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QUADRATICAL GROUPOIDS (*)
VLADIMIR VOLENEC

A groupoid (Q, -) 1s said to be quadratical if the identity

(1) ab-a = ca-bc

holds and if ((Q,-) is a right quasigroup, i.e. for any a,b € Q the equation axz = b has
the unique solution z. Quadratical groupoids arose originally from the geometric situation
described in Example 3 below. In this paper we study abstract quadratical groupoids and
certain derived algebraic siructures.

Example 1. Let (G, +) be a commutative group with unique halving, 1.e. forevery a € G

: _ |
there 1s one and only one element £ € G such that z + £ = a. Denote this element by 50

Let use suppose that there is an automorphism ¢ of the group (G, +) suchthatforany a € G
the equality

1

(2) (wow)(a)—so(a)+5a=0

holds. If - 1s the binary operation on the set G defined by
(3) {Ib=ﬂ,+(|ﬁ3(b—{1),

then (&, ) is a quadratical groupoid. Namely, for every a,b € G the equation axz = b is

equivalent to the equation
atp(zx—a)=0b

with the unique solution z = a + ¢~ (b — a) . By (3) we obtain after some simplifications

ab-a=a—pla) +(pop)(a)+ p(b) —(pop)(h),
ca-bc=p(a) — (pop)(a) +(b) - (pop)(b) +c—2p(c)+ 2pop)(c)

and by (2) we get

] l
ab-a = 5u+~2—b=mvb¢.

(*) Proofs not corrected by the author.
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Example 2. Let ( F,+, ) be a field with char F'# 2 in which the equations

5 1

L +—:0
q q >

has a solution ¢ and let = the operation in the set [’ defined by
axb=(1—q)a+ gb.

By (4) the identity (2) follows settings ¢(a) = ga. Now, Example 1 implies that ( F', x) is a
quadratical groupoid.

Example 3. Let (C, +, -) be the field of complex numbers and x the operation on C defined

1 . : : .
by (5), where ¢ = 5( 1 +1). By Example 2 (C, x) is a quadratical groupoid which we denote

[+ : . . C . . :
by C ( 5 1) . This groupoid has a beautiful geometrical interpretation which motivates the

study of quadratical groupoids. Let us regard complex numbers as points of the Euclidean
plane. For any point a we obviously have a x a = a and for every two different points a, b
the equality (5) can be written in the form

axb—a ¢q—0

b—a | —0°

which means that the points a,b,a x b are the vertices of a triangle directly similar to the
triangle with the vertices 0, 1, q,1.e.a, b, axb are the vertices of a positively oriented isosceles
right triangle with the right angle at a x b. We can say that a x b is the centre of the positively
oriented square with the adjacent vertices a and b, which justifies the name «quadratical
[+ 1
2
geometrical theorem which, of course, can be proved directly, but the theory of quadratical

groupoids gives a better insight into the mutual relations of such theorems. For example, the
left side of the identity

groupoid». Every identity in the quadratical groupoid C ( ) can be interpreted as a

(axb)xa=(c*xa)=*(bxc)

Is obviously the midpoint of the points a and b and this identity is illustrated by Figure 1
(here and in the Figure 2 we omit the sign ). This identity and figure illustrate a famous
problem about the buried treasure of captain Kidd which is attributed to G. Gamow.

From now on let ((). ) be any quadratical groupoid. Let us prove some simple properties
of this groupoid.
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Theorem 1. [n a quadratical groupoid (Q, -) the following identities hold.:

(6) aa = a (idempotency), |
(7) a-ba=ab-a (elasticity), 4 |
(8) ab-a = ba-b,
(9) ba -ab = a, \
(10) a-bc=ab-ac (left distributivity).

Proof. (6) follows from (1) with b = ¢ = a and (7) follows from (1) with ¢ = a, using (6).
Putting ¢ = b resp. b = a in (1) and using (6), we obtain (8) resp. the identity ca-ac = a,1.e.
(9). Now, let a,b,c € Q be any elements. There is d € QQ such that cd = a. Therefore, we
obtain succesively

(%)

ab-ac=ab - (cd-c)=ab-(dc-d)Zab-(d-cd)
{1) i% (1)

=ab - da=bd-b=db-d=cd - -bc=a - bc.

Theorem 2. /n a quadratical groupoid (Q, -) we have the equivalence
(11) ab=cd <= bc = da

and especially the equivalence
ab = c <= bc = ca.
Further, from ab = ba if follows a = b.

Proof. Let ab = cd. We have

{ Iy (1 (8) (M
a-bc=ab-ac=cd-ac=da-d=ad-a=a -da,

wherefrom bc = da follows? The converse follows by cyclic substitution of a,b.c,d. Fur-
ther, from ab = ba we obtain

10y Il {fy)

aa=a=ba-ab=ab-ab= ab.
wherefrom a = b follows.

Theorem 3. /n a quadratical groupoid (Q,-) we have the identity

(12) ab cd =ac-bd (mediality).
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Proof. Let a,b,c,d € Q be any elements. There is e € @ such that de = ab, wherefrom by
(11) it follows bd = ea. Therefore, we obtain

(1) (8) (h)
ab-cd=de -cd=ec-e=ce-c=ac-ea = ac - bd.

Theorem 4. /n a quadratical groupoid (Q, -) the following identities hold:

(13) ab-c=ac-bc (right distributivity),
(14) a(b-ba) = (ab-a)b,
(15) (ab-b)a = b(a - ba).

Proof. (13) follows from (12) with d = ¢, using (6). Further we obtain

{ 10) ( 1tn {9

a(b-ba) =ab-(a-ba) =(adb-a)(ab-ba) =(ab-a)b,
(1) {13) (9

(ab-b)a=4ab-a) -ba=(ab-ba)(a-ba)=b(a-ba).

Theorem S. Every quadratical groupoid ((), ) is a quasigroup, i.e. for any a,b € Q the
equation xa = b has the unique solution £ = (a - ab)(ab - b) - (ab - b).

Proof. With z = (a - ab)(ab - b) - (ab - b) (Fig. 2) we have successively

(1hH

za = [(a-ab)(adb-b) -(ab-b)]Ja=[(a- -ab)a -(ab-b)a]-(ab-b)a =

(1%5)

=[(a-ab)a-b(a-ba)] - b(a -ba)g[u(ab-a) -b(ab-a)] -b(ab-a) =

(13} ( 10) (9

=(ab-b)(ab-a) = ab-ba=0b.

Moreover, from za = b it follows

(9 { HK

ez -za'=(az - 7)(az - @) Z(az - 7)(a - za) ¥

=[a(a-za) -z(a-za)] - z(a *I{I)‘l—ﬁi[ﬂ(ﬂ -za) -(ax -z)a] - (axz - x)a

(13 {7y

=[a(a-za) -(azxz-a)(za)] - (azx -a)(za) =

={a(a za) -(a-za)(za)] -(a-za)(za) = (a-ab)(adb-b) (ab:b).
On the set Q we define a new operation o by

(16) a0b=c<+—= bc=a.
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Theorem 6. (Q,0) is a quasigroup with the identity
(17) ac(aob)=cof(aoc)ob],

i.e. it is a rot-quasigroup in the terminology of J. Duplak [1].

Proof. The groupoid (Q,0) is conjugate (in the sense of S. K. Stein [6]) to the quasigroup
(Q,-) and hence ((),0) is a quasigroup. We must prove the identity (17), i.e. the implication

aob=d,aod=e,aoc=f, fob=g=cnog=ce.
But, by (17) this implication is equivalent with the implication
bd = a,de = a,cf =a,bg= f,= ge =rc,

which is to be proved. The hypotheses of this implication imply

(1) (1)

ge-bg=¢eb-e=de- bd = aa = "a=cf=c- bg

and it follows ge = c. Theorem $ suggest that the operation o can be defined directly by
the multiplication in the quasigroup (@, -), i.e. we have:

Theorem 7. Forany a,b € () the equality
aob=(a-ab) -(a-ab)(ab-b)

holds (Fig. 2).
Proof. For any a,b € () there is one and only element ¢ € () suchthat bc =a,i.e. aob=c
because of (16). But, we have successively
b[(a -ab) -(a-ab)(ab- b)]”—i}’b(a -ab) -([b(a-ab) -b(ab-b)] =
= =(ba-b)a-[(ba-b)a-blab-b)1Z(b-ab)a - [(b-ab)a-(b-ab)b] =

( 1th ( 13) ()

= =(b-ab)(a-ab) = ba-ab=a.

Corollary. Equation ax = b has the unique solution x = (b - ba) - (b-ba)(ba -a) (Fig. 2).

On the set () we define a new operation e by

(18) aeb=ab-a.
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Theorem 8. (Q), e) is a indepotent medial commutative quasi group.

Proof. Indepotency and commutativity are obvious because of (6) and (8). Owing to (18) and
(12) we obtain successively

(aeb)e(ced) =(ab-a)(cd -c)-(ab-a) =(ab-cd)(ac) -(ab-a) =
= (ac-bd((ab) -(ac-a) =(ac-a)(dbd-b) -(ac-a) =(aec)e(bed).

For every a,b € QQ thereis ¢ € @ such that ca = b and then z € () such that az = c.
Therefore

aexr=ar-a=ca=b>o.

Finally, fromcexz =aey,l.e. ax-a = ay - a, it follows at once z = y.
By Theorem 8, (Q,e) is a so called IMC-quasigroup, whose properties are studies in
[2-5].

Theorem 9. Forany a,b,c,d € Q we have the identity
(19) abecd=(aec)(bed)

(mutual mediality of the operations - and e ).

Proof. By (18) and (12) we have successsively
abecd = (ab-cd) -ab=(ac-bd) -ab=(ac-a)(bd-b) =(aec)(bed).

In the case of the quasigroup C (%-!-> Theorem 9 proves the following statement, which
implies some rsults from [7].

Let p, g be the centres of positively oriented squares constructed on oriented segments
(a,b) and (¢, d), and let r, s be the midpoints of the segments {a,c} and {b,d}. Then the
midpoint of the segment {p, ¢} is the centre of the positively oriented square constructed on
the oriented segment (1, s).

By means of the quasigroup ( (), ®) we can define a new operation /A on the set Q by
(20) aAb=c<>aec=1b
Theorem 10. (Q.A) is an idempotent quasigroup with the identity

(21) (A A]Ad=[(ed) Ac) Ab.
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i.e. a quasigroup of the type that was studies in [8].

Proof. The groupoid (@, /\) and the quasigroup ( (), e) are conjugate and hence (Q, ) is
a quasigroup, too. For every a € () we have a e a = a, wherefrom it follows by (20) that
a /N a = a. We must prove the identity (21), i.e. the implication

aAb=z,zANc=y,yDd=z,aldd=u,ulNc=v=>vNb= 2z,
which is, because of (20), equivalent to the implication
aerz=brey=cyez=daeu=duev=c=>vez=)
But, from the hypotheses of this implication we obtain by Theorem 8
(vey)e(vez)=(uev)e(yez)=ced=(zey)e(aeu)=
=(zea)eyeu)=(uey)e(aex)=(uey)ebd,

wherefrom it follows v e z = b.
The operation 2\ can also be defined by means of the multiplication. We have

Theorem 11. For every a,b € Q) the equality
alAb=[(a-ab)(ab-b)  -(ab-b)][(b-ba) -(b -ba)(ba -a)]
holds (Fig. 2).

Proof. Forany a, b € Q there is one and only one element ¢ € () such that cec = b (because
of Theorem 8), 1.e. a /A b = ¢ because of (20). But, we shall prove that

ce[(a-ab)(ab-b)-(ab-b)][(b-ba) -(b-ba)(ba-a)] =b.

In the proofs of Theorems 5 and 7 we proved the identifies
(22) [(a-ab)(ab-b) -(ab-b)]a = b,
(23) b[(a-ab) -(a-ab)(ab-b)] =a

Now, we obtain successively

t 1%

[(a-ab)(ab-b) -(ab-b)][(b-ba) -(b-ba)(ba-a)] =

[4]]

:{{1 : [(ﬂﬂb)(flb : b) (ﬂbb)][(bbﬂ,) (bbﬂ)(ba *ﬂ)]}a{Z

={a[(a -ab)(ab-b) -(ab-b)]-a[(b-ba) - (b-ba)(ba-a)]}a'=

i

={al(a -ab)(ab - b) -(ab-b)] -b}a'“{al[(a -ab)(ab b) -(ab-b)]-a} ba*=

(%)

={a - [(a-ab)(ab b) - (ab-b)]a} ba'= ab ba=b.
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