QUADRATICAL GROUPOIDS (*) ## **VLADIMIR VOLENEC** A groupoid (Q, \cdot) is said to be quadratical if the identity $$ab \cdot a = ca \cdot bc$$ holds and if (Q, \cdot) is a right quasigroup, i.e. for any $a, b \in Q$ the equation ax = b has the unique solution x. Quadratical groupoids arose originally from the geometric situation described in Example 3 below. In this paper we study abstract quadratical groupoids and certain derived algebraic structures. **Example 1.** Let (G, +) be a commutative group with unique halving, i.e. for every $a \in G$ there is one and only one element $x \in G$ such that x + x = a. Denote this element by $\frac{1}{2}a$. Let use suppose that there is an automorphism φ of the group (G, +) such that for any $a \in G$ the equality (2) $$(\varphi \circ \varphi)(a) - \varphi(a) + \frac{1}{2}a = 0$$ holds. If \cdot is the binary operation on the set G defined by $$ab = a + \varphi(b - a),$$ then (G, \cdot) is a quadratical groupoid. Namely, for every $a, b \in G$ the equation ax = b is equivalent to the equation $$a + \varphi(x - a) = b$$ with the unique solution $x = a + \varphi^{-1}(b - a)$. By (3) we obtain after some simplifications $$ab \cdot a = a - \varphi(a) + (\varphi \circ \varphi)(a) + \varphi(b) - (\varphi \circ \varphi)(b),$$ $$ca \cdot bc = \varphi(a) - (\varphi \circ \varphi)(a) + \varphi(b) - (\varphi \circ \varphi)(b) + c - 2\varphi(c) + 2(\varphi \circ \varphi)(c)$$ and by (2) we get $$ab \cdot a = \frac{1}{2}a + \frac{1}{2}b = ca \cdot bc.$$ ^(*) Proofs not corrected by the author. **Example 2.** Let $(F, +, \cdot)$ be a field with char $F \neq 2$ in which the equations $$q^2-q+\frac{1}{2}=0$$ has a solution q and let * the operation in the set F defined by $$a*b=(1-q)a+qb.$$ By (4) the identity (2) follows settings $\varphi(a) = qa$. Now, Example 1 implies that (F, *) is a quadratical groupoid. **Example 3.** Let $(C, +, \cdot)$ be the field of complex numbers and * the operation on C defined by (5), where $q = \frac{1}{2}(1+i)$. By Example 2 (C, *) is a quadratical groupoid which we denote by $C\left(\frac{l+i}{2}\right)$. This groupoid has a beautiful geometrical interpretation which motivates the study of quadratical groupoids. Let us regard complex numbers as points of the Euclidean plane. For any point a we obviously have a*a=a and for every two different points a,b the equality (5) can be written in the form $$\frac{a*b-a}{b-a}=\frac{q-0}{1-0},$$ which means that the points a, b, a*b are the vertices of a triangle directly similar to the triangle with the vertices 0, 1, q, i.e.a, b, a*b are the vertices of a positively oriented isosceles right triangle with the right angle at a*b. We can say that a*b is the centre of the positively oriented square with the adjacent vertices a and b, which justifies the name «quadratical groupoid». Every identity in the quadratical groupoid $C\left(\frac{l+i}{2}\right)$ can be interpreted as a geometrical theorem which, of course, can be proved directly, but the theory of quadratical groupoids gives a better insight into the mutual relations of such theorems. For example, the left side of the identity $$(a * b) * a = (c * a) * (b * c)$$ is obviously the midpoint of the points a and b and this identity is illustrated by Figure 1 (here and in the Figure 2 we omit the sign *). This identity and figure illustrate a famous problem about the buried treasure of captain Kidd which is attributed to G. Gamow. From now on let (Q, \cdot) be any quadratical groupoid. Let us prove some simple properties of this groupoid. **Theorem 1.** In a quadratical groupoid (Q, \cdot) the following identities hold: (6) $$aa = a \quad (idempotency),$$ (7) $$a \cdot ba = ab \cdot a \quad (elasticity),$$ $$ab \cdot a = ba \cdot b,$$ $$(9) ba \cdot ab = a,$$ (10) $$a \cdot bc = ab \cdot ac \quad (left \ distributivity).$$ $$ab \cdot ac = ab \cdot (cd \cdot c) \stackrel{\text{(8)}}{=} ab \cdot (dc \cdot d) \stackrel{\text{(2)}}{=} ab \cdot (d \cdot cd)$$ $$= ab \cdot da \stackrel{\text{(1)}}{=} bd \cdot b \stackrel{\text{(8)}}{=} db \cdot d \stackrel{\text{(1)}}{=} cd \cdot bc = a \cdot bc.$$ **Theorem 2.** In a quadratical groupoid (Q, \cdot) we have the equivalence $$ab = cd \iff bc = da$$ and especially the equivalence $$ab = c \iff bc = ca$$. Further, from ab = ba if follows a = b. *Proof.* Let ab = cd. We have $$a \cdot bc^{(\underline{10})} ab \cdot ac = cd \cdot ac^{(\underline{1})} da \cdot d^{(\underline{8})} ad \cdot a^{(\underline{7})} a \cdot da$$ wherefrom bc = da follows? The converse follows by cyclic substitution of a, b, c, d. Further, from ab = ba we obtain $$aa \stackrel{(9)}{=} a \stackrel{(9)}{=} ba \cdot ab = ab \cdot ab \stackrel{(6)}{=} ab$$ wherefrom a = b follows. **Theorem 3.** In a quadratical groupoid (Q, \cdot) we have the identity (12) $$ab \cdot cd = ac \cdot bd$$ (mediality). Figure 1 Figure 2 *Proof.* Let $a, b, c, d \in Q$ be any elements. There is $e \in Q$ such that de = ab, wherefrom by (11) it follows bd = ea. Therefore, we obtain $$ab \cdot cd = de \cdot cd \stackrel{\text{(1)}}{=} ec \cdot e \stackrel{\text{(8)}}{=} ce \cdot c \stackrel{\text{(1)}}{=} ac \cdot ea = ac \cdot bd$$ **Theorem 4.** In a quadratical groupoid (Q, \cdot) the following identities hold: (13) $$ab \cdot c = ac \cdot bc \quad (right \ distributivity),$$ $$a(b \cdot ba) = (ab \cdot a)b,$$ $$(15) (ab \cdot b)a = b(a \cdot ba).$$ *Proof.* (13) follows from (12) with d = c, using (6). Further we obtain $$a(b \cdot ba) \stackrel{\text{(10)}}{=} ab \cdot (a \cdot ba) \stackrel{\text{(10)}}{=} (ab \cdot a)(ab \cdot ba) \stackrel{\text{(2)}}{=} (ab \cdot a)b,$$ $$(ab \cdot b)a \stackrel{\text{(13)}}{=} 4ab \cdot a) \cdot ba \stackrel{\text{(13)}}{=} (ab \cdot ba)(a \cdot ba) \stackrel{\text{(2)}}{=} b(a \cdot ba).$$ **Theorem 5.** Every quadratical groupoid (Q, \cdot) is a quasigroup, i.e. for any $a, b \in Q$ the equation xa = b has the unique solution $x = (a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)$. **Proof.** With $x = (a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)$ (Fig. 2) we have successively $$xa = [(a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)]a^{\frac{13}{2}}[(a \cdot ab)a \cdot (ab \cdot b)a] \cdot (ab \cdot b)a =$$ $$\stackrel{\text{(15)}}{=}[(a \cdot ab)a \cdot b(a \cdot ba)] \cdot b(a \cdot ba) \stackrel{\text{(2)}}{=}[a(ab \cdot a) \cdot b(ab \cdot a)] \cdot b(ab \cdot a) =$$ $$\stackrel{\text{(15)}}{=}(ab \cdot b)(ab \cdot a) \stackrel{\text{(10)}}{=}ab \cdot ba \stackrel{\text{(2)}}{=}b.$$ Moreover, from xa = b it follows $$x \stackrel{(9)}{=} ax \cdot xa \stackrel{(10)}{=} (ax \cdot x)(ax \cdot a) \stackrel{(7)}{=} (ax \cdot x)(a \cdot xa) \stackrel{(15)}{=}$$ $$= [a(a \cdot xa) \cdot x(a \cdot xa)] \cdot x(a \cdot xa) \stackrel{(15)}{=} [a(a \cdot xa) \cdot (ax \cdot x)a] \cdot (ax \cdot x)a$$ $$\stackrel{(13)}{=} [a(a \cdot xa) \cdot (ax \cdot a)(xa)] \cdot (ax \cdot a)(xa) \stackrel{(7)}{=}$$ $$= [a(a \cdot xa) \cdot (a \cdot xa)(xa)] \cdot (a \cdot xa)(xa) = (a \cdot ab)(ab \cdot b) \cdot (ab \cdot b).$$ On the set Q we define a new operation \square by $$a \circ b = c \iff bc = a.$$ **Theorem 6.** (Q, \Box) is a quasigroup with the identity $$a \square (a \square b) = c \square [(a \square c) \square b],$$ i.e. it is a rot-quasigroup in the terminology of J. Duplák [1]. **Proof.** The groupoid (Q, \square) is conjugate (in the sense of S. K. Stein [6]) to the quasigroup (Q, \cdot) and hence (Q, \square) is a quasigroup. We must prove the identity (17), i.e. the implication $$a \square b = d, a \square d = e, a \square c = f, f \square b = g \Rightarrow c \square g = e.$$ But, by (17) this implication is equivalent with the implication $$bd = a, de = a, cf = a, bg = f, \Rightarrow ge = c,$$ which is to be proved. The hypotheses of this implication imply $$ae \cdot ba \stackrel{\text{(1)}}{=} eb \cdot e \stackrel{\text{(1)}}{=} de \cdot bd = aa \stackrel{\text{(6)}}{=} a = cf = c \cdot ba$$ and it follows ge = c. Theorem 5 suggest that the operation \Box can be defined directly by the multiplication in the quasigroup (Q, \cdot) , i.e. we have: **Theorem 7.** For any $a, b \in Q$ the equality $$a \square b = (a \cdot ab) \cdot (a \cdot ab)(ab \cdot b)$$ holds (Fig. 2). *Proof.* For any $a, b \in Q$ there is one and only element $c \in Q$ such that bc = a, i.e. a = b = c because of (16). But, we have successively $$b[(a \cdot ab) \cdot (a \cdot ab)(ab \cdot b)] \stackrel{\text{(10)}}{=} b(a \cdot ab) \cdot ([b(a \cdot ab) \cdot b(ab \cdot b)] =$$ $$\stackrel{\text{(14)}}{=} = (ba \cdot b)a \cdot [(ba \cdot b)a \cdot b(ab \cdot b)] \stackrel{\text{(2)}}{=} (b \cdot ab)a \cdot [(b \cdot ab)a \cdot (b \cdot ab)b] =$$ $$\stackrel{\text{(10)}}{=} = (b \cdot ab)(a \cdot ab) \stackrel{\text{(13)}}{=} ba \cdot ab \stackrel{\text{(9)}}{=} a.$$ Corollary. Equation ax = b has the unique solution $x = (b \cdot ba) \cdot (b \cdot ba)(ba \cdot a)$ (Fig. 2). On the set Q we define a new operation \bullet by $$a \bullet b = ab \cdot a.$$ **Theorem 8.** (Q, \bullet) is a indepotent medial commutative quasi group. *Proof.* Indepotency and commutativity are obvious because of (6) and (8). Owing to (18) and (12) we obtain successively $$(a \bullet b) \bullet (c \bullet d) = (ab \cdot a)(cd \cdot c) \cdot (ab \cdot a) = (ab \cdot cd)(ac) \cdot (ab \cdot a) =$$ $$= (ac \cdot bd)(ab) \cdot (ac \cdot a) = (ac \cdot a)(bd \cdot b) \cdot (ac \cdot a) = (a \bullet c) \bullet (b \bullet d).$$ For every $a, b \in Q$ there is $c \in Q$ such that ca = b and then $x \in Q$ such that ax = c. Therefore $$a \bullet x = ax \cdot a = ca = b$$. Finally, from $a \bullet x = a \bullet y$, i.e. $ax \cdot a = ay \cdot a$, it follows at once x = y. By Theorem 8, (Q, \bullet) is a so called IMC-quasigroup, whose properties are studies in [2-5]. **Theorem 9.** For any $a, b, c, d \in Q$ we have the identity $$ab \bullet cd = (a \bullet c)(b \bullet d)$$ (mutual mediality of the operations \cdot and \bullet). *Proof.* By (18) and (12) we have successively $$ab \bullet cd = (ab \cdot cd) \cdot ab = (ac \cdot bd) \cdot ab = (ac \cdot a)(bd \cdot b) = (a \bullet c)(b \bullet d)$$. In the case of the quasigroup $C\left(\frac{l+1}{2}\right)$ Theorem 9 proves the following statement, which implies some rsults from [7]. Let p,q be the centres of positively oriented squares constructed on oriented segments (a,b) and (c,d), and let r,s be the midpoints of the segments $\{a,c\}$ and $\{b,d\}$. Then the midpoint of the segment $\{p,q\}$ is the centre of the positively oriented square constructed on the oriented segment (r,s). By means of the quasigroup (Q, \bullet) we can define a new operation \triangle on the set Q by $$a \triangle b = c \iff a \bullet c = b$$ **Theorem 10.** (Q, \triangle) is an idempotent quasigroup with the identity (21) $$[(a \triangle b) \triangle c] \triangle d = [(a \triangle d) \triangle c] \triangle b.$$ i.e. a quasigroup of the type that was studies in [8]. **Proof.** The groupoid (Q, \triangle) and the quasigroup (Q, \bullet) are conjugate and hence (Q, \triangle) is a quasigroup, too. For every $a \in Q$ we have $a \bullet a = a$, wherefrom it follows by (20) that $a \triangle a = a$. We must prove the identity (21), i.e. the implication $$a \triangle b = x, x \triangle c = y, y \triangle d = z, a \triangle d = u, u \triangle c = v \Rightarrow v \triangle b = z,$$ which is, because of (20), equivalent to the implication $$a \bullet x = b, x \bullet y = c, y \bullet z = d, a \bullet u = d, u \bullet v = c \Rightarrow v \bullet z = b.$$ But, from the hypotheses of this implication we obtain by Theorem 8 $$(u \bullet y) \bullet (v \bullet z) = (u \bullet v) \bullet (y \bullet z) = c \bullet d = (x \bullet y) \bullet (a \bullet u) =$$ $$= (x \bullet a) \bullet y \bullet u) = (u \bullet y) \bullet (a \bullet x) = (u \bullet y) \bullet b,$$ wherefrom it follows $v \bullet z = b$. The operation \triangle can also be defined by means of the multiplication. We have **Theorem 11.** For every $a, b \in Q$ the equality $$a \triangle b = [(a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)][(b \cdot ba) \cdot (b \cdot ba)(ba \cdot a)]$$ holds (Fig. 2). *Proof.* For any $a, b \in Q$ there is one and only one element $c \in Q$ such that $a \bullet c = b$ (because of Theorem 8), i.e. $a \triangle b = c$ because of (20). But, we shall prove that $$a \bullet [(a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)][(b \cdot ba) \cdot (b \cdot ba)(ba \cdot a)] = b.$$ In the proofs of Theorems 5 and 7 we proved the identifies $$[(a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)]a = b,$$ (23) $$b[(a \cdot ab) \cdot (a \cdot ab)(ab \cdot b)] = a$$ Now, we obtain successively $$[(a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)][(b \cdot ba) \cdot (b \cdot ba)(ba \cdot a)]^{\frac{18}{2}}$$ $$= \{a \cdot [(a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)][(b \cdot ba) \cdot (b \cdot ba)(ba \cdot a)]\}a^{\frac{10}{2}}$$ $$= \{a[(a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)] \cdot a[(b \cdot ba) \cdot (b \cdot ba)(ba \cdot a)]\}a^{\frac{12}{2}}$$ $$= \{a[(a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)] \cdot b\}a^{\frac{13}{2}} \{a[(a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)] \cdot a\} \cdot ba^{\frac{17}{2}}$$ $$= \{a \cdot [(a \cdot ab)(ab \cdot b) \cdot (ab \cdot b)]a\} \cdot ba^{\frac{12}{2}} ab \cdot ba^{\frac{19}{2}} b.$$ ## **REFERENCES** - [1] J. DUPLÁK, Rot quasigroups, Mat. Čas. 23 (1973), 223-230. - [2] J. GATIAL, Some geometrical examples of an IMC-quasigroup, Mat.-Fyz. Čas 19, 292-298. - [3] J. GATIAL, Über die IMC-Quasigruppe und den Schwerpunkt eines Dreiecks, Math. Nachr. 53 (1972), 119-123. - [4] J. GATIAL, Die Schwerpunkte der Dreieckein einigen endlichen Quasigruppen, Math. Slovaca 28 (1978), 169-172. - [5] E. NATALE, n-quasigruppi mediali idempotenti commutativi, Rend. Accad. Sci. Fis. Mat. Napoli (4) 46 (1980). 221-229. - [6] S.K. Stein, On the foundation of quasigroups, Trans. Amer. Math. Soc. 85 (1957), 228-256. - [7] V. THÉBAULT, Polygons de 2n cotés bordé de triangles isoscèles semblables, Mathesis 54 (1940), 161-166. - [8] D. VAKARELOV, Algebrični osnovi na centralnata simetrija, v'rteneto i homotetijata, Godišnik Univ. Sofija Mat. Fak. 63 (1968/69), 121-166 (1970).