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SOME PROPERTIES OF COMPLETION CLASSES FOR NORMED SPACES
PANCRAZIO AMATO

Summary. Some properties of completion classes for normed spaces are investigated, giving
a topological result similar to a theorem of V.L. Klee [13], Anderson [3] Bessaga [4]. An
example of a metric space that lacks the fixed point property for the class of maps having the
uniqueness property [1], is also given. In § 2 normed space completion is found by compact
contractions.

0. INTRODUCTION

The study of relationship between the fixed point property and the compactness of a topolog-
ical or a metric space goes back to the fifties and the work of V. Klee [13] and E.H. Connell
[6]. For example Klee gave a partial converse of Tychonoff’s fixed point theorem proving
that in a metrizable locally convex vector space the fixed point property for continuous func-
tions fails for non-compact convex subsets. On the other hand the completeness of a metric
space has recently been studied by various authors and different characterizations were given
(see S. Park [14] and S. Park-B.E. Rhoades [15] for a comparison of these) both linking it
to a variational character (see e.g. J.D. Weston [20] and particularly F. Sullivan [18] which
establishes the equivalence between the completeness and I. Ekeland’s variational principle
[9]) and linking it also to the resolvability of fixed point equations or also to the existence of
periodic points of particular functions from a space into itself (see T.K. Hu [10], P.V. Subrah-
manyam [17], W.A. Kirk [11], P. Amato [1]). In particular in [1], after defining the appropriate
pseudometrics called Hausdorff semidistances, a method as been established which reduces
fixed point problems (or, if necessary, other type of equations) to completion problems (or,
more generally, of extension) and viceversa. Moreover, this method allows the construction
of the completion by means of appropriate classes of functions from a space into itself, con-
tinuous or not continuous, called thus classes of completion. Some of the properties of these
have been successively studied in [2]; moreover in [16] C. Sempi has transferred the method
of completion introduced in [1] to the setting of probabilistic metric spaces.

In this paper the study of the case of normed spaces i1s continued. After introducing the ap-
propriate references in § 1 and establishing a proposition of general character on the classes
of completion, in § 2 adapting an argument of Bessaga [4], see also Dugundji-Granas [8], it
is shown that compact contractions form a completion class for normed spaces. Let us note
(see ex. 3) that also classes which are generally more extensive than those of the contractions
(e.g. the class of the functions verifying the uniqueness condition, see § 1) do not neces-
sarily complete every metric space. This suggests a possible classification of metric spaces
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depending on their completion classes. In § 3, after noting (see ex. 4) that dense subsets
can behave differently depending on the class of completion, the idea of negligible sets with
respect to a class of completion W 1s introduced. In theorem 3.3 i1t is proved that the compact
sets of an infinite-dimensional normed space are negligible compared to the class of compact
contractions, in analogy with the behaviour with the cancelling homeomorphism investigated
in [13] theor. 2 (see also R.D. Anderson [3] and C. Bessaga [4]).

. PRELIMINARY RESULTS AND DEFINITIONS

For the reader’s convenience, attention is drawn to some definitions and notations introduced
in [1].

Let (E,d) be a metric space. We will denote by ) (E) the set of all ordinate pairs
(Y,W),where Y isasubset of £ and W is a set of functions from Y into itself; sometimes
we will write W (Y') instead of (Y, W) . A pair (Y, W) will be called a completion class of
E if the quotient space of W (YY) with respect to the equivalence relation

(L.1) f¥g9 e od(f,9)=0,

1s a completion of £. Also we will say that W(Y') completes E. Recall that o is the
pseudometric introduced in [1], i.e.

(1.2) o(f,g) =max{ sup inf Ilimd(z_vy,),
(2,)€S,) (¥a) €Sy B0

sup inf hm d(I Y )
{IH}ESE{F.‘}ES}- n— 00 n'vn }

S ¢ being the set of all sequences in D( f), the domain of f, such that

(1.3) lim d(z,.f(z,)) = |f].

n—0O0

where | f| is the minimal displacement of f, i.e.

(1.4) fi= inf d(z. f(z)).

reD(f)

Moreover, we will denote by U'(Y") the set of all functions f : ¥ — Y which verify the
following properties:

(1.5) Fl=0
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(1.6) f satisfy the uniqueness conditionintroduced in [1], 1.e. forany € > 0 thereisa é > 0
such that

(d(z, f(x)) <9, d(y, f(y)) <0) = d(z,y) <e¢

forany z,y €Y.

Now, by LU( E) we denote the set of all f € U(Y) where Y is a closed subset of E .
Moreover we will denote by C(E) (respectively by C ( E)) the class of all contractions
(respectively the class of all compact contractions) of E into itself.

Finally £, is the constant function of value a, [ f] 1s the equivalence class of f in LU(E)
and [ f]y the equivalence class in W .

In the sequel the following result, will be useful.

1.1 Proposition. Let ¥ (Y) € ), with ¥ C LU(E). Let us suppose that any f € ¥ s
uniformly continuous and that

(1.5) [£.]N¥#0 VYacE.

Then the following assertions are equivalents
(1.6) W is acompletion class of E,

(1.7) For every Cauchy sequence (a,) in E, there exists f € W such that
lim d(a,, f(a,)) =0.
n—00
Proof. First of all, we note that forany a € E and forany f, € ¥ N[£,] we have

(1.8) [fode = [INYW

Moreover the mapping
Jy : E — Wsuch thatJ,,(a) = [ f. ]

is an isometry of E in W . Here ¥ is the quotient metric space of (¥, o) with respect to

the equivalence relation (1.1) and J,, ( £') is a dense subspace of Wy

(a) = (b). If (a,) is a Cauchy sequence of E, then J,(a,) = :fan]q, is a Cauchy se-

quence in ¥ . Since W is complete, this sequence converges to an fly € ¥ . Therefore,
for a fixed f, € Jy(a,), because

5(LfuJwr [F)e) = 0(for )
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we have o( f,, f) — 0. Let us consider a sequence (z,) € S;. Since o(f,f,) — 0, as
follows from (1.2) there exists v € IN such that

nf limd(z,,z,) <e¢
(2,)€Sy, o M T )

for any n > v. Therefore if n > v there is an element (z}) of S, such that

lim d(z},2,) <e€.

k—o00
On the other hand f, € [faﬂ] and hence d(z},a,) — 0, when k — oo. Then, there exists
' € IN such that
d(z,,a,) < 2¢ Vn, k > V.

In particular d( z,,a,) < 2¢ forany n > V', and consequently d(a,,z,) — 0. The uniform
continuity of f implies the assertion.

(b) = (a) Itis necessary to prove that (¥, 3) is complete. In order to do this, considering

a Cauchy sequence ([ f.]) of elements of v J w (E) being dense in W it is possible, for
every n € IN, to fix [fﬂﬂ] € Jy(E) with fﬂ“ € [£, ] such that

o([f.).[f,D <27  VmneN

and it 1s obviously possible toreplace f, by &, . Since Jy, 1s anisometry, it follows that (a,)

is a Cauchy sequence in E, and then, by (b), there is a function f € ¥ such that (a,) € 5.

This implies [£, ] converges to [ f], and thus, since [£, ] = [ f, ], the assertion is proved.

2. NORMED SPACES

Given E anormed space, we are going to prove that C _( £) , the class of compact contractions
of E, is a completion class of E, i.e. the quotient space of (C ( £), o) with respect to the
equivalence relation (1.1) 1s a completion of E'. This result has already been stated in [1].

2.1. Theorem. Compact contractions are a completion class for normed spaces.

Proof. Let () be a Cauchy sequence of E which does not converge (the other case is triv-
1al). The function

(2.1) C(I)Ilirl;n”l‘—l"n[l T C E
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is such that

(2.2) le(z) —c(W|| <llz—yl|  Vz,yeE

First of all let us note that it is possible to extract from (z_) a subsequence (I"‘k ), with

z, := 0, such that

Q

1
(2.3) |z, — 2, || < SE and c(z, ) < 1Vk €N
: . |
so that the series ||z, ||+ ...+ ||z, -z, |[|+... converges toa positive number a < 5 -

Assuming now for k, n€ N

l n
S, =0 and S, =2 3 [l -

zk= - X, ,
2a ™ P
sothat im__, __ S, = 1, we have
Lo, 1[= | Sy S [
n=0

Every z € [0, I[ can be written in the form z = aS, + (1 — a)S,,; for a suitable k£ €
{0,1,...} and a suitable o € [0, 1]. Now we define v : [0, 1[ — E via

y(x) = az, + (1 - «:m.:):r:,ﬂ,mI

Let us note that v([0, I[) is the union of the segment joining the point z, With z
IN , and also that

“h:’ke

(2.4) v(z) =l <Lelz~y]  Vz,y € [0, 1.
In fact since S, — S, = 2||z4,; — 2|l k € N, if

=025, + (1 —-a)2S5,,,andy=p0£2S,+ (1 -pB)2S,.,
for ke N and a.3 € [0, I[, then

(25) *ln.f(I) o rT( U)H = H(& '“ ﬁ)InE + ()B o &)Ink,_, H

=a(S,.; - S)la—-3i=alr —yl,
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while if

Sk£I£Sk+1 ﬂyiskq;

because of (2.5), it follows that

(z) — (W < elz = 28|+ al]2S, — yl = alz —y|
and by this, reasoning by induction, we verify (2.4).

If we denote by 1 the extension of ~ to the interval ] — oo, 1[ obtained by assuming
¥(z) = 0 for negative values of z, then obviously (2.4) extends to the functions 1, and then

(2.6) |lv(2) —¥(W|| < alz—y|  Vz,y€] —o0,ll.

Now the application f : E — E defined by

(2.7) f(z) = 9(l —c(x)) Vz € E,

Is a contraction of E into itself. In fact, for £,y € E suchthat c(z) > 1 and c(y) > 1,1t
follows that

1f(z) = f(9)]| =0 < ad(z,y)

while if ¢(z) < 1 and 1 < c(y) we have

1f(z) = fF(PIl = a|lv(1 — c(2)) — Y(O)|] = a(] — c(x))
<a[(1 =c(z)) — (1 —c(y))] < aflz -y

for (2.1). Finally, for ¢(z) < 1 and ¢(y) < 1 again for (2.1) and (2.5), we have

1/(z) — f(| = a||y (1 — c(2)) — (1 — c(¥))]]

= alc(z) — ()| < aflz - yl|.

Therefore
|f(z) — f(PI| < allz —y|]|  Vz,y€E,

meaning that f is a contraction of E. It s still to be proved . in virtue of the theorem 1.1 that

(2.8) lim ||, — (z,)|| = 0
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Let us, first of all, observe that, assuming that f( Inp) belongs to the segment of end points

Lo, and 2NN

Iz, — F )N < Nl — Ty 1+ 12, — £(z,)]

< H‘Iﬂp o Iﬂkpll + ”I B I“kpﬂ [l < E

p

for p large enough, (Inp) being extracted from the Cauchy sequence (z,) . Thus it follows

(2.9) lim |, — f(z, )| = 0.

On the other hand, f being a contraction, we have

IlIn o f(In)ll g llIﬂ. o I%” * ||Inp o f(Inp)”
+||f(Inp) o f(In)” E‘; (l + ﬂ')HInp o In“

+||‘Inp o f(Inp)”

from which (2.8) follows, remembering (2.9) and that (z_) is a Cauchy sequence. The the-
orem 1is thus proved.

In his paper [5], J.M. Borwein characterized with the contraction property the complete-
ness of the uniformly Lipchitz-connected metric spaces and in particular therefore, of the
normed spaces: this property consists in the fact that every contraction of the space into itself
has a fixed point. The proof of the theorem 2.1, which is an adaption of C. Bessaga’s tech-
nique (see [4]), for the construction of the cancelling homeomorfism in non-complete normed
spaces (and it can be extended to uniformly Lipschitz-connected metric spaces) is preferable
for the construction of the completion of the space with the method introduced in [1], being
intrinsic to the non-complete setting of the space. J.M. Borwein also proved that there are non
uniformly Lipschitz-connected metric spaces which have the contraction property but which
are not complete. Thus it is not possible to complete all metric spaces with contractions: we
will see from the following example 2.2 that this occurs also with the class of the functions
that satisfy the uniqueness condition, which is generally noticeably greater than that of con-
tractions. We also note that the completion by means of local contractions (thus defined in
closed subspaces and at values in the subspaces themselves) is certainly possible for every
metric space as we can see from the interesting result of T.K. Hu [10]. The same is valid for
the diametral-contractions, as follows from the work of M.R. Taskovic [19].
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2.2. Example. Let us consider, in the plane provided with the Euclidean metric the set (cf
[5], Ex. 4)

(2.10) c=|J L,

keIN

L, being the closed segment having as end points the origin O and the point A, (1,2 %),
supplied by induced metric.

We prove that The metric space (U(C), o) is not a completion of C. Let (P,) a non-
convergent Cauchy sequence of elements of C and let f be a continuous function of E into
itself verifying the uniqueness condition and such that

(2.11) lim d(P,, f(£,)) = 0.

Obviously, ( P,) cannot be eventually included in any of the L, segments (otherwise it would
converge to an element of such segment). On the other hand, because ( P,) does not converge
to O, there exists a neighbourhood of O which does not contain a subsequence of (P,);
since ( P,) is a Cauchy sequence, it follows that there exists a positive number é such that
0 < z,Vn € IN,z, being the abscissa of the point P and therefore for every n € IN6 <

d(P,,0). Now f(0)+# 0 because f € U(C). Supposing f(0) € L,, and setting
Y ={X € L,ld(d(X),A,) <d(X,A)}
Y ={X € L,ld(d(X),A,) >d(X, A,)}

we observe that these are non empty, closed subsets of L, because 0 € >, and A, € > _,
and the function ® : L, — R defined by

Q(X)=d(f(X), A4,) —dX. A4,)

is continuous. As L, is connected, it follows that >, N) _ # ¢. Therefore f has a fixed
point P(z,y) In L, and necessarily 0 < y, as P70 . We now observe that because the
Cauchy sequence is not definitively contained in any of the segment L it follows that

lim d(P,, P) > y.

and, on the other hand, from the (2.11) for any positive r, and for n large enough one has
P, € S;,andP € 5,

so 1t follows that
0(S;,) 2 v.

against the hypothesis that f € U(C). Then the hypothesis (2.11) would be absurd, theretore
U(C) does not complete (.
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3. NEGLIGIBLE SETS

The following example emphasizes how not all dense subsets of a metric space behave in the
same way with respect to the classes of completion.
3.1. Example. If C is the space of Ex. 2.2, defined by (2.10), we consider the subspace
C*=C—{0}. Then U(C*) completes C*. In fact, if P, = (z,,,2 %zx,) € L, is Cauchy
sequence of elements of C* that does not converge in C*, the possible cases are:

(a) z, — 0,thatis (P ) converges at the origin;

(b) 3e>0,dheN,IvEN, Vo >v:.z, >aand P, € L;;

(¢) neither (a) nor (b).
Case(a) . One can consider the function f : C* — C* such that f(P) = P'(z/2,y/2) €
C* forany P(z,,y) € C*.

This is a contraction of C* and satisfies the required property.
Case(b) . In this case the sequence ( P,) obviously converges to a point () € L, , therefore
one can consider the constants contraction f(P) = Q,P € C*.
Case(c) . Let us observe first that

VkeN,In, e N, Vu>n :P €C"' - U L,
h<n,
otherwise ( P,) would converge to an element of L, for a suitable 4 < n, and therefore we

would be still in the situation found in case (b). This implies that 2 %z — 0 and as z_
cannot converge to zero, it follow that the sequence k, diverges, so we can extract a strictly
increasing subsequence g, . Now let us consider f : C* — C* defined setting for every
ne N

f(Py=p,  VPEL,

We note that f is continuous, but not uniformly continuous because points which are very
near on different segments are transformed into P, at finite distance (therefore f is not a

contraction). On the other hand it is clear that d( P,, f(P,)) — 0, leaving us still to prove
that f € U(C"). Now for every positive »r we have

S, = JB, ., nnL,)
o :

where, with B(z,r) we denote the closed ball with the centre at r and radius r. Since the
sequence does not tend to 0, there exists v > 0 such that forevery n€ N z_ > «, and so

considering the point P"*(«.27%~) of the segment L, ,to which P, belongs,

d(P, . L,) > d(P¥.L,) =~]1 -2"%ai(1+ 22hy-3

-
C.n > 0.



132 Pancrazio Amato

We note that ¢, is the distance of the segments LY and L), L] being the part of L, made

up of points having abscissa z > <. In particular for A = n, setting ¢ = Clh , we have
C, <d(F, ,L,) YneE N

Therefore if r > 0 is taken small enough

S;, C | J(B(P,,)NL,).

ngr

It follows that 6(S;,) — 0 when r — 0, also considering that
8(B(P,,TYNL,) <27 Vne N.

Therefore U(C*) completes C*.

3.2 Definition. Let W(Y') be acompletion class of (E,d) and K asubsetof Y. K issaid
to be W -negligible if W (Y — K) is acompletionof (F,d).

In the following theorem it appears that compact subsets of an infinite-dimensional normed
space, with respect to the completion through compact contractions, have a role similar to
that of the «negligible» sets introduced by C. Bessaga in [4], in order to generalize a result
established by V. Klee [13], R.D. Anderson [3].

3.3 Theorem. If K is acompact set of an infinite-dimensional normed space E, then C ( E—
K) is a completion class of E.

Proof. According to the Mazur theorem, co( K'), the convex hull of K, 1s compact and E
being infinite-dimensional, co( K') has an empty interior (see Riesz’s Theorem). Then if we
take a Cauchy sequence (z_) of elements of K, we can find a Cauchy sequence (y,) of

elements of £ — co( K') such that d(z_,y,) — 0. In fact for every = the ball B(z,,1/n)
contains points of £ — co( K') ; therefore we can consider y. € (E — co( K)) such that
d(z,.,y,) < (1/n). Having fixed such a y_, and denoted by o Kuratowski’s measure of

non-compactness (see K. Deimling [7]) it follows that

a(co({y,} Uco(K))) = a({y,} Uco( K))
=max{a({y,}), a(K)} =0,

that is the cone K_ which projects co( K') from y,_ isalso itself compact. Therefore B(z,,,,
I/n) — K_# 0 and taking one of its elements y_,, it follows that the segment of the end
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points y, and y_,, does notintersect K because K C K . Clearly, in this way we construct
a Cauchy sequence (y,) of elements of &£ — K such that

D) d(2,,9,) — 0

2) co({Yn,¥s1 ) CE—K  VYneN.

Proceeding as in the proof on the theorem 2.2, we can construct a contraction f : E— K —

E — K such that d(y., f(y,) — 0, as claimed.
3.4 Corollary. Compact sets of an infinite-dimensional normed space are C -negligibles.

3.5 Corollary. Finite-dimensional flats of any infinite-dimensional normed space are C -

negligibles.
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