that the function R defined by

O

R(s) := A=°T (2

) ' T(9)p(s),0 > 0,

can be analytically continued to the entire complex plane to a meromorphic function.

b) R has its only singularities at the points s = r and s = 0 which are poles of order
m > 0 and [ > 0 respectively.

¢) If 2(s) := s'(s — r)™R(s), then = is an entire function of order 1.

[II) R satisfies the functional equation

R(s) = yR(r —5)

where y€ C,|y| = 1.
The complex zeros of Dirichlet series are of particular interest, since their distribution is
strongly related to the asymptotic behaviour of the aritmetical function a. In this paper our

goal 1s to give a method for the computation of ¢ in the critical strip 0 < o < r. This

e s T
enables us to compute the complex zeros of ¢ on the critical line ¢ = 5 - See §3 A for more

details concerning these matters.
The functional equation (III) implies that non real zeros of ¢ are symmetric with respect

toog = % and the Riemann hypothesis for ¢ states that R(p) = 21 for these zeros p. We

shall give a method which allows in principle to test the Riemann hypothesis for any given
interval 0 <t < {,.

The prototype of all Dirichlet series is the Riemann zeta function {(s) = > .2, n™°. In
this case extensive numerical investigations have been performed. The computations of van
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de Lune et al. [19, 20] showed that the first 1.5 - 10° complex zeros lie on the critical line

1
o = — and are simple. On the other hand there are only scattered results for other types of

Dirichlet series. Dirichlet L-functions have been investigated by Davies[5], Davies and Ha-
selgrove[6] and Spira[27], Hecke L-functions by Davies[4], Artin L-functions by Lagarias
and Odlyzko[12]. Spira[26] and Ferguson et al.[7] computed zeros of Dirichlet series asso-
ciated to modular forms. But it seems that these methods have some disadvantage, relating
to numerical instabilities. In a sequel to this paper we shall give an effective version with our
method[9].

Even a proof of the Riemann hypothesis does not make our method superfluos. For in-
stance, Odlyzko[21] studied the statistical distribution of the complex zeros of the zeta func-
tion which necessitated extensive computations. Finally, it is possible to get some information
on the asymptotic behaviour of the arithmetical function a from explicit numerical values of
the zeros . Some examples have been given by Pintz[24], te Riele[25] and Odlyzko and te
Riele who gave a disproof of Mertens’ conjecture[22].

In the present investigation we extend the methods for the verification of the Riemann
hypoyhesis in a given interval t; < t < t, to the Dirichlet series from the class D . Here we
compile some of the necessary tools. But for each concrete example of a given Dirichlet series
further estimations are needed. How to do this for a particular case has been demonstrated
in [9] for the simplest case (n=r, + 27, = 1). If r; + 27, > 1 then we need extensive
numerical estimates which are not yet finished. The case r, + 27, = 2 includes among
others the zeta function of quadratic number fields. But is possible to compute these functions
effectively with the methods presented here and in [9] and [10].

This paper is organized as follows. After compiling some technical tools in §0 we tran-
sform the series (1) into a series which converges absolutely in the critical strip. This transfor-
mation is due to Lavrik and it gives a method for computing ©( s) . The summation involves
certain inverse Mellin transforms which generalize the incomplete gamma function. Analy-
tical properties and numerical methods for these function have been given in [10]). The zeros
of v can be found by sign changes of a function Z which is considered in §2 .

In §3 we make some general remarks concemning the zeros and their distribution in the
critical strip. In the third part of §3 we generalize Gram’s Law and a method of Turing[29]
for the verification of the Riemann hypothesis an any given ¢ interval.

Throughout we apply the following notation. fm = j; "’_’_’;: denotes an integration along
the line with real part equal to ¢ and imaginary part increasing. f(z) = O(g(z)) or f(z) <
g(z) for x — x, are standard abbrevations for the fact that |f(z)/g(z)| < C for z — z,
and suitable constant C > 0 . In most cases z, = oo.
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0. SOME TECHNICAL TOOLS

In §1 we modify Lavrik’s derivation [13, 14, 15] of the approximate functional equation for
¢ . For this, we need some results, which we insert here. The proofs are to be found in [10].
Let A and v be non negative integers with A + v > 1. For z > 0 we define

1 w\ A N
(2) E, = > (E}I" (-2-—) 'w)'z 7 %dw,

and the incomplete gamma function of order (\,v) by

(3) I,,(a,2) = fm E, (t)t* 'dt.

For numerical purposes and aspecially in our investigations it is advantageous to consider the
corresponding normalized incomplete gamma function Q(a, z), i.e.

I, (a,z)
I'(a/2)*T (a)¥

Q(a,z) =

We need [10].
Lemma 1. E, , can be continued to a function analytic in the complex plane slit along the

negative real axis. For |arg (z)| < 6 < 23 we have

A+y—1

E}L‘u(x“ﬁ) =0 (E_hII_T) . T — 00,

where n= X+ 2v and b= 2 2v/n,

Further properties of the incomplete gamma function, for example an asymptotic expan-

sion for a — oo can be found in [10].
For the use in Turing’s method in §4 we need the following facts.

Lemma 2. (Lehman’s Lemma(16]) Let f(s) be regular in |s — sy| < R' with f(sy)#0
and [f(8)/f(sy)| < M for |s—sy| = R'. Let sy,...,s, bethezerosof f in|s—sy| < R,
where 0 < R < R' and all zeros are counted according to their multiplicities. Then

r 8

log | f(s)| — { log [f(sy)| + ) log ———k
k=1

b,

| < RZ_TT {I{}gM+nlﬂg RFIER}

S — Sk

o

for |s — s, <7 < R.

The next result 1s due to Turing[29].
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Lemma3. Leta € C,a#0,R(a) > 0. Then

¢ i
[ lng| ° ]dzz—lﬁ-lSEE—.
a—1| E'i'l a

We need the following generalization.

Lemmad. Let bc C* R(b) > 0,6 > 0. Then we have

I
.

b
< .
| | _‘d _1.488’R
.[b—ﬁ Sl PR ?2

Proof. The substitution z = dw gives

b b/
f log | —— dz=6/ lngi ot ‘dw,
b—6 z+9 b/6—1 w+ |

and our claim follows from Turing’s Lemma.

1. LAVRIK’S APPROXIMATE FUNCTIONAL EQUATION

Here we give another proof of Lavrik’s representation [13, 14, 15] of a Dirichlet series with
functional equation.

For short, weset £ = FE

LEELI!

. Substituting t = Anz,n€ N,

S

" Ty — > s—1
r <E) [(s) /; E()t"dt, R(s) > 0,

(follows from (2) by inversion) we get

A°'T (;)TI (s):n?®= / E(Anz)z* 'dz.
0

ity

With (1) and (II) we obtain from this for o > o,

R(s) = Za(n) /m E(Anz)z* 'dz = /mEE(H}E(ATLI)IE_IdI,
n=| 0 -

where the interchange of summation and integration is justified by absolute convergence of
the left hand side. Hence we have

(4) R(s)=/ Y(z)z* 'dx,0 > 0,.
0
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where

Pv(z) = ZE(H)E(ATLI),I >0.
n=1

Inversion of the Mellin integrals in (4) gives for z > 0

1
v(z) = — R(w)z ™ “dw,c > o,.
21 (c)

Shifting the integral to the left to the line R(w) = %( < ¢ by (II)), gives

(5) Y(z) = res; + ﬁ (5) R(w)z "dw,

where res, denotes the residue of the integrand in w = r. If m = 0 then res; = 0 and
if m > 0 then for |§| sufficently small we have an expansion R(r + §) = > 02 b 6".

Therefore
— (1"
(6) res; =z~ » B,(logz)",B,=b_,_, ——.
v=0

We apply the functional equation (III) to the integral in (5), where we define

S

=) T (s).

o' =p(3) =y a(mn*,R'(s) = R(3) = AT (
n=|

Then we have

| ] 1
— R(w)z ™ "dw = ~y— R'(r—w)x 7Ydw =~z — R*(2)z*dz.

2m (’E’) 2m () 21 (£)

h.hl-rg

Shift the last integral back to the line R(z) =c > o,

]
> (%) R(w)z “dw = —yx " "res, + qx‘rm - R*(z)x*dz

(7)
|
= —yzx"'res, + yx YP° (—) :

€L
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where res, denotes the residue of the integrand at z = » and ¥*(z) = ) a(n) E(Anz).
Again we have

m— 1|
(8) res, =z’ » (—1)"B,(log z)"
v=0

and from (5), (6), (7), (8) we see that
1 m—1 m-—1
(9) Y(z) =yz7"Y" (*) +z77 ) B,(logz)" —v ) (—-1)"B,(logz)".

This type of functional equation for ¢ has been obtained by Berndt[2]. For the reader’s
convenience we gave its proof here in a somewhat modified form. Set £ > 0. If we let
z = yé in (4), we get

0o | oo
R(s)=£"f0 Y(yé)y* 'dy = €° (/; +.[1 >¢(y€)y‘“"’dy-

Apply the functional equation (9) to the first integral. Thus,

1 | 1
Esf Y(y€)y* 'dy = 'rfs_/ () "Y" (m) y*~'dy
0 0 y&

m— ] |
+E ) B,,./t; (y€) "(log y€)"y*~ ' dy
=0
m— | 1
96 S (-1, [ (log4)v* ' dy
=0
‘ !
— r],gs—_r/ w* (_) ys—r-ldy
0 Y&
m— | 1
+¢3° B, fﬂ (log y€)"(v€)* "~ dy
v=0

m— | i
26 S (-1B, [ (log )" (v dy
v=0
Define

]
(10) I(1,€,0) =/D (log y€)*(y€)*~dy.
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1
If we further let — = z, we get

y

| (s0]
s s—1 — 8—T # E r—a-—ld
E/uw(yf)y dy = Y€ ./1‘ P <E)$ T

m— 1

m— |
+€Y B I(v,6,5—1) =€ Y (-1)"B,I(v,£,s).
v=0 v=0

Here

’TE&_T'/; * (?) Ir-a—ldI — ,Tgs—r‘/; 2:‘1(“') E(A?’LI/E)IT_E_IdI
n=1

=g A [ E(Anm/oz " ds
n=1

o0

=yA*") a(m)n* T (r — 5, An ")

n=1

by (3) and Lemma 1 with T (a,2) =T, , (a,7). Similarly

e [Twwoytay =Y ot [ By dy= A7 3 a(mn'T (5, 416),
n=1 n=1

and finally
R(s) =AY a(n)n°T (s, Anf) + 7A*" ) "a(m)n’ T (r — s, Ant™")
n=| n=1
(11)

m—| m—1|
+€) BI(v,&,s—1) =€ Y (—1)"B,I(1,§,5).

=0 =0

This equation has been proved for o > 0,,£ > 0. Butby Lemma | (with I" = I"r“,,z )

I'(s, An€) = (Arf)"[m E(Anfz)z* 'dz < n® /m exp {_bm(Anz-:)W} °'dz
1

]

& exp {—b(An)””é} P,

for N=r +27,,6= R(£2/N) and suitable constants «, 8 > 0. Hence, the series in (11)

are absolutely convergent for all s with 0 < R(s) < r, provided 6 > 0, i.e. |argé| < %

So (11) holds for these values of s and we have proved
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Theorem 1. Let N =71, +2r, > 0,7 > 0,|argé| < ? Then, for 0 < R(s) < r
o(s) =Y a(mn~°Q, , (s,Anf) + 7A**"X(s) D a(mn’'Q, , (r—s, Anf™")
n=1 n=]
m— |
+EATT (5) ' T()7 I IBI(w,E s~ 1) = (=1D'B,I(1,€9)],

=0

where
r— 8§

I ( )rl I'(r —s)n
X(s8) = 2 :

)T

This is our version of Lavrik’s approximate functional equation. Qur proof as given here
seems to be more natural, since it uses on the one hand Riemann’s own starting point for the
zeta function. On the other hand it shows clearly how the absolute convergent series arise
which are used later for the computation of ¢ in the critical strip 0 < R(s) < r.

Theorem 1 allows in principle to compute p(s) for all s#0,r, since I(v,£&,s) can be
determined explicity (vgl. (19), (20)). Here we can choose the parameter ¢ in a suitable

manner. Later we shall define [¢| = 1,argé = (args)™/2. Then Anfs~N/? is real and the
result from [10] apply, giving an asymptotic expansion of I' (a,z) for a — oo, which can
also be used for numerical computations.

2. THE FUNCTION 2

We now rewrite the functional equation (I11) for our purposes. First

S

A=°T (2

)TI I'(s)2p(s) = R(s) =~qR(r —53)

T — S8

=7A3“TF< 5 )IF(T~3)T1¢(T—E),

so that

(12) p(s) =A™ X(8)p(r —3)
with X (s) from Theorem 1. Now let s = % +it,t € R. Then

[l‘ (% —it)T (-21 " iz:)_l}rz |

— |
R N A )
X(z_”t)_ r(4_12>r<4+12>
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If we for R(a) > 0 write
(13) ['(a) =T (a)|e"'”,A(a) = argl'(a) = Slog I'(a),

taking the principal value of the argument (i.e. A(a) = 0 for a > 0), we see that (note
['(a) =I'(a))

X (g—-+ it) = exp{uzi*rl.ﬁ (41+ 1%) — 2175 A (-2t+ it)},

and with (12)

(14) tp(%‘l' it) = A A% exp {-2:‘ [TIA G—+ :-é-) +r,A (%+ it)]}rp (%+ it).

Since |y| = 1 wemay let y = e, —7 < § < w, and (14) reads

O R I N LA
(15) tp(2+1t) e :p(2+1t),
where

o r .t r .
(16) ﬁ—ﬁ(t)—ng-tlog/-l+r,$}logl"(4—+:5)+r38‘10g1"(5+1t).
Hence

=0 (T N -0 (T L\ =iy
(17) Z(t) := e r,o(zﬂt) e go(2+n‘) Z(0),

: : : : : T
i.e. Z(t) i1sreal provided ¢ is and the zeros of ¢ on the line o = > are exactly the real zeros

of Z. Now we want to express Z with the help of Theorem 1. For this we need an explicit
representation of I(v, £, a). From (10) we get I1(0,£,a) = £ 'a~! and

dv dv 1 I
10.60) = o [ (50 dy= [ (logy)*(v0)*dy = I(v,¢,0),
a” Jo 0
so that
il e~ (VY\N d ., oD, ke
I(v,€,0) = da”[E a1 =¢ l;(ﬂ.)(i—a"}'(ﬂ I)E,{;;—"-—T(E log £
(18)

=¢*'a”! ;}(—l)f (j);‘!a'f(lag&)”—f.
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Let £ =e'¥, ¢ € R,a=%+it. Then

(19)
I (u, e, % + it) = eiw(%ﬂt)_w (21 + it)*l ;(—l)j (j)ﬁ' (g + it) dj(i'd))u_j
et ) S () (o) v
and similarly witha = s — r = —% + 3t
(20)
I (u, e'?, ) + ﬂ) = £ 'z”e_'r‘fw‘_"’t (5 tt)-l er-iﬂ(i)f (j)]' (2— — zt)_ {1/
If we let
(21) S(u,,t) = &7 (3 + it)_l i:if' (”);‘! (1 + it)_j P
Y, 5 = 7 5 ,

we get from (19) and (20)

I (u,e“ﬁ, -23 + it) = £ 1Y eYtS(v P 1),

I (u, eV —% + it) = ¢ %S0 1),

With s = 21+ it, R=|T (zi)-f‘ [(s)~"| we get in Theorem 1
(22)
m— |
3 E Bk -7 — — ~-1HB
A%T (5) 'T() BI85 =) = 2(=D"BI1E 9]
- LTI ¢ - T L. m -]
= aFritgemvimna (§i5)-ma(340) S v g 500 5. 1)

v=0

+(—1)"e*B,S(v,,1)]

m—|
= AR Y (e B,5(, %, 0 + ()" B, S(v, 4, 1)]
=0

m— 1|
= AT Re—¥t-1 E P, (t),
v=0
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where the functions

P,(t) =" [E“i%BuS(H,ﬁ),ﬂ +(— l)"'e"%EuS( v,y,t)

are real valued. From Theorem 1, (17) and (22) and using QT“TI(E, I) = Qr]!rz(a, ) we
obtain
00 A m—1
(23) Z(t) =2R {e“’ Ea(n)n-ff-”cgw (-2"-"- + it Ane“f*) L + AT Re ¥t Y P(1).
n=1 J v=0

This formula can be used to compute Z(t) for ¢ — oo and it has proved to be useful in

certain applications (see [9], [11]). In order to compute Q. _ (a,x) with a = g— +at,x =

'I"I .Tz

Ane'¥ = z(n) the asymptotic expansion from [10] can be used. For this it is necessary that
. N N
l=1l(n) =za N2 N = r, + 27, ,1sreal. Hence we choose 9 = > arg (% + :’t) ~ %—-

for ¢t — oo, so that
r -4
i) =An|5+£t

Since [T (s)| ~ (27)/2e~™/2¢0-1/2 ¢ _ o0, we have in (23)

ad -r 7 rytr r
R=1T <£+:‘%) r (%—+it) o e % C>0.t — oo

1.e. the second term in (23) satisfies for ¢ = N/2 arg (% + z‘t) and since P, (t) = O(t™ ")

the estimate

ro+r -
&Lt 2 ‘*%—ﬁl,tﬂm

This tends to zero, provided
T N~

| —_—

2 4

. : D . N
which we will assume tacitly in our applications. We further remark that ¢ = > arg (-21: + it)

coincides exactly which Lavrik’s choice of this parameter. He gives in this case an estimation

for Q,,IT,“ (; + 1t Ane“"’) , while we gave an asymptotic expansion which is useful if I(n)

IS not too small.

The reader should be aware of the fact that for an effective use of Theorem 1 it is necessary
to supply explicit estimations of the error in computing the incomplete gamma functions. How
to do this has been demonstrated in [9]. The number of terms needed from the infinite series
in Theorem 1 is approximately O(t*/-"¢) for each € > 0.
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3. THE ZEROS

A. Generalities. Since I (;) 'T (s)™ hasapoleoforder r, at s = —(2v+ 1) and pole of

ittt

order r, + 7, at s = —2v,v € N, it follows that  has a zeros at s = —k, k € N, because

st(r — s)™R(s) is an entire function by (II). If n, denotes the mutiplicity of the zero, we
seethat ny = r, +r, — [, ifl >0 and ny > r, +r,,1f [ = 0. Moreover, n,, > r, + 7,
if Kk >1andn,,,, >r, if K> 0. These zeros at the non positive integers will be called
trivial.

By our assumptons a ¥ 0 . Hence, there is a smallest n with a(n) # 0. Then, for 0 — oo

[p(s)| = |a(n)|n™ + O((n+ 1)77) >0,
provided o is large enough. So there exists o, > 0 with

(24) w(s)70 if o > o,.

But then also YR(r —3) = R(s)#0 for o > o,,ie. R(s)70 foroc < r—o;. In

particular, n,, = v, +7r,,if -2k <r—0, and np;,, =75, 1f —(2k+ 1) < r-0,. Hence,
all zeros of R lie in the «critical strip»

T— 0, <0 <0

Since st~™ (s — r)™R( s) is an entire function of order 1, Hadamard’s Theorem[3] implies

+bs S
(25) st™ (s — P)"R(s) = e H (l — —-) eﬁ,
5 @
with suitable constants b and ¢ and the product runs over all zeros o of R and converges

absolutely. Since log I'(s) ~ slogs for s — +oo we have R(s) = O(e®l'™®) for all

e > 0, butnot R(s) = O(el®l) for s — oo and so we get

I 1 .
—convergent, —divergent,
XQ: lol'*e Zg: el

which implies in particular that R has infinitely many zeros in the critical strip.
Of course, one would like to choose o, as small as possible. But if still o, > 7, it s
possible that the critical strip contains trivial zeros. If —k is of this type and R(—k) = 0,

the functional equation (III) implies also 0 = R(—k) = yR(r + k), 1.e. ¢(r+k) = 0. Such
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zeros of ¢ will be called induced. They can only occurif o, > rand n,, > r, + r,. All
other zeros of R (hence of ) are called non trivial. If p = 8+ 17 is a non trivial zero of

p,thensois o(r — p) = o(r — B+ 17) = 0, L.e. the non trivial zeros are symmetric with

. T . . ..
respect to the line o = 2 and the Riemann hypothesis for ¢ states that all non trivial zeros

. . . T : :
lie on the critical Iine o = 5 - It is our goal here to find, for any given ¢, the zeros on the

critical line and also possible counterexamples to the Riemann hypothesis. The introduction
on the real valued function Z in the last section gives a method to find a lower bound for the

number of zeros on o = ) by detecting sign changes of Z . Further information is given in

§4 .

By logarithmic differentiation in (25) we obtain

R, .  l—n
(26) —é—(s)-_ - _S_T+b+2< S_g)

!
Moreover, from (II) with ¥(z) = %—(z)

R . T s ©'
R ()= —log A+ 24 () + mauls) + (),

SO

[—n+0 m

o T 5 1 ]
(27) ;(3)—— : — +logA—?1b (5)r2¢(5)+b+¥<5+ >

Ss—1T S— P

We now consider more closely the important special case [ = m = ny, = 0,0, < 7. It
includes for instance Dirichlet series attached to modular form. A famous example here is
Ramanujan’s zeta function[11]. In our case R is an entire function and R(0) # 0. By (26)

and (II) we get

Moreover

R R, ._ R __ = 1 1
“23(5*3@)?3)“5“*) "f"E@H—s—a)*
I l
w2 (3 1) -5 (4 =)
e

e

(23)
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Let T > 0. We split the sums i1n (28) as
(29)

wo--| B8 )Gm) - (202 )

Sel<T  [Sel>T Bel<T  [Se|>T

E () S(mg)

Q1<T aer N8~ s—(r-2)

I

for T — oo by absolute convergence of the series in (28). If p runs through the zeros ,

so does r — p and hence the second sum in (29) vanishes. If p = 8+ i7,8,7 € R, then
I 1 28 . :
- + E— B+ 1 and T — oo in (29) gives

- _ B __ !
R(b) ZT:,S3+T1 22935&9

and we have

Lemmas. Letny=1l=m=0 and o, < r. Then

_321; 7 J‘r = log A - Ti’- G‘) (7)) — m{-‘g(r)}_

B. The Distribution of the Zeros in the Critical Strip
If T > 0 then let N(T") denote the number of zeros of R in the critical strip »r — g, <

o < 0,,0 <t <T, each counted according to its multiplicity, those with ordinates equal to

: : | : :
t =0 ort =T counted with weight 5 - We may assume T° > 0, since otherwise one can

look at R(3) instead of R(s).
After Littlewood [18] we define a function S in the following manner. For o > o, we
have ©(s) # 0 and then set

log p(s) := log [p(s)| + rarg p(s). —m < arg p(s) < .

If o0 < o, and t is not the ordinate of a zero of ¢, then let log ©(s) be the value obtained
by continuous continuation along the line with imaginary part equal to ¢ starting from s, =

oo + 1t with oy, > o, . If t is the ordinate of a zero of ¢, then we define log p(o + it) :=

I . L .
5 lma[lug p(o + 1t +1e) + log (o + 1t — 1e)]. Now let
E—»

T

(30) S(t) := -:-T-arg:,a (-;,}- + it) = %Qlﬂg %) (21 + it) .
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Theorem 2. If p € D, thenfor T' > 0

N(T) = ;lr-f?(T) + 2% + %(l+ m) + S(T") — S(0).

Proof. Since the zeros of R form a discrete set in the complex plane, there exists € > 0, such
that there are no zeros in the horizontal strips—e <1 < 0,0 <t < e, T —-e<t< T, T <
t <T+e.Letay, >0,suchthat r — 0, < a, and denote by C, the rectangle with corners
r—0,—ay — 1,0, Tt ay — 1,0, tay + (T +e),r— o, —ay +1(T +¢) and by C, the
rectangle with comers r—o, —a, +1€,0,+ay+1e,0,tag+ (T —€), 71—, —ay+i(T —¢).

If N,, P; denotes the number of zeros and poles of R in C,, then

N; — P, = ~—-l-—- E(S)ds = —53‘ {[ —(S)d.ﬁ}

21 Jo.

In C, there are no real zeros of R and obviously P, = 0. Let N,, denote the number of
trivial zeros of ¢, which are also zeros of R (note that ¢(s) = 0 does not necessarily imply
that R(s) = 0 )and N_ the number of non trivial real zeros of . Then N, = N, + N, + N,

and N(T') = N, + lN + le. Moreover, P, = |l + m and thus

272
(31)

N(T) = 5| llm(Nl +N,) = ;—ﬂm [E}/; B (syds+ S}fc E(s)ds] + -2!-(£+m).

1

Let C,, be part of C, bounded by the points -;— — 1€, 5t (T +¢€) and C,, be the remainder.

Now we have with our convention for log ¢

T+:’[T+£} r 1-: S 1—-1 ﬁﬂ!
jubdl = _ o I i R ) — + F
[GH (s)ds ﬂ [ log A + > T (2) T = (s) [p(s)

'j- 1E
+i T
Iii(T+e) sy |TTITE)
_—ngA*S? _ +T|lﬂgr —
T 2 L —ie
F+i(T+e) yriT+e)
+ 7, log I'(s) T i + log ©( s) ,
.
= ‘!-—'I-E
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hence,

f —(s)ds =—(T'+2¢)logA
c, £t

T e £
+ loe T + 71— + 73— loe T { — — 31—
(32) T %ﬂg <4 b5 12> Slog (4 12)]

|

+ r, :%logl" (%+iT+iE) —QlogI’ (%“’:E)]

+ nS(T + €) — wS(—¢).

Apply the functional of R to C,, :

RJ 5——1:5 Rt T+“‘: Rt'
—(s)ds = —/ (r — 8)ds = f (s)ds.
‘/*;'11 R _'*T*‘i(T*‘E} R* —i(T+e) R*

Since p*(s) = p(3) we find S log ¢*(3) = -V log p(s) and similarly to (32)

f —-(.s)ds =_(T+2¢)log A

+r, (Slogl (}+i§+i§) Slog I (4 —:25)]

+ 7, [E‘slngI‘ (g-'l'iT'l'iE) Slog I’ (5—15)}

+ nS(T + ) — nS(—¢€).
Together with (32) this gives

R) -—R—(s)ds——Z(T+2E) log A
c, R

I T T £ s £
+2 . I Ur —— ..l.l_-.l. 'JI-I-I—- _.h' — 1_
(33) T 53-:}5 (4+1 + 7 ) 3ng1‘( ) )]

+2r, :z:logr (—+1T+a£) 3o

b2

=]
ﬂ

-,
~J| ~
|
E.

—

2aS8(T +¢e) —=27n85(-¢).
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By the same reasoning we obtain

3 E(:5){15——2(T—2{-:) log A
c, B

T T > E
+ 2 ] —t+ = — = I + 4=
(34) T [E}c}gl“<4 b5 :2) E.‘fugl"(4 12)}

+ 27, {%lngl‘ (2 +IT—iE> SlogI (2 +zs)]

+27S(T —e) —2nS(e).

By (31), (33), (34) and (16) we get the conclusion of our Theorem.
Finally, we give an explicit estimation for the number of zeros in an interval of the form
I'<t<T+hT>0,h>0.

+ T
Lemma 6. Let s, = o, +1t5,00 > 0,0 < a < 1,R > 0,0 < g —5 < afll <

57 1/2
tg,0 = [(r:w.‘:t’,)2 - (21—5“) ] . Fort >0 and oy — R < 0 < 0y + R assume that

lp(s)| < ¢t%,¢c; >0,¢cy > 0. Then
2

N(ty +0) — N(ty —90) <
iuga,

—{log ¢, + ¢, log t — log [(so) ).

Proof. Let f(z) = p(sy + z). Then f(0)# 0 and Jensen’s formula [3] gives

2

] - .
> log 5= [ log £ (Re¥Id - log £(0)|

1 27 _
= 5= | o le(s + Re')|dw — log lo(sy)|.
T Jo

where ¥,,...,9_ are the zeros of f in |z] < R, i.e. the zeros of p in |z — sy| < R. On the
other hand, we have for 0 < a < 1

where now M denotes the number of zeros of ¢ in |z —s,| < aR. The circle |z — 54| = R

T, . T :
intersects the line o = 5 In the two points s, , = ) + 1(ty = 0), where & is defined above.

Therefore,

%[N(tﬂ +8) — N(ty —86)]1 <M<

Z log — ié}‘;

ug&
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and

* 2 1 [>T ;-
N(to +8) = Nito ~8) < —1{ 3= [ log loCay + Re)| — log (o)1}
log 5 ™ Jo

which gives the Lemma.

An estimation for |[¢(s)| as it is used in the Lemma can be obtained from Theorem 1 and
an estimation for the incomplete gamma function. More details on this can be found in [9]
for the special case r; + 2r, = 1.

4. GRAM’S LAW AND TURING’S METHOD

In this section we shall assume that the function a is normalized, i.e. a(1) = 1. By our
assumptions this will be the case provided a is mutiplicative.

In order to compute Z and the zeros of ¢ we use the representation (23), where we assume
t to be large enough. If this is not the case, we may use the functional equation for the
incomplete gamma function. This and many other properties are to be found in [10]. If ¢ is
chosen properly, namely

M
59=Marg(%-+it)w—ﬂ2 ,t—>m,M:=r|+2r3,
) . 3 N | Mr
the second term in (23) will be of order O(t~°) for some ¢ > 0, if 5—(rl+r3)< 1+—4 ,

which we may assume. The first summand in the infinite series is given by (with Q = ti;},,I . )

Q (21+ it,Ae"f’) =Q <%+ it, A (-;- + it)M> ,

where ) ir real and

_ - M
A = Ae'? (% - it) ~ At™ t - oo.

For such a small A we know that (J(a, Aa) is close to 1 and the summands are

~ | + oscillating terms,

] ] — r —_— I 1
where the oscillating terms come from n~Y~" for n > 2. Hence we can expect some

cancellation, and we expect

Z(t) ~ 23?{&""" + oscillating terms} & 2 cos ¢ + oscillating terms. ¢ = 9(t).
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Atthe extreme values of cos 4, i.e. atthe points ¢t € {t € R|J¥(t) = nv,v € Z} we therefore
expect that the signs of Z and cos ¥ often will agree.
Let T, > 0 be chosen such that ¥'(t) # 0 fort > T, (for many Dirichlet series T, = 0 ).

The points ¢, where
t, > T5,9(t,) =mv,vEZ,

will be called Gram points and Gram’s Law{8]
sgnZ(t,) = sgncos ¥(t,) = (—1)”

states that there is a zero of Z of odd order between two Gram points.

Now the Riemann hypothesis for ¢ in some interval I = [T,7,] with 0 < T < T,
is checked in two stages: First, we try to find in [ as many zeros of Z as there are Gram
intervals in [ (i.e. intervals of the form [{ ,t ,,]), for example by computing Z at the
Gram points ¢, € I. This gives a lower bound for the number of zeros of ¢ on the critical

, T :
line s = 3 + 1t,t € I. In the second stage, we try to show that ¢ has no more zeros In

r—o, <o <ot € I. This verifies the Riemann hypothesis for ¢ in the interval I of the

critical line.
There are two possibilities for the second stage, which are due to Backlund[1] and Tur-

ing[29]. Backlund’s methos involves much work in practice since it is necessary to compute

T : : . . :
values of ¢(s) for o > 5 - Turing’s method is more complicated to derive but much easier

to apply in practice since only values of ¢ on the critical line, i.e. values of Z have to be
computed and this has already been done in the first stage. Turing’s idea is very elegant and
rests on an estimation of Littlewood [18] for

T
(35) S\ (T) :=[ S(t)dt, T > 0,
0

where S was defined in (30). It is well known [28, p. 220 ff.] that for 0 < T < T

-

co+1T) oco+1T
n[ S\ (1)) = S (T)] =R~ / log p(s)ds "/ ]Ug‘f’f’(ﬁ)dﬂ}

. | JE T, L+iT
(36) oc+iT, oo+iT
- f log |( ) |ds — f log |(s)|ds,
{-n'T, :‘;~+iT

= —

with log p(s) asin §3 B. We now give two estimations for S, , of which the first is generally
applicable but the second gives sharper bounds in special cases.
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First, we note that integrals of the form

o+ H+1t

(37) J(o,H,t) :=f log |¢(s)|ds,oc > max{o,,0.},H >0,t>0,

o+it

are relatively easy to estimate, since the Dirichlet series (1) is absolutely convergent for the
admissible values of the parameters. Note, that in this section we assume a(1) = 1. If p has
an Euler product the calculations will be simplified. We refer to the examples in [9].

Theorem 3. Let ¢ € D,a(l) = 1,5, = 0, + ity,0, > max{c,,0,},0 < R< R <

to (r:rﬂ — —;) < 7' > R. Assume that
p(s) _ ,
38 fls—sal=R.
(38) |(}O(Sﬂ) <M, if |s—sy| =R

Define
l T
=3 (0-3)

2
c, = 2a, log (l + o fﬂﬁ)’

¢y =2 /'; " log udu,

¢y = max{c,,|c; —2a, log R|}.

Finally, assume that

(39)

Then

T +it,

oo+it, X
f log |p(s)|ds| < 2a, (R > log M + | log |<p(3n)||> + |J(og,00,t)].

Proof. (Compare Lehman’s method[16]) We have

oc+ it
(40) [ log |(s)|ds = U(ty) + J(og,00,t,)

¥+ ity
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with
Ty tit,
U(t) 1= [ log lp(s)]ds.
% +itg
By assumption @( s) is regularin |s — s,| < R', since this circle entirely lies in the upper
half plane. Let g,,...,0, be the zeros of ¢ in |s — 55| < R < R', counted according to

their multiplicity. Lehman’s Lemma gives

09 +ity n S—p
U(to) = 1 log [p(s)| — log [p(s)| — ) log | ——" }ds
5—+itu q k=1 Sﬂ o Qk
o 1ty o
(Un + ‘“’) log [©(sg)| + 2/. log - Q; ds
+it) o
(41) d "
27 R
< 2ay B _ (Ing M + nlog B _ R) +2aqy|log (sl
n gy tit, s—p
+ log k. ds
El -/:S-Htﬂ So — &k
We need an estimation for
oy +ity S—p
I(sy,0,) :=/ log Elds,1 <k<m
I +it, S — O

Let o, = B, +1v,. Then oy — R < B, < 0,,because p(s)#0 foro > o,.If s =5, + 0,

: T
we have on the line segment s = o + 1¢,, > <o <0

~2a0, <6<L0.
Since log z increases for z > 0
(42)
0 0 , 2a,
I(Sﬂﬁgk):'/‘ log l+ dégzﬂﬂlﬂg(l'I' >=le£kgﬂ
~2a, So — Oy 0p — Ok i

On the other hand [s, — o,| < R, and so

Tu T + t L T .
I(SD,Qk)E'/ log o *; Q‘f'dg;/ log o ﬁ“tdg

(43) . “
= / log |c — B,|do —- 2a, log R.

-
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Now set
To oo — By
70 = [ oglo — ildo = [ " og Juldu
] 5 —By
Asremarked already, c - R< B, < 0,.If B, < %, then

o — Py 2ay, r 2a,
fBo= [ togudu= | “tog (y+7-8)du> [ logudy>c,
0 0

5 =By
1
Assume (3, > 21, so that 8, = ) (crﬂ + %) +0,and —a, < 0 < a,. We then have for
6>0
0 Ty By ay*d Gy —0
f(B.) = f log |uldu + / log |u|du ='f log udu + f log udu
5By 0 0 0

Qg ag+é Qg Gq
= / log udu + / log udu + / log udu — / log udu > ¢y,
0 a 0 a,—b

0

andincase 6 < 0 withdé' = -6 >0

—

a,—8&' ag+é
f(B) = / log udu + / log udu > c;4
0 0

as above. Hence f(3,) > cy,1 < k < n, and therefore with {43) and (42)

(44) I(sg,0)| <1 <k<m

The conclusion of the Theorem now follows immediately from (41), (44) and the assumption
(39).

We remark that the condition (39) can be satisfied always. Since a,,7’, R and ¢, do not
depend on R', (39) is always satisfied provided R’ is large enough. On the other hand M
in (39) is growing with R'. How to choose the parameters optimally depends on ¢ and its

parameters o,,0,, 7 €IC.
We now give a further estimation for S, with a method due to Turing[17, 29], which often

gives sharper results. First some preliminary tools are needed.

Lemma 7. Let ¢ € D and

. | R | — n, m
=1 —(s) +
° 320 R(S) s S— T
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as in (25). Then
l
-R(b) = ) R-—,
2R
0
where o runs over all zeros of R.

The proof is similary to that of Lemma 5.

Lemma8. Let p€D,6 > 0,57 p,s+ &F p for all zeros p of R. Then we have

p(s) _ ‘ S ‘ S—T
= — D1 — ml — o1
’tp(s+6) (g — 1) log | = | —mlog .5—'r+6| olog A
F(QS_) ['(s S
— 0
— 1, log — 1, log |+E log l
s+ - I'(s+é s+ 6 —
r(=52) ol % )

and the sum over o converges absolutely.

Proof. As usual, we take the principal branch of the logarithms occurring. By (25) we have

log [p(s)| =R log p(s)
=(ng — ) log |s| —mlog|s —r|+oclog A

(45) _r mg]r (23)|--_1—2 log |T ()| + R(c) + oR(b)
R= + | 1mf).
+zg:< o B 7o

Let T' > 0. Since the sum in (45) converges absolutely, we may write

E (§R§+ log ) = E (?RE+ log

Y lel<T

|8
o

(8
2,

>+o(l),T—rm.

Insert this in (45) and subtract the expression obtained by substituting s by s+ §. This leads
to

| p(s) | _ B s | s—r |
0g (5 +0) (g l)iogl3+6‘ m log P 6log A
r )
— 7, log (2-) — 1, log F(S). — 6R(b)
r(i?) [(s+6)
RL -
—6ZRQ+Zlng o S +o(1).




64 Andreas Guthmann

Letting T° — oo this gives with Lemma 7 the first claim, and the second follows from

log

S—0 | _ -2
S+§_Q| O(v™),

where p = #+ 1y and |4| — oo.

Lemma9. Let s# —v,v € Ny,sFr,s# o forall p. Then

1

S —T

| N 7/ l T S
E?R ~3?;(3)+(£—no)§ﬁ;+miﬁ — log A + "z"LgR‘(,b (E)‘i'?‘zm‘!,()(s).

Proof. Follows from (27) and Lemma 7 as in the proof of Lemma 8. Observe, that }_ is
again absolutely convergent.

Theorem 4. Let ¢ € D with a(1) = 1. Assume that o, > max{c,,o.},t > 0 and

v

T .
— + 1L

> . Moreover, assume that there exists c,,c,,cy with c; > 0, such that

(46) lp(8)] < ¢t 7%

] —1
forall o € |2,0,|. For u>0,v € C and [u/v| < 1 let B(u,v) := 3 (1 e )
U
uz 1 . T T _ e —1
?+u U= . Define & := o, - 5,2 = 5+1t‘5:_ 6|z|”" (hence € < 1) as well as

" =max {6 |z]”", -8 log(1 — &)},

O
I

ch =6log(l —blz—7+8"),

T - & _L&_‘
I d

|z + &|° mlz — 1 - |-

cy = |l - ny] — log A,
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withcy, <0 and 6 < |z —r+ b|. Then

oo, t 1 h l ; 2
a) log |¢(s)|ds <blogc; + oc, logt — 3 (gﬁ — %) cy logt+ J(oy,00,1).
£-+it
00,1
b) log |p(s)|ds > — |ny — I|c} + mch, — 6° log A
= +it

~1485°¢, — 1488 R (2 + 6)
T T *
IRACRRTDRSACRTER)
o) .
— |2 |2rAB 5.5 ) + r26B(5,2)
2 2 -
— 148(‘.}2|2 + 6[_1("'] + Tl)

2+ 0 lln hd
2 2 g‘z‘

— 6%r,[1.48 log |z + 8| — log |2]].

— &7 [0 74 log

Proof. a)Because log is monotonic, we immediately obtain

oc+it oy Tt
/ log |p(s)|ds = f log |p(s)|ds + (o, 00,t)
-+ it =+t

T

<6blogc, + Iﬂgt/ (¢y —ocy)do + J(oy,00,t).
)

b)First, observe that a(1) = 1, hence log |p(s)| = O(27¢) for o — oc and therefore the
integrals are absolutely convergent. We have
(47)

oY L~ 8-t

/ log lo(s)ds = / log
r . T . !
-+ =1l = + 1!

-— =
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and Lemma 8 gives

£ +6+it = +5+it
i lo =(ny —1) |
Luu . t,{)(s 6)l o T +it
=-,-+5+:t .
_m/ log SaTrds—ﬁzlogA
L+6+1 S
T+6+it I (2)
(48) -y 't log - (.s+ 6) ds
3 Ty
§;+ﬁ+ﬂ 1-\(3)
—T lo ds
’ Lﬂt . I'(s+9)
{-+ﬁ+1t s —
o
+ d
EE:H/F+1t 5-+£3——é? %)

where the interchange of summation and integration is permitted by absolute convergence
(Lemma 8). We consider the summands in (48) separately. Clearly,

z+b z+d 8 z+d 5
_/ —/ log ds < [ log (l |5f> ds < 8% |z|7,

which implies
/2"’45

]+

Moreover we see that

z+6
f log

and we conclude

1+°

S

z2+6 \
o .
dsk[ log (1 —m) ds > o log(1 —5|3|_I),

z+ 6
./;

In a similar fashion we show that

z+6
(50) / log

(49)

S—T
s+o—1

z—1+d
d5=f log[ \ds-a: 8¢,

. s+ 0
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We apply Turing’s Lemma to the integrals

z+d
I, :=/; log

Set b:= z+ 6 — o in Turing’s Lemma. Then R(b) > 0 and we get

S —Q
s+td—p

z+d—p 3
ds = f log ‘ Ids.
2= s+

1

I > —1.486°
¢ 2 §T{.;,"+6—Q

}

and Lemma 9 together with this estimation gives

3 g_oi 1 1
;IEQ 1.486 {Sﬂtp(z+6)+(t n0)§}?—~————z+6+m§?z_r+8 log A
+
me (5£2) om0
(51)
>~ 1.4862¢, — 1.48RE (2 + 6)
©
+
— 1.488° [;—‘m (2’2 5) +ryRp(z + 5)] .
Here we have uses the well known estimate ([23], p. 295)
Rip(u) = log [u] + Ry, |R,| < |u]™", R(u) >0,
such that by (51)
(52)
/ + +8|"
EI > — 1.48636}, - 1.483%%(z+6) —0.74627', log 22 6‘ ~0.7463TE 32 él
e

— 1.488°r, log |z + 6| — 1.488°r, |z + 8|

holds. The gamma function integrals in (48) are simply estimated by the Mean Value Theo-
rem:

z+8 F(%) T s r (g+o+at
—r]/z log - (ii‘_‘ﬁ) ds = 1, ‘/;- log 5(%&)) ds

(53) r (=)
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by appling Stirling’s formula ([23], p.297). In the same manner

z+d
(54) —75 / log

(53), (54), (52) and (49), (50) now are inserted in (48) and this proves part b).
It is clear that Theorems 3 and 4 imply that

I'(s)
[(s+ 6)

ds > 6°r, log |z| — 67, B(6,2)|z|™".

(55) S\ (T)=0(logT), T — oo,

provided, ¢(s) grows only polynomial as ¢ — co. How to satisfy the conditions (38) and
(46) has been demonstrated in [9]. As already mentioned, an explicit version of (55) is funda-
mental to Turing’s method, which we now apply to the zeros of . We shall give two variants,

to allow some flexibility in the applications.

Assume again T" > 0, Z((0)#0# Z(T), so that N(T") is a natural number (observe
that zeros not lying on the critical line occues in pairs). Assume moreover that in the interval
0 <t<T thezeros 0 < v, < ...< v, < T have been found, each with multiplicity > 1.
If N(T) = k, we have found all zeros and Riemann’s hypothesis is true for ¢ in the interval
[0,T]. Now assume N(T) = k+ A forsome A € N,. Choose T, > T and find zeros

Teer < oor < Vetp of Z in the interval [T, T ]. Then, obviously,
(56) N T 2N +j=k+j+A,1 <)< p

By Theorem 2 we have (with ¥ = ¢*® as in (16))

1 .
S(1) = N(t) = —9(8) = 5= — > (1+ m) + S(0),

hence

7 T 1 [ 5 1
(57) / S(t)dt = N(t)dt—-—/ ﬁ(t)dt-[—vL —(l+ m) —S(O)] (I, -T).
T T T Jr 27 2

Here we have

Iy Vk+ 1 L PO T
N(t)dt = / N(t)dt + f N(t)dt + N(t)dt
T T j=1 Y Tk+1 Tk+p
(58) P

> (’Tk+| —TYk+A)+ E(’hﬁ;-] — 'kaj)(k+f+ A)
J=1

+(T) )kt ptA)
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by (56). The sum over j equals

p
E(’Tk+;‘+l — ’Tk+j)(k +7+A)= (’Tk+p — Yes )(E+A) + PVisp — E'Th;‘
- 4

and inserted in (58) gives

T P

N(t)dt > (k+ A)T, - T) +pT}, — E :'Tk+;;-

T -
1=1

Next, we have in (57) by using (16)

] T, o T
—/ mnﬂ=—-4ﬂ—qj—mb%T szwifﬁwwr< +$)a
0 2w 4 2

T
T

= QMgF(2+ﬂ)d

such that

T| T| l T]
/ S’(t)dt=/ N(t)dt + (TI — T )——f SlogIl <—++1f~) dt
T T wJr 4 2

Ty Ty r |
+ ?./,; Jlog I (5+1t> dt — [5(E+m) —S(U)} (I, = T)

T,

log A ., ) 2T, r 7, r
= N(t)dt + T; —T°) - =L .
T (1) zn( ' ) ?TE{<2'2’4)

T L+ m
—?H@sz) [2 wﬂmhﬂ—T)

where

b
(59) H(a.b,ﬁ):f Slogl(o+1t)dt,0 <a<bo>0.

In summary, we have the first version of Turing’s method:
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Theorem 5. Let T > 0,Z(0)#0# Z(T), T, > T. Assume that in [0,T'] we found k
zeros of Z and in [T,T] the zeros .,y < ... < Viapr P 2 1. If N(T) = k+ A with
A ENn,thEH

T, : ngA Y . l
S(t)dt K(Ty —T) +pTy = 3 Ypuj + 5 (T7 —T7) - [-2—(l+m) — S(0)

T

_ﬁg (T,T! | "’) _ (T,Tl,§)+a(i”, -T),

where H is defined in (59).

If the Riemann hypothesis for ¢ in [0,T] is correct, then the assumption A > 1 in
Theorem 5 will quickly lead to a contradiction with Theorem 3 or Theorem 4. See [9] for a
numerical example. If the assumption A > 1 does not lead to a contradiction, then we can
say nothing: The Riemann hypoyhesis could either be false or the mutiplicity of a zero was
greater than 1. Since there is a considerable freedom in the choice of the parameters (e.g. T )

the method will in most cases achieve its goal.
The computation of H in (59) is of course easy, using, for example, Stirling’s formula.

In general, the zeros of 7, ; in [T',T] can not be calculated exactly but only some approx-
imations 4, , . with

|:Tk+j_f}rk+j|£81 I i]ﬂpaﬁzo

In this case we simply replace

P r
Y Vs BY Y Apas +ep
j=1 7=1

in Theorem 5. We now give the second version of Turing’s method.

Theorem 6. Let k. n € N, = (\.tﬂﬁ,j,tmr”,_1 ),0 < 7 < k, bethe (n+ j7)th Gram interval,
Z(0)#0# Z(T,). Assume that in [0 ,t,] we have found N' and in I; we have found n;
zerosof Z. Ifwe have N(t.) = N'+ A for some A € N, then

ek k-1
[ S(t)ydt >(N'+A —n—c—1)(t,, —t )+ E(tﬂﬂ-ﬁt —t)(s; =)
t

n _.‘I":I-

with
5 1 Al
c .= > + E(E +1m) — S(U).sj- L= Enu.

=0
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Proof. We have
j—1 j—1
N(t,;) 2N(t,)+> n=N+A+) "n,0<j<k
v=0 v—0

Inserted in
(60) S(t) = N(t) — %ﬁ(t) —C

this leads to

=1
(61) St ;) =N(t,ﬁj)—n—j—cgN'+A+Enu“n—)'—c,0 <J<k.
v=0

From (60) it follows moreover that S(t) can decrease at most one unit in [, i.e. for some
tel; we have because of (61)

j—1
S(t) >N'+A+) n,—n—j—c—1

v=0
and so

t

. k—1 k—1 7—1
S(t)dt = Zf S(1)dt > (tpjuy —tw)(N'+A+ > m —j—n—c—1)
j=0 Y4 i=0 v=0

t

|

which 1s our Theorem.
Finally we remarks that we may even assume that A = 0(2) because zeros off the critical

line always occur in pairs. The same holds for zeros between two sign changes of Z.
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