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QUASINORMABLE SPACES OF HOLOMORPHIC FUNCTIONS

SEAN DINEEN

Quasinormable spaces were introduced  by Grothendieck [34] as a collection of spaces,
with good stability properties, which included  all Banach spaces and al1 nuclear spaces (a
recent article of Meise-Vogt  [44] quantifies this statement in an elegant fashion for Fréchet
spaces). Quasinormable spaces in which the bounded sets are precompact are called Schwartz
spaces and form a more restrittive but even more stable  class of spaces (they are closed under
the formation of arbitrary  products and quotients).

In this article we study these properties on space of holomorphic tùnctions with the three
standard topologies of infinite dimensiona1 holomorphy, rO,  T, and r6.  In the presente  of
one or more of a variety  of countability conditions on the underlying locally convex space
we found that the spaces of holomorphic functions tumed out to be either quasinormable or
Schwartz spaces. The compact open topology, T,, , and nuclear spaces both enjoy intrinsic
compactess properties and in these cases (9 1 and 2) we found it possible to study directly
the Schwartz property.  For the rO  topology our countability conditions were-each compact
set is contained  in the absolutely convex hull of a null sequence, sequential completeness,
and each null sequence is Mackey null. We only considered the ru, and rs topologies on
nuclear spaces as the result for the compact open topology is well known and we assumed the
existence of a basis and a property which can be compared on the one hand to the defining
property of A-nuclear spaces and on the other hand to the sequence space characterization of
Schwartz spaces. TO obtain general results  for the ~~  and T& topologies we used countable
neighbourhood systems (in Fréchet spaces) and countable systems of bounded sets (in Dr
spaces) together with S-absolute Schauder decompositions of holomorphic function  spaces
on balanced domains.

In all cases we found new results  which both simplified and contained  known results  and
which suggest further possibilities towards the realization of a more unified theory of locally
convex space structures on spaces of holomorphic functions  on infinite dimensiona1 domains.

1. BASIC DEFINITIONS AND THE SCHWARTZ PROPERTY
FOR THE COMPACT OPEN TOPOLOGY

We let E denote  a locally  convex space over the complex numbers C and let cs(  E) denote
the set of all continuous seminorms on E. We refer to Grothendieck [34,  351 and Horvath
[37] for properties of locally  convex spaces and to Dineen [23] for holomorphic functions on
locally  convex spaces.

If U is an open subset of a locally  convex space E we let H(U) denote  the space of
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al1 C-valued holomorphic functions on U and let H,,(U) denote  the set of al1 C-valued
Gteaux  holomorphic functions on U which are continuous on the compact subsets  of U.
The compact open topology on 7-L,& U) and 31(U) is denoted by r0 . A seminorm p on
K(U)  is called r- continuous if there  exists a compact subset K of U such that for every
open subset V of U containing K there  exists c(V) > 0 such that

P(f)  I CwNfll”

for every f in E(U) . In this case we say that p is ported by the compact set K.  The Tu
topology is the topology generated by all rw continuous seminorms on ‘H(U) . A seminorm
p on ‘H(U) is Tu continuous if for any increasing countable open cover of U, ( V,),$‘,  , there
exists a positive integer q, and C > 0 such that

P(f)  I Cllfllv,

for every f in H(U) .
The 76 topology is the topology generated by all r6 continuous seminorms. We always

have rc < 7, < r6. For any positive integer n we let P(nE)  denote  the space of (con-
tinuous) C-valued mhomogeneous  polynomials on E. On P( “E) the topologies ru and

r& coincide. If U is a balanced open subset of E and f E H(U) we let c n!Oo  d”f(O)  de -
%=O

ci”fWnote the Taylor series expansion of f at 0. We have  I E  P(“E)  for all TL We let
71.

S = {(an)~,;an E C and hm SUP~+~]~~]‘/~  2 1).

Definition 1.1. ([23,  p. 1141)  A Schauder decomposition {E,,},  of a IocaIly  convt~~  space
E is  called an S-absolute decomposition ifthe  jòllowing  conditiom are satisfied;

(1.1) far  WYex,, E E,q, E E,,all  n,and(Q, E  S theserie.seq,x,  E  E,
n=l ?Fl

~fp  E  cs(  E) and ( CY,),  E  S then the seminorm

( 1.2) P 5%( ) := 2 b”lP~X”~
n=l ?t=l

x, E  E,,  al1  n, belongs to cs(  E).

Example 1.2. ([23,  chapter 31)  If U is a baianced open subset of a locally  convex space E

then  {(W”E),  d)Z, is an S-absolute decomposition for (31(U)  < T) where r = r. ,7;,
or r&.  The expansion used to obtain this decomposition is the Taylor series expansion at the
origin.
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Example 1.3. A subset B of a domain  U in a locally convex space E is said to lie strictly
inside U if there  exists a neighbourhood V of zero such that B + V c  U.  If U is an open
subset of a locally convex space we let 3ib( Cr) denote  the subspace  of 3-1( U) consisting of
those functions which are bounded on the bounded subsets  of B which lie strictly inside U.
We let /3  denote  the topology on KH6( U) of uniform convergente  on these sets. If U is a
balanced domain  in a locally convex space E then {( ‘P( n E) , /3)}:, is easily seen, by the
methods employed to obtain the result given in example 1.2, to be an S-absolute decomposi-
tion  for (Xb(  U),  /3).  For further information regarding this space we referto [2,  32,33,  38,
391.

TO simplify  notation  when considering  holomorphic fiutctions  on balanced domains we

shall, unless there  is some possibility of confusion, write f = 2 P,,  as the Taylor series
n=O

~fWexpansion at the origin  where P,,  = I E P(  n E) and, we may ofien suppose we are

dealing with seminorms on the fùnction Space F which satisfy

P cpm =gP(P,)( )>r=O R O

forany eP,  in T.

We now define  quasinormable spaces.

Definition 1.4. ([34,35,  371)  A locally  conxx  space E is  quasinormable iffor every neigh-
bourhood U of 0 in E there  exists a neighbourhood V of 0 in E such  that for al1  X  > 0
there  exists a bounded subset  M, of E with

( 1.3) vcA4,+HJ

Clearly it suffices to consider  U and V from a fundamental neighbourhood basis system
and in terms of seminorms we may rephrase (1.3) as follows.

E,  a locally convex space, is quasinormable if for every p E cs( E) there  exists Q E
cs( E) such that for any X > 0 there  exists a bounded subset M, of E with

( 1.4) {zEE;q(z)I  l}cM,+{~EE;pWS~)

When a seminorm q  satisfies (1.4) with respect to the seminotm  p then we shall say that
q  is associated  with p. If p,  and p2 are equivalent seminorms on E then q  E  cs( E) is
associated  with p,  if and only if it is associated  with pz  .
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Definition 1.5. A local ly  convexspace  E is  aschwartz  space ifandonly  ij2t  is  quas inormable
and i t s  bounded se ts  are  precompact .

The following proposition gives two further characterizations of Schwartz spaces (the first
is comparable  with (1.3)).

Proposition 1.6. [34,  35, 371  A locally convex  space E is a Schwartz space ifatui  only if
ei ther  of  the fol lowing equivalent  condi t ions are  satisjìed.

(a) For evety  p E  cs(  E) there  exists q E  cs(  E) , q 2  p, such thatfor evety  X > 0 there
exists a precompact subset K,  of E satisfiing

( 1.5)

(b) For every p E  cs(  E) there  exists q E  cs(  E) , q 2  p, such that if {z,,},.,  c  E, q( z,,)
5  1 al1  n, then {x,},  contains  a pcauchy  subsequence.

‘DF spaces (and in particular Banach spaces) are quasinormable and a Fréchet-Monte1
space is quasinormable if and only if it is a Fréchet-Schwartz space.

For the next theorem we need the following two conditions on a locally convex space E.
(1.6). Evety  compact subset  of E is contained  in the closed absolutely convex hull  of a null
sequence.

(1.7). Every null  sequence {x,},  is Mackey null, i.e. there  exists a sequence ofpositive rea1
numbers (X,),  such that X, --+  +CCI  and X,,x, + 0 as n --t  00.

A locally convex space which satisfies (1.7) is said to satisfy  the Mackey condition. If for
every absolutely convex bounded subset  A of a locally convex space E there  exists another
absolutely convex bounded subset B of E such that En, the vector subspace  of E spanned
by B and normed with the Minkowski functional of B, induces  its origina1 topology on A
then we say that E satisfies the strict  Mackey condition. If E satisfies the strict Mackey
condition then E satisfies the Mackey condition. An infi-abarrelled locally convex space is
quasinormable if and only if its strong dual satisfies the strict Mackey condition ([34, p. 1061).
It is well known that Fréchet spaces satisfy  both (1.6) and (1.7).

An induttive limit ( E, T) = lim ( E,,  7,)  is said to be compactly regular  if for each com--
(rEA

pact subset K of E there  is an (Y in A such that K is contained and compact in ( E0,  Tu)  .
Compactly regular induttive limits of spaces satisfying  (1.6) and (1.7) also satisfy  both con-
ditions. In particular strict and compact induttive limits of Fréchet spaces satisfy  (1.6) and
(1.7). From this and some known results  it is easy to see that DFM spaces satisfy  (1.6)
and (1.7) if and only if they are DFTS spaces. For further  details and examples we refer to
Bierstedt [7]  and Floret [30].

IfE isaBanachspaceand  PEP(“E)  welet J~P~~=sup{~P(x)~;~~x~~~  1).
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Lemma 1.7. Let  P E  P(“E),E  aBunuchspuce.  IfllyII  2  1 and 115  - yll  < 1 then

P(s) - P(y)1 < n(2e)“lIPllll~  - YII

Proot:  Let A denote  the unique symmetric Ainear  form associated  with P .

It is well known that llPl[  2  /[AlI  := supIIZiII,,  IA(s,,  . . . ,x,)1  < e”jlPII.  We have

P(z)  - P(Y)1  = IP(Y + 5 -Y) - P(Y)1
n

=
c()j=l

; A( z - y)‘(y)“-’

I IHI . 2 (7) 115  - YII~IIYII”~
j=i

I e”llPll((llyll  + llz - YII)” - llyll”)

I 4lPllll~ - yll “IWn’lI” - dl+ IIYII)’
-

= n(2e)“llPllll~  - yll.

The following theorem extends results  of Nelimarkka [54, corollaries  3 and 41.  We let r ( A)

and r(A) denote  respectively the balanced convex hull and the closed absolutely convex
hull of the subset  A of the locally convex space E .

Theorem  1.8. Let E denote  a sequentially complete Ioca&  comuzx  space satisfiing  (1.6)
and (I. 7). tf U is un  open subset of E then (‘H(  U) , rO ) is a Schwartz space.

Proof  Since the compact open topology is a loca1  topology and products and subspaces of
Schwartz spaces are Schwartz spaces it suffices, as in [54, proposition 11, to consider  the case
where U is a convex balanced open subset  of E .

Let K denote  an arbitrary  compact subset of U and let {E,}, denote  a null sequence in E

such that K C r( {x,},)  c  U . By (1.7),  we can choose  a sequence of positive real numbers
(X,), such that X, -+ 00 and X,,X,  + 0 as n -+ 00.  Since E is sequentially complete

we may suppose without loss of general@ that r( {Xnz,},) is also a compact subset of U.

Choose cy > 1 such that ii := crr( {X,,z,},) is again a compact subset of U. For f in
K(U) we let

Illflllrì=g 9
Tb=0 Il Il I-c
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If f E H(U) and jllflll~  < 1 then for each positive integer m

Se&  Dineen

By restricting q
m.

to the subspace  of E spanned by R, ER, we obtain an element of

P( m Eg) when Eg is endowed with the norm whose unit ball is I?. If z E r( {z,},)  , y E

K and 0 5 S 5 1 then lemma 1.7 implies

( 1.8)
@f(O)
m!( 5 + 6y) - q(5) 5 m(2e)m6.

m .

Let ( f,), denote  a sequence  in H(U) satisfying  111 f,jllk  5 1 for all n.
By taking subsequences and using a diagonal process,  if necessary,  we may suppose that

converges  uniformly as n + 00 on the compact subsets  of sp{s, , . . . , zl}

for all m and”l.  TO complete the proof, it suffices, by proposition 1.6(b) to show that

Ilf, - fmllK + 0 as n,m -t 03

Let e > 0 be arbitrary.  For all n we have

00

= II# 1 drnfn(  0)
m .1m=O Il i Illfnlllf?  I  l.

K

Hence, we can choose m, such that

(1.9)

for all 72.

Letc’=m-, c .
0

Now choose 1 such that X, 2 f for all n > 1. If n > 1 then

c m(2e)”
TlJ=I

? E i=( {Xnz,},)  and CC, E E’K.
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If 711 1 then 5,  E r( {CE,};,  ) . Hence

(1 .lO) K c F({s,},  c R<qJff,) + E’k

Hence, we can choose n,, such that

(1.11) Il @f,(  0) _ ~mfkw &-m.1 m.I Il hsp{z, ,...,Lq} m0

161

form=O,I ,...,  mo-1 andalln,k>n,.
Let TZ,  IC 2 TI,, and z E K be arbitrary. By (1. IO) we have LT = y + E’Z where Y E

i=( {CC,}>, ) and z E fI-. Then

(hl .9)

m,-1 -m

+

4m=O

d ;n!O’ (y) - @;!o’ (Y)

+ m”-’  &fk(  0)

cl
m! (y) -

“yo’  (y + 2%)  + 2 CZ
m=O

((1.8)and(l.l1))
m,-l m,--1

<2 C m(2e)me’+  C &+2c
m=l m=O

<2c+c+2c=5E.

Hence  Hf,,  - fkllK 55 fE or n, IC 2 q, and this completes  the proof.

2.NUCLEARSPACES
In this section we consider entire  functions on certain  fully nuclear spaces with basis. If U
is an open subset of a dual nuclear space then a result of Boland [IO] and Waelbroeck [56]
says that (31( Cr),  Tu) is nuclear and hence Schwartz. For this reason we only consider the
rU,  and T-~ topologies in this section. A locally  convex space which is reflexive, nuclear and
dual nuclear is called fully nuclear ([Il], [23,  chapter  51).  lf E is a fully nuclear space with
basis then E x A(P)  where P is a set of weights. The Grothendieck-Pietsch criterion for
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nuclearity then says that for all (CV,), E P, there  exists (p,), E P, and (u,),  E 1, such
that

(2.1) a, 2 [unI& for all 72.

A sequence  space E x A(P) is called A-nuclear ([24])  if there  exists (S,),,  6, > 1 and

< 00 such that

(2 3 (cy,),  E P implies (<Y~SJ”  E P.

Comparing (2.1) and (2.2) we see  that A-nuclear spaces are nuclear and satisfy  a «uniform»
Grothendieck-Pietsch criterion. By [24], (?t( E) , 7,) and (‘H(E) , r,,) are nuclear spaces
when E is a reflexive A-nuclear space (reflexive A-nuclear space are fully nuclear). Hence
we obtain the Schwartz property in these  two cases.

TO obtain new results we define  a class  of spaces satisfying a property intermediate be-
tween (2.1) and (2.2) and which may also be compared with the following characterization of
Fréchet-Schwartz spaces; a Fréchet space E = A(P) is a Schwartz space if and only if for
all (Q~)~  E P there  exists (p,),  E P and (7n)n  E cg  such that

(2.3) cy, I: [7,]@, for all 72.

Defi nition 2.1. A C-nuclear space E is  afully  nuclear space with basis A(  P) which satisfies

the foIlowing  condition; there  exists 6  = ( 6,),  , ti,  > I and
1

( >
7
42  n

E  c,,  such that (cy,),  E

P implies  (b‘,ff,),  E  P.

Our methods are based on monomial  expansion and we now briefly recall some definitions
and results in this direction. If m = (m,)?, E N ( N, (the set of sequences of non-negative

00
integers which are eventually zero) and (z,), E A(P) we let zrn  = n  22. We also denote

n=l
by z”’ the mapping

(qJn  E  A(P) + zm.

Since  .zm is a product  of continuous coefficient  functionals  it is a homogeneous polynomial

of degree Irnl  = 2 m,. If A(P) is a fully nuclear space with basis then {z~},~~,,~,
TL=1

forms an absolute basis for (H( A( P)) , 7,) and an unconditional equicontinuous basis for
(?t(r\(P)),~~).  lffEE(A(P))  wewrite
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and cali this the monomial  expansion of f. The coefficients  a,, m E NtN) are given by th

Cauchy integra1  formula over finite dimensiona1 polydiscs.

Proposition 2.2. Let E = A(P) denote  a C-nuclear space with 6  = (6,)”  dejìning C
nucleariv. if

f(z) = c a,z’” E 7-Q E)
meN(J”)

t h e n

g(z) = c u,,,6;“‘~~  E  H(E)
m~N(f-”

lf p is  a rW  continuous seminorm on R(E)  then 3 defined  by

13  (EN,  %d-)  := EN,  l%lbmP(zm)

is  a r,  continuous seminorm on H(E) .

Proof  The mapping (z,), E A(P) -t (6,~~)~ E A( P) is a linear topologica1 isomorphisn
Hence its transpose

VEH  -+fob~H(E)

maps 7-t(E)  onto X(E) .
I f

f(z) = c a,z’” E H ( E )
mcN’N’

then
f 0  6(z) = C a,(6z)m  = C a,Smzm  = g ( z )

meN’N’ rn~N’~’

belongs to li(E) .

Since the monomials form an absolute basis for H(E) the seminorm

is Tu, continuous. Since the linear topologica1 isomorphism mentioned above maps compac

sets onto compact sets and neighbourhood systems (of compact sets) onto neighbourhoo
systems (of compact sets) it follows that the mapping f -+ p, ( f o 6) defines a T,  continuou

seminotm  on ‘H(E) . Since

Pl(foN  = C la,lp((~z)m)  = C lamlbmp(zm)  = P(f)
rnEN’“’ ,,,E/.,‘“’

this completes  the proof.



164 Seh  Dineen

Theorem 2.3. ff E is  a  C-nucleur  space then (‘H(E), 7,)  und (3c( E),  Tu)  are  Schwurtz
spaces

Proof We fìrst consider  the T, case. Let p denote  a T, continuous seminorm with closed
unit ball U. We may suppose without loss of generality that

P (*gN) arnz*)  = *,, lamMzrn).

Let

and let

Q (,,) a*z*) = *,,  l~*l~*P(Z*)

V={fE’H(E);q(f)  i 1).

If X > 0 we can choose  J finite in NcN) such that & < X if m @ J.

Let

Since q  2 p it follows that B, is a compact subset of (Ff(  E) , 7,)  .

lff= c a,z” E H(E) and q(f) 5 1 then
msN(N)

f = C a,zm + C amzm.
rnE.lmd
Pc~*)fo

lD#JOT
p(P)=0

We have q

( 1c a,zm
rnEJOT

p(P)=0

5 1 and

c amzm

m$zJoT
,p(P)=O 1

= c bmIP(Zrn) = c ~la,l6*p(z*)
*GJ *éJ

5  X C lam16*p(zm) 5  X.
dJ
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Hence

{f E WE); q(f)  I 11 c  4 + {f E WE)iP(f)  5 J+)

and proposition 1.6(a) implies that (K(  E) , 7,) is a Schwartz space.
We now consider  the r, topology. Let U denote  the closed unit ball of the ra continuous

seminorm p which we may suppose has the form

This implies, in particular,  that

if lb,l 5 Ia,1  forall  m in NcN).
Since the mapping

(qJ,,  E E -+ (4,z,),

maps increasing countable open covers of E onto increasing countable open cover-s  of E it
follows that

also defines a 5 continuous seminorm on K(E) . With the same choice of B, and q as in

the rw case the proof is completed  by noting that, if q

3. FRÉCHET SPACES

TO prove quasinormability results on Fréchet spaces we use the following abstract results. A
minor variation will also be used in the next section.
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Theorem 3.1. Let {E,  }k  , denote  un  S-absolute  decomposi t ion of  the  Iocally  convex  space
E .  fl

(3.1) E,,  is  quasinormable for al1  n,

(3.2) for any sequence ( p,),., , p,  E  cs(  E,,)  , there  exists  a  sequence

ofpositive real  numbers (Q,such  that  p :=  2  (~,p, E  cs(  E)
n=l

then E is  quasinormable .

Proof:  Let p = cp,,  E cs( E) . For each positive integer n there  exists, by (3.1),  a q,,  E
n=l

cs( E,,) associated with p, . By (3.2) there  exists a sequence of positive real numbers (cy,),
such that q  := Cg,  a,q,  E  cs(  E) .

Let

G ex.
( )

= jJw7n(x,)  + Cn’p,(z,)
n+l n=I RI

for 2 x,  E E. Since {E,,}:,  is an S-absolute decomposition it follows  that q E cs( E) .
n=l

We now show that G is associated with p. Let X > 0 be arbitrary. Choose n,, , a positive

integer, such that i 5 g. If x = 2 z, E E and a(x) 5 1 then
n=l

By (1.4) there exists, for each n. a bounded subset M, of E,  such that
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Let M = c s.  Then M is a bounded subset  of E.
n=l  %

Moreover, if x, E E,,  and,

5 1, then q,(x,) 5 1 and x, E 5 + y, E En; p,,( y,) 2 -
n n

CM+ y~E;p(y)<;

Hence  {X  E  E; G(X)  5  1) c  M + {x E  E; p(x)  2  X}  and E is quasinonmble.  This
completes  the proof.

Remarks 3.2. (a) If E is quasinormable then (3.1) is satisfied.
(b) Condition (3.2) is similar to the countable neighbourhood property (c.n.p.) introduced

by Floret [30]. A locally convex space E has c.n.p. if for every sequence (p,),,  p, E cs( E) ,
there  exists a sequence of positive real  numbers ( LY,),  and p E cs(  E) such that cy,p,  < p
for all n. If E has c.n.p. then it satisfies (3.2) for any S-absolute decomposition. Futther
properties of locally convex spaces with c.n.p. may be found in Bonet [ 131  and Dierolf [20]
and for applications to infinite dimensiona1 holomorphy we refer to Colombeau-Mujica [ 171
and [23, corollary 2.301.

(c) Let 7,  and rZ  be two locally convex topologies on E and suppose {(E,,,  T,)}:,  is
an S-absolute decomposition for (E, r,), i = l,2 . If 7,  < rZ  and 7,  IE, = rZ  IE”  for all n

then (E, ~~7) satisfies (3.2) if (E, 7, ) satisfies it. This is the case for the 7, and ~~  topologies
on 31( U) , U a balanced domain in a locally convex space.

(d) If (K,), is a sequence of compact subsets  of a Fréchet space E then there  exists a

sequence of positive real  numbers (cy,),  such that U LY,K, is a compact subset  of E (see
n

for instante [35, p. 1561).  This fact  and theorem 3.1 can be combined to reduce the proof of
theorem 1.8 for Fréchet spaces to the homogeneous polynomial case.

The following theorem is due to Bierstedt-Meise [S,  proposition 161  for 7 = r, and E

a Fréchet-Schwartz space (see  also Nelimarkka [53, corollary 4.31  for a proof using operator
ideals) and to J.M. Isidro  [40] fora Banach space and 7 = ~~  or Tu.

Theorem 3.3. lf U is  a balanced open subset  of a Fréchet space then (7-l(  U) , r)  is  quasi-
normablefor r = rw  or r6.
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Proof:  Since (P( “E) , 7,) = (P( “E),  r6)  is a countable induttive limit of Banach spaces it
is quasinormable [35,  p. 1771  and condition (3.1) is satisfied by the S-absolute decomposition
{(‘W”E),Q>;, of(WW,d,T  = 7, or Q. By remark 3.2(c) it suffices to complete
the proof for r = r,,,  .

Let ( V,,);,  denote  a decreasing fùndamental neighbourhood system at the origin  in E.
Let p, E cs( (P( “E) , 7,)) for each non-negative integer n. For any pair of positive integers
n and m there  exists cn( V,)  > 0 such that

forall P,,  E’P(~E).
Without loss of generality we may suppose that the sequence { cn( V,)  }m=, is an increas-

ing sequence for each n. Let CY,
1

= - for all n. Then
cn( VJ

%P,(P*)  I ~llPnllvm  I  IIpAl”,” n

for all n 2 m and all P,,  E P( “E)  .

Let p = 2 o,p,,  and suppose 2 P,,  E H(U) . If m is any positive integer then
F O Tl=0

P fj&
( 1

m-’  c (V )
5 5 ~llP”ll”~ + 2 Il~nllv,

n=?n

5 sup,<n<m  +f .e IIp&,.--(  >n 7% X=0

A simple application of the Cauchy inequalities shows that p is ported by { 0 } and in partic-
ular it is rw  continuous and (3.2) is satisfied. This completes  the proof.

TO give a corollary  to the above  theorem we need the following lemma. This lemma could
also be used to shorten the proof of theorem 1.8 and it also clear that a general theorem of the
same kind is true for any S-absolute composition.

Lemma 3.4. lf U is  a balanced open subset  of a locally  convex space E and r =  r. , rUf or
r6  then the  fol lowing are  equivaient
(a) the bounded subsets  of (?i(  U) , r) are precompact,
(6) the bounded subsets  of (P( n  E) . r) are precompact for evev non-negative integer n.

Proof:  Since (P( “E) . T) is a closed complemented subspace of (R( U) . T) it follows that

(al =+  (6).
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Now suppose (b) is true. Let B denote  a bounded subset of (‘H( U) , T) and let p denote
a r-continuous seminorm on 3c(  U) . We may suppose without loss of general@  that

Let B, = *f(O)-;fEB .112. 1
It is easily seen that B, is a bounded subsets  of (P(  “E) , T)

for al1 12.
Let E > 0 be arbitrary. For each n there  exists a finite subset F,  of P(  “E) such that

B, c F, + {P E P(“E);p(P)  I $}.

Let

Since {( ‘P( “E) , r}gO is an S-absolute decomposition for (‘H(U) , T) it follows  that 5 is
r-continuous. Now choose  q, , a non-negative integer, such that

“Mc
“‘b

2 < E where M = ;tg p( f)

Let

Since each F,, is finite F is also finite. If f E B then p

Hence

{

141-I
B c F +  fEWU);p(f)i  c$+c cF+{fO-W);p(f)~3~}

TI=0

and this complete the proof.
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Corollary  3.5. If U is  a balanced open subset of a Fréchet space then the following are
equivalent
(a) rO  = rW  on ‘P( n E) for al1  n,
(6) (P(  n  E) , 7,)  is a 03%2  space for al1  n,
(c)  7.  = rw  on H(U),
(d) (?i(  U) , 7,)  is a Schwartz space,
(e) (3-1(  U) , r6)  is a repeXive  Schwartz space.

Proof:  The equivalente of(a) and (c) is given in Ansemil-Ponte [4].  For atty positive inte-
ger n, (P(  “E) ,T,) is an infrabarrelled DT  space and (P( “E)  , ro)  is a semi-Monte1 space.
Hence ( a) =+ ( b) . Since (H(V) , Tu) is a complete barrelled  space and (‘H(U) , 7,) is com-
plete, theorem 3.3 and lemma 3.4 show that (d) and(e) are satisfìed if and only if (P( “E) , 7,)
is semi-Monte1 for all n. Hence (b), (d) and (e) are al1 equivalent. TO complete the proof we
show that ( 6) + (CI).  Let (EI,);=,  denote  a fundamental sequence of convex balanced
bounded closed subsets  of (P( n E) , 7,)  , n a non-negative integer. If (b) is satisfied then
each B, is Tw-compact  and since 7w  2 7. it follows that rwlB, = 7.  jB, for al1 m. Now
(P(“E)  , Tu) = Ii?  B, in the categoty  of topologica1 spaces and continuous mappings [50].

Hence 7.  2 Tu  on P( “E) and since we dWayS  have  Tu  2 7.  this imph  Tu  = 7.  on
P( “E) . Hence ( 6) + (a) and this completes  the proof.

Any Fréchet-Schwartz space satisfies the conditions of the above  corollary  [ 11,42,50,5 11
and if the conditions are satisfied by a Fréchet space then this space must be Fréchet-Montel.
For Fréchet-Monte1 spaces we have negative [5]  and positive results [4,26,3 11. A survey of
results conceming the coincidente of 7.  and T,  on spaces of holomorphic functions is given
in [ 11.

We now consider  holomorphic functions of bounded type on a balanced domain  in a
Fréchet space (example 1.3).

Proposition 3.6. u U is a balanced open subset  of a Fréchet space E then ( ‘Hb(  U) , /3)  is
quas inormable  lfand  only lf ( P( n  E) , B) is quasinormable for each  integer n.

Proof:  By theorem 3.1 it suffices to show that (3.2) is satisfied by the S-absolute decomposi-
tion {( ‘P(” E) , /3)}zo of ( 3ib( U) , ,f3)  . Let p, E cs(  (‘P( n E) , p)) for each positive integer
n. For each n there exists a bounded subset II,,  of E such that

P”(P) I IIm3, for all P E  P(“E)

By [35,  p. 1561 there exists a sequence of positive real numbers (X,),  such that B :=

U X,B,  is a bounded subset of E. On multiplying by a scalar if necessary we may sup

pise B is a strictly bounded subset  of U.
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T h e n

P(pp)  :=fjp11,

defines a p  continuous seminorm on 7&(U)  . Moreover,

2fuYIl Il12. I
B

171

Oo  &f(O)
for all C 7E 7-LH6(  U) and hence 5 X:p,  is a &continuous seminorm on KHb(  U) .

FO WO

Hence  (3.2) is satisfied and the proof is complete.

Example 3.7. If E is a normed linear space then (P( “E) , ,Q is a Banach space and hence is
quasinormable. Proposition 3.6 implies that (&,( U) , j?)  is quasinormable for any balanced
open subset  of E. This result is due to Ansemil-Ponte [2] for convex balanced domains and
to Isidro  [39] for balanced domains. If E is a distinguished Fréchet space with absolute basis
and U is a balanced open subset  of E then ( XH6(  LT),  /3) is quasinormable. This result and
further examples arose  in a different context and will  appear in [27].

4. CB AND CL= SPACES

In this section we consider holomorphic functions on various countable induttive limits of
Fréchet spaces (CF  spaces) and Banach spaces (CZ3 spaces). The situation for compact
induttive  limits is relatively straightforward and well known. If E is a compact induttive
limit of Banach spaces then E is a DFM  space and 7. = 7w  = ra on ‘H(U)  for any
open subset  U of E. Moreover, (K( U) , 7. ) is a Fréchet-Monte1  space and (H( U) , ~~  ) is
quasinormable if and only of E is a DFS  space ([22,  531~this  also follows from theorem
1.8 and the remarks  before lemma 1.7.

Our general approach is to first «localize» the seminotms  involved to the Fréchet and Ba-
nach  spaces used to construct the induttive limits. We then apply the results  of the previous
section and finally  use a Hahn-Banach type extension theorem for homogeneous polynomials
to lift the results to the whole space. The extension method forced  us to restrict ourselves to
strict  induttive  limits-which may be considered the extreme opposite of the compact induc-
tive  limit-and this is fortunate in view of the above  remarks. Recently Bonet-Peris [ 131  have
given an exampie  of a strict induttive limit for which the space of 2-homogeneous polync+
mials is not quasinormable. Their method was to show that certain tensor mappings were not
monomorphisms. Because of the close  connection between monomorphism and extension
theorems we were able to combine our method with a modification of the Bonet-Peris method
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to fùlly  characterize, with mild restrictions, the standard strict fB spaces of Moscatelli type
on which the spaces of holomorphic functions are quasinormable. This gives simple concrete
examples of quasinotmability and non-quasinormability.

We also obtain positive results for direct sums of Fréchet-Schwartz spaces with Schauder
basis which admit continuous norms. The continuous norm condition is probably just a tem-
porary conveniente,  although, we show by example that our approach does require this hy-
pothesis. The basis requirement and the Schwartz with continuous norm hypothesis imply that
the space of holomorphic tùnctions  contains a ru, dense subspace  of fìmctions each of which
is bounded on every neighbourhood of a basic  neighbourhood system (this is always true for
Banach spaces) and gives rise to an approximation problem which may be of independent
interest.

We begin this section by stating without proof a strong version  of theorem 3.1.

Theorem 4.1. Let {E,},  denote  un  S-absolute decomposition for the locally  convex space
E . Then E is  quasinormable of and only tfthe  following two conditions are satisfìed.

(4.1) Each  E,, is quasinormable

If 2 p, E cs(  E) , p, E cs(  E,,)  al1  n, then there  exists for each  n a seminorm
m=l

(4.2) q,,  E cs(  E,,) , associated  with p,, such that q  := 2  q,,  E cs(  E) .
?t=l

Comparing theorems 3.1 and 4.1 we note that conditions (3.1) and (3.2) may be checked
separately while condition (4.2) only makes sense when conditions (4.1) is satisfied. Theorem
4.1 is more useful than 3.1 in the nontrivial LZ3 case.

We now discuss  the extension property.  A continuous linear mapping T : E + F is
called a monomotphism if T : E + T(E) is an isomorphism. If E is a locally convex

space we let @) E denote  the vector space of symmehic n-tensors  on E with the projective
Rn,.3

topology.

Lemma 4.2. lf F is a closed subspace  of a locally convex  space E then the following are
equivalent for each  positive integer n.

(1) The canonica1 mapping J, : @  F + @  E is a monomorphism.
n.7r.s n.71.9

(2) Each  locally bounded subset  of P( n  F)extends  to a locally  bounded subset  of P( *E).
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/f; in addition, E is  metrizable then the above  are equivalent to
(3) Each  element of ‘P( n  F) extends to an element of P( n  E) .

I I

Proof We have
c  )

@  F = ‘P( “F) and the equicontinuous subsets  of
c  J
@  F are iden-

n,n,s n,r,s
tified with the locally bounded subsets  of P( n  F) and similarly for E. Since the topology of
a locally convex space is the topology of uniform convergente on the equicontinuous subsets
of the dual it follows that (1) and (2) are equivalent.

If E is metrizable then @)  F and @)  E are metrizable and [4 1,  corollary  p. 2651  implies
n,n,s n7,s

that J,  is a monomorphism if and only if (3) is satisfied.
The mapping J,  is a monomorphism if and only if its extension to the completions is also

a monomorphism. If E and F are metrizable and i : F + E is a continuous injective linear
mapping and each  P E ‘P( n  F) can be extended using i to an element of P( n  E) then [37,
corollary p. 2651  also  implies that i is a monomorphism. For this reason we only considered
subspaces in Lemma 4.2 and for the same  reason our main technique (theorem 4) only applies
to strict  induttive limits.

Detìnition  4.3. If F is  a subspace  of E andfor each  n condition (2) of lemma 4.2 holdsfor
the pair ( F, E) then we say that ( F, E) has the polynomial extension proper@.

Lemma 4 .4 . lf the  pair  of  Banach spaces (  F,  E) has the polynomial  extension properry  then
for each  n and each  E > 0 there  exists  Q  > 0 such that each  P E  ‘P( n  F) has an extension
to P E  P( n  E) satisfiing

(U is the unit ball  of F and V the unit hall  of E).

Proof  Since U and V n F define  equivalent norms on F there  exists b  > 0 such that
CT  c bV. By the polynomial extension property  there  exists for each  n, M, > 0 , such that

each  P E ?(nF)  satisfying  jlPIIU  5 1 hasan extension P satisfying  /lpllV < M,. Hence

each  P E P( “F) has an extension P satisfying

The method of lemma 1.7 can now  be used to show

and b>  choosing cy  suflìcentl>  small we obtain the required estimate.
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Definition 4.5. The strict induttive  limit, lim E,,, is  said to have  the extension property if
vi

each  E,.,  has a convex balanced neighbourhood basis  at the origin  V,,  such  that for al1  n and
all  V E  V,,  there  exists W E  V,, such that  the pair  (  (  E,),  , ( EMI  )w )  has  the  polynomial
extension property .

A strict induttive limit of Banach spaces has the extension property if and only if (E,,,
Eti,  ) has the polynomial extension property for al1 n.

Proposition 4.6. If the strict induttive  limit E = lim E,,  has the extension property then

( E,,  , E) has  the  polynomial  extension proper ty  for  ai  n.

Proof:  If n and m are positive integers and F is a locally bounded subset of P(  “E,)  then
there  exists V,  E V,  and M > 0 such that supPCF jIPllV,  5 M < 00. We now choose

inductively a sequence ( Vj)l,m, VI  E Vi, such that (( Ej)Y,  ( Ei+, )“,+, ) has the polynomial

extension property for al1 j 2 m. By the remarks preceding definition 4.3, we see that Vi  n  E,

and V,  n Et are unit balls of equivalent norms on Eg  for al1 4 ? > m, al1 j 2 e and al1 k 2  L.
lf we let Q,  = 1 we can choose inductively, using lemma 4.4, a sequence of positive rea1

numbers ((Y~)]>~ such that each P E .F has an extension F to E = U Ei satisfying
i2m

Since Ci>,,, CY]  Vi  is a neighbourhood of zero in E this completes  the proof.

Theorem 4.7. If U is  a balanced open subset of a strict CF  space E = lim E,,  and E

has the extension property then (3c( U) , 7,)  (resp. (H( U) , r6)) is quasino:mable  ifthe
following  condition holds;
for each  rw  (resp. r6)  continuous seminorm p on 3-1(  U) there  exists a positive integer m
such that

(4.3) lf f E  K(U)  and f IUnE,  = 0 then p(f) = 0.

Proof:  Let p denote  a T& continuous seminorm on H(U) . We may suppose, without loss of
generality, that

P FPn  ‘CP(P,)
( )

forall  2 P,  E  H(U).
Tl=0 R O ?l=O
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and we also suppose that (4.3) is satisfied by the positive integer m .
For each positive integer n, we define  pi E, on P( “E,) by the formula plEm( P) = p(P)

where P E P(“E) and PIE_ = P. By the extension property such a P exists for each P E

P(“‘E,).  Moreover, if R, S E P(“E,)  and RIEm = SIEm  then (4.3) implies that p(R) =

p( S) and hence pIEm is a well defined seminorm on P(“E,)  for all n. By proposition

4.6, PIER is bounded on locally bounded subsets  of P( “Em) and hence is rw continuous.

Theorem 3.3 and its proof imply that for each n there  exists a rw continuous seminorm q,
on P( “Em) which is associated  to pIEm on P( “Em) and there  exists a sequence of positive

00
real numbers ( LY,),  such that q := c a,q,  is ru, continuous on ‘H( U II  Em) and ported

WO

by (01.
We now define  Q, on P(“E) by the formula

P,(P) = Q”(PIEJ.

Since Em is a Fréchet space the ru, bounded subsets  of P( “Em) are locally bounded. Since
E has the extension property proposition 4.6 implies that t, is a r,-continuous  seminorm on

00
P( “E) . Let i = c OI,~,,  .

F O

If V is a neighbourhood of zero in E then V rl Em is a neighbourhood of 0 in Em and
hence there  exists c(  V n Em) > 0 such that

forall  eP,, E’H(UnE,,,).  IfeP, EH(U) then
?FO IFO

lj CPn =
( )

f&.cp,>  = ~a,~,(P,IEm)
7X=0 n=O ?l=O

I  c(VnJ%)  ~~IIcJE.Ilv”E”

I 4 V  0 En,) c IP,,llv
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and hence p is a rU continuous seminorm on E(U) .
Now fix n. Since q,,  is associated with pIEm there  exists for every X > 0 a r,-bounded

subset B, of P(  “E,) such that

By the extension property and since rw  bounded sets in P( “E,) are locally bounded there
exists a locally bounded subsets  B, of P(  “E)  such that B, = {PIE,; P E B,}.

If P E P(“E) and i,(P)  < 1 then q,(  PIE,)  5 1 and there  exists Q E B, and

R E P(nE,,J  such that pjE,(  R)  2  X  and PIEm  = Q + R.

Let Q E B, satisfy QIE, = Q and suppose k E P(nE,,J  is chosen SO that RIE,  = R.

ThenP=Q+k+P--Q-hwhereQEB,andp(k+P-Q-&=p(&<Xsince
P - Q - RIE,  = PIEm  - Q - R = 0 and

We have thus shown that for each ra continuous seminorm p = cp,  on ‘H(U) there  exists
n=O

a r, continuous seminorm q  = 2 a,q,  on X(U)  such that q,,  in associated with p, for
n=O

ah n. Since each Tu continuous seminorm on P(  “E) can be realised as a component  of a
rs continuous seminotm  on ‘P( “E) it follows that (P( “E) , 7,) is quasinormable, and (4.2)
is satisfied. Since Tu > 7w  the above  also implies that (4.1) is satisfied and this completes  the
proof.

Condition (4.3) is satisfied by a strict induttive limit of Banach spaces [28,  proposition
41 and the same result for a direct sum of Banach spaces is given in [21]. We will prove
that (4.3) is true for any CB space. TO prove this we need the following result conceming
holomorphicity of functions on CF  spaces. A function f : U -+ C, U a domain  in a locally
convex space, is GSteaux  holomorphic if its restriction to the finite dimensiona1 sections of
CT  are holomorphic as functions of severa1 complex variables.

Proposition 4.8. Let  E =  Ii?  E, be un  induttive limit of Fréchet spaces and let f = 5 P,,,
m=O

denote  a Gateaux  holomorphic finction  on E.  Let ( V,,), denote  a sequence  of subsets  of

E, V,,  C E,,,nV,,  C  V,, and suppose V,,  is a neighbourhood of 0 in E, .

!f-

(4.4) sup IIP,llv,  <  cm fora11  72
nl
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then  f E K(E).

Proof  We first fix n and consider  f IE,. If CY > 0 is arbitrary then there  exists a positive
integer m,, such that 2 aV,,  c Vm, . By (4.4),

Hence

mm0 ma%
By(4.4),wehave~~P,,,~~,V~<~form=0,1,...,m,,-1  andhenceC~==,IIPml(,““<<

for every CY > 0 . This implies that f IE,  E ‘H( E,) and that, moreover, it is of uniformly
bounded type. i.e.

(4  3 hm sup llP,l$ = 0.
m-m

We now show that f is locally bounded and this will complete the proof. Let 5 E E. Without
loss of general@,  we may suppose z E E, . By (4.4) and (4.5)

sm IlGh.+“,  = MI  < 00

By (4.5) there  exists a positive integer m, such that

Using the method of lemma 1.7 we can find X2  > 0 such that IIPmllzz+V,+x2V~  5 M + i

for all m.
By induction and the same method we can find a sequence ( X,), , X , = 1, such that

00
II~mll2z+zw  I  M, + 1 for all m where 2 W = c X,V,  . The set W is convex balanced

Ti=1
and absorbing and each V, is a neighbourhood of 0 in E,  . Hence W is a neighbourhood of
0 in E. Since

f is locally bounded. This completes  the proof.
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Remark 4.9. If E = hm E,,  is an CL3 space then (4.4) may be replaced by
R

but this cannot in general be used for CF spaces.

Example 4.10. (a) Let E = hm E,,  denote  an induttive limit of Banach spaces. Then (4.4)
ii

holds for f = 2 Prn : E -+ C if and only if f E 3c,( En) for al1 n. By Grothendieck
m=O

[35,  chapter 4,93,  proposition 51  each bounded subset of E is contained  in the closure of a
bounded subset of some E,,  . Hence f E 3c,( E) . A recent result in [28] implies, for strict
induttive limits of Banach spaces, that (4.4) is only satisfied by al1  entire  functions in the
trivial case E x CcN).  In the CB space E = lim E,,  is a DFS  space with compact linking

fi
maps then it is easily seen that f , Gateaux holomorphic on E,  is holomorphic if and only if
(4.4) is satisfied.

(b) Let E = Ii”  E,,  denote  an C3 space and let f =  5 P,,,  : E + C be Gateaux
m=O

holomorphic. If for each positive integer n there  exists a positive integer m, such that

PrnlE” = 0 for all m > m, then (4.4) reduces to IIPmllvm  < 00 for all m and n. Since
Banach spaces have bounded neighbourhoods of the origin  we see that the condition is always
satisfied by CB spaces when PnlEm  is continuous for ah m and n.

(c) In this example we give a new proof of a known result ([40,  example 1.31,  [3],  [ 15,
proposition 4.11,  [33]). We include the proof as we refer to it later. Let E = Ii?  E,  be an

CB space and let B, denote  the unit ball of E,  . We may suppose, without loss of generality,
that nB,  c B,, for all n. By the result of Grothendieck quoted in (a), {K}:, forms a
fundamental sequence of bounded subsets  of E. Let ( Pl)lZ, denote  a P-bounded  sequence
in P( n E) . Since nB,  c B,  , it follows that

lim  sup IIPjllB  = hm sup llP:l]y’  = 0
j-00 j-m

for every bounded subset B of E .
00

Hence ~up,I]P~]l,~  < oc for all n. By proposition 4.8, c P; E  H(E) . Hence for any
]=l

5 in E,  there  exists a neighbourhood of 0, V,  , such that

lim sup llP~~l~?vz  = lim  suP  IIpjllz+Vz  < m
j-c)0 j-00
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This implies that the sequence { Pj}j  is locally  bounded and hence T, bounded. Since Tu 2 ,f3
and (P( “E)  , B) is metrizable we conclude that Tu = /l on P( “E)  for al1 m.

We now show that (4.3) is satisfied by CB spaces.

Proposition 4.11. Let U denote  a balanced open subset of the CB space E = lim E,,  and

let p denote  a ra  continuous seminorm on X( U) . There  exists a bounded subset B of some
E,,,  suchthatforalln,p(P)  < IIPIIBfirallP  inP(“E). Moreover,  there  exists a positive
integer m such that p(f) = 0 for al1  f E  ‘H(U) satisfiing  f IunE,  =  0.

Proot:  We may suppose that p = ep(P,)  for all eP,,  E  X(U). Let B,
FO 7l=O

denote  the unit ball of E,,  and suppose ti, c B,, for all n. Suppose the result is not true.
Then for each positive integer n there  exists a homogeneous polynomial P,,  such that

P(Pn)  > Ilm?,, 2 ~degpwx3,

for all 72.
We first suppose that there  exists a positive integer no (the case 120  = 0 hivially leads

to a contradiction) such that deg( P,,)  = T+-, for an infinite number of positive integers. If

A := {n;deg(P,,) = n,, and IIP,,IIBm  = 0) is infinite then is a bounded
6A

subset of (P( n,  E) , /3)  _ Since p = n for all n this contmdicts  the conclusion of

example 4. IO(c).  If A is not infinite then we may suppose 1 lP,l  IB ” f 0 for all n. The sequence

is a bounded subset of (P(% E,/3)).  Since p
n,deg(P,)=%

this again contradicts the conclusion in example 4.10(c).
Hence, by taking a subsequence if necessary, we may suppose that deg( P,) is strictly

increasing.
Let

Q, =
if IIu3, = 0

if II%?, + 0

Since IIQ,lle, 2 L for all n we have
73

c IlQnll~ < 00
?FO
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for any B contained  and bounded in some E,,,. By example 4.10(a) this implies that

n E H(E) . Since

for all n > 3 this is impossible.
Hence there  exists a positive

n
PC  PI

p(Q,)  2  ndeg(pnf-2  2  n

integer m and B a bounded subset of E,,,  such that for all

I IPIlE3 fora11 P E  P(“E).

2fWIf f E 3-l(U)  and  f lanE,  =  0 then  7 = 0 for all n and
EWI

p(f)=Cp  ZLp  =o
Tl=0 ( )

This completes  the proof.
If U is a balanced open subset  ofan Ct3 space with the extension property then proposition

4.11 and the proof of theorem 4.7 show that for each 7.  bounded subset .F of 3c( U) and
each 7.  continuous seminorm p on 3L(  U) there  exists a locally  bounded subset  of H(  U) , F,
such that

SUPP(f)  =supp(f)  <oo.
fE3 fG

Hence 7-o and 7. define  the same bounded subsets  of 3-1(U) . This result for direct sums
of Banach spaces is given in [2 1,  proposition 3.11  and example 4.22 (below) provides new
examples.

We now show how (4.3) can be combined  with theorem 4.1 to show that the quasinorma-
bility problem is equivalent for the different topologies and different function spaces on an
induttive limit of Banach spaces.

Proposition 4.12. tf U is  a balanced open subset  of the CI3  space E = hm E,,  then  the
fi

fo l lowing are  equivalent;
(p) ( 7-LH,(  U) , /3)  is quasinormable,
( 7,) (H(U) , 7,)  is quasinormable,
( r6) (X( U) , r6)  is quasinormable.

Proof:  By example 4. IO(c),  we have 7w  = ra = p on ‘P( “E) for any positive integer n.
Hence if any of the three conditions is satisfied then (P(  n E) , B) is quasinormable and it



Quasinormable spaces of holomorphic functions 181

suffices to show that if one of the conditions is satisfied then (4.2) is satisfied by any one of
the others.

Let (F( CI),  T,  ) denote  one of the spaces and (G(  U) , r1 ) another. We suppose that (7, )
is satisfied. Let p2 denote  a r?-continuous  seminorm on G(  U) . We suppose that

pz Fpn = Cp(P,) forallCP, E G(u)
( )F-0 Tl=0 ?l=O

By proposition 4.11, if r2 = 7w  or r6, and by definition  if r2 = p, there ex&  a boun&d

subset B of E such that for all n

PZ(P)  I Il% forall  P E P(“E).

Let q 5 P,
( )

= 2 $p2 (P,)  ,for al1 2 P, E F(U). Since q 5 P,
Ti=0 7l=O TI=0 ( )?FO

5 e[lPn[ln,  it followsthat q is 7, continuous. Since (.T(  U) , T, ) is quasinormable there
Ti=0

exists a T, -continuous seminorm i which is associated  with q.  Again by proposition 4.11, if
T,  = Tu or T&,  and by definition if T, = B, there  exists a bounded subset B, of E such that
for al1 12

G(P)  I  IPIIB, for all P E P( “E).

For each n,  qlPC.Ej is  equivalent  to p2 JpC.Ej  and hence Glpcn~,  is associated t. PZ  IP(~EJ  .
The seminorm ql defined by

91 eel( )Ti=0

= 5 J-+(  P,) for 5 P, E C(u)
Tl=0 n=o

is r2 continuous since

Hence (4.2) is satisfied by ($Y( U) , rz ) and SO (C( LI), 7; ) is quasinonnable  and this com-
pletes the proof.
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Theorem 4.7 and propositions 4.11 and 4.12 show that the spaces ( tiHb( U) , B) , (3c(  U) ,
7,) and (K(U),  r6)  are quasinormable for CJ a balanced open subset of a strict CB space
E if E has the extension property. This will be the case if E has a representation as a strict
induttive limit hm E,,  such that (E,,,  Eti,  ) has the polynomial extension property for all n.

n
00 n

If E is a direct sum of Banach spaces, say E = c Fj  , then E = hm E,,  where E,,  = c Fj
j=l

ii
j=l

for ah n. Since E,,  is complemented in E,, , P E P(  m E,) can be extended to E,,+  , by
the formula p( z + y) = P(z)  for z in E,,  and y in Fti,  . Hence (E,,  Ew,  ) has the
polynomial extension property. We thus have the following example.

Proposition 4.13. tf U is  a balanced open subset  of a direct sum of Banach spaces then
(H(U),T,),(?~(U),T,,)  and(K,(U),B)  arequasinormable.

EXampIe  4.14. TO obtain further examples-and in particular  examples not covered by propo-
sition  4.13-it  is natura1 to consider  a situation in which we can extend polynomials. This is
the case by [6,  18,291 if E = Ii”  E,,  and for each n

(*) E,,-E,,+,  c--E;.

The simplest case in which this may be realised is to take a non-reflexive Banach space E
and to let ( E,,),  denote  an increasing sequence  of Banach subspaces of E” containing E.
If F = hm E,,  then F has the extension property ((*) is satisfied since E L, E,  implies

n
E”  c-+  En  and we have E,,  - E,,+  , ut E” ut En) and the spaces of holomorphic functions
we considered on balanced domains of F are ah quasinormable. It  is not, however, clear if
F is or is not isomorphic to a direct sum of Banach spaces. TO give an example which is not
a direct sum we use a space constructed by Moscatelli [48] (see also [46]).

LetX,=&andY,=co foralln.LetE=

For each n let E,,  =

n. By [48,  lemma 31  the induttive limit hm E,  is not isomorphic to a direct sum of Banach
n

spaces. The spaces cg  and e30 may be replaced by Banach spaces X and X” provided X
is not complemented in X”.

The space considered in the previous example is called a standard strict CB space of
Moscatelli type. The strutture  of these spaces has been investigated in recent years and we
refer to [ 14,  45, 491 for details. We now characterize two collections of standard strict CB
spaces of Moscatelli type by quasinormability of spaces of holomorphic functions.
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A nonna1  Banach sequence space is a Banach space ( X  , 1 . 1)  satisfj4ng
(a) CcN) c,  X LI  CN
(b) if a = ( uJn  E X and 6 = (b,)n  E CN  satisfy lb,l 2 la,,1  for all n then b E  X and

PIA  I  lalx
Any Banach space with a 1-unconditional basis is a norma1  Banach sequence space.
If (X,), is a sequence of Banach spaces then

x @L( ) := {b,>,;  (ll?Jl,),  E x1
n

is a Banach space when normed by II(  xJnll  := I(  1/x,,ll,J  Ix. Let Y denote  a subspace  of the

Banach space X . For each  n let E,,  = X(  @  X,) where X, = X for m < n and X, = Y

for m 2 n. Using coordinates we see  that there  is a natura1  inclusion from E,,  into Eti,  . The
strict induttive  limit E = li?  E,,  is called a standardstrict CB space ofMoscatel/i  type  and

denoted by X(X, Y) . The”space  X(X, Y) may be identified algebraically with a subspace
of X N. If 7rk  and nk  denote,  respectively, the projections on X N  onto the first k and al1 but

the first k coordinates then the restriction of both 7rk  and 7rk  to X(X, Y) and each  E,  gives

rise to continuous projections. We have  TT~(  X( X, Y)) - Xk,  nk( X( X, Y)) - X(X, Y) and
nk( Em)  = X( e,Y,), Y, = Y all m, for k 2 m. Let B,  denote  the unit ball  of X and
B,  the unit ball of E,,  . By [ 141, ( 13,)k, forms a fundamental sequence of bounded subsets
of X(X,Y) and

i
CE3 ckBk  + 623,  ; ck  > 0 all k and 6 > 0
kEN 1

forms a fundamental system of neighbourhoods of the origin. A dual construction leads to a
collection of Fréchet spaces called standard quojections ofMoscatelli  type. Specifically, if Y

is a subspace  of X we let F,,  = X
( 1
@X, where X, = X for k < n and X, = X/Y

k

for n 2 k . This gives a sequence of quotient mappings F,,  -t  F,,  and our quojection is

X(X, X/Y)  = li,m  F,,.

If X;3 is also a norma1  Banach sequence space then X(X, Y); = Xb(  X’, X’/Y’)  . If 2 is an

arbitrary Banach space then X(X, Y) x 2 is a strict induttive  limit of Banach spaces and in
fact  we have

A(X,Y) x 2 = lim E,  x 2
T i
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and we may think of 2 as the fina1 coordinate space.
The following lemma is a variation of a fundamental  lemma which first appeared in [55]

and which was subsequently modified in [ 191 and [ 161. Our version  is modeled on that given
in [ 16, lemma l] and the proof there  can be modified to prove our lemma. Proposition 4.16
is also motivated by a result in [ 161.

Lemma 4.15. Let Y denote  a subspace  of a Banach space X and suppose Y has the ap-
proximation properry.  tf n is a positive integer and far  every E > 0 there  exists Q!  > 0
such that

where the closures  are  taken in @ X , then the canonica1 mapping
%n,s

i s  a  monorph i sm.

Proposition 4.16. Let X(X, Y) denote  a standard strict Cl3  space of Moscatelli type and
let Z denote  a Banach space. Suppose Y and Z have  the approximation property and
(P(  “( X(X, Y) x Z)) , 7,)  is quasinormable.  Then the canonica1 inclusions

(4.6) I*  : @(Y  x Y x Z)  4  (g)(X  x Y x Z)
%n,J 15*,3

and

(4.7) J, : @(Y x Z) --+  @(X  x Z)
tSn,s ?T!S

are  monomorphi sm.

Proof If (‘P(“(  X( X, Y) x Z)) , 7,) is quasinotmable,  then since it is infì-abarrelled,  its

strong dual satisfies the strict Mackey condition. By [41,  p. 1861,  @X(X, Y) x Z) is
Rn3

infrabarrelled and hence is isomorphic to a subspace  of its second dual (‘P( “( X( X, Y) x

Z)),T&. Hence @(VX,Y) x Z) also satisfies the strict Mackey condition. Hence
n,a.s
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there  exists a positive integer m, a sequence  of positive real numbers ( E,.)~  and 6 > 0 such
that

where the closures are taken in 0(X(X,Y) x a.
qn,s

Projecting onto the mth, ( m + l)St and fina1 coordinates gives

F
(
gcBy  x B, x B,) nr ~K(~,B,  + 6~~) x (E,+I~x + 6~~) x B,)
v ) ( R.9 )

CT @ByxByx&
(

,
w 1

where the closures are taken in @(X  x Y x Z). Let (Y= inf{lre,cm+,,SZ}.  Hence
%T,S

r ~)(B,~B,~B,)
(

nar ~KB,~B,~B,)
PS ) ( w )

CEi= QpyXayXBZ
(

1
n.s )

where the closures are taken in 0( X x Y x Z) . An application of lemma 4.15 shows that
n,s

(4.6) is true and (4.7) follows by projecting onto the mth  and final coordinates.

If E is a locally convex space we write E” in place of (Eb)$ . If E is infmbarrelled  then

E” is the natura1  bidual in the sense of Grothendieck [34].

Proposition 4.17. (a) lf E is  an infraharrelled locally convex space then (E, E”) has the
polynomial  extension proper@
(b) /f E is an infrabarrelled  DF space then

(*) (‘W”E”), P)l~pEp<n~~o;p,,=o~ = (W”E),P)
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(**) (~H~(E”),B)/~~~H,(E”);~,,=~}  = (%(E),/3.

Proof  (a) We have included  the infrabarrelled  the infìabarrelled hypothesis as OUT  defi-
nition of the polynomial extension property only applies to subspaces and E is a subspace  of
E” if and only if E is infrabarrelled.

If n is a positive integer and F is a locally bounded subset  of P( “E)  then there  exists a
p E cs( E) and M > 0 such that

sup{lP(~)l;P(~)  I 1) I M < 00.
P E 2

Let ,!kr  denote  the completion of the space (E/p-’  ( 0) , p) and let i,  denote  the canonica1

quotient mapping of E into ,!$.  For each P E F there  exists a unique P E P( “( ,!$))  such

that P = P o i,.  Hence

sup IlPII
PE7

B(È,)  I M < 00.

By [ 18,  theorem 31 each P E P( “( ,!?J)  has an isometric  extension P to (,!$)” i.e.

llj?l B(È,)”  = IIm3~-

Let J,  denote  the canonica1 mapping from a locally convex space into its second dual E”.
We let iP denote  the second transpose of the mapping i,. If P E T the above  gives the
following commutative diagram.

‘P

E - ÈP
\ J

J, 1 P C P 1 J,t
;
2

E” - ( ÈpI”
itt

P

Let P” = ? o ii. Then P” E P(“E”)  and P”IJEtE,  = P.
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Since iP is continuous V := (ip)-’ ( BCtip),,)  is a neighbourhood of 0 in E”. Hence

sup IIP”llV = sup Il&,,,,.  = M < 00.
FE3 PE3

(b). By (a) the restriction mapping

R,  : P(nE”)  -+  P(“E)

p + PI,

is surjective and ker( RE)  = {P E P( E”); PI,  = 0 } .
Since E and E” are D.Y=spaces it follows that (‘P( nE), /3) and (P(  nE”), @) are

Fréchet spaces. Since bounded subsets  of E are also bounded subsets  of E” it follows that
R, is continuous. An application of the open mapping theorem shows that (*) is true.

E ‘H(E) and there  exists a neighbourhood V of 0 in E such that

d”fW= 0 then an examination ofthe estimates in (a) shows that each 7
n .

has an extension to E”  as F and there  exists a neighbourhood v of 0 in E”  such that
71.

Il Il
1

GO) n =O,lim sup 1
n-m n.

Y

Such holomorphic functions are said to be of uniformly bounded type (see the proof of propo-
sition  4.8). By [33,  proposition 71  each element of 3c,( E) is of this type and SO the mapping

R,  : Ti&  E”) + 7-lH6(  E)

is surjective and a further application of the open mapping theorem completes  the proof.
Our proof of the above  proposition was motivated by results in [ 181 and [33]. We remark

that the proof in (a) shows that the restriction mapping on germs E(  O,,,) + H( 0,) is also
surjective. Further results regarding completeness and extensions and their relationship with
one another can be found in [6,25,43].

By [ 18,  theorem 1] any Banach space X has the following property; each P E  ‘P(“X),  n
arbitrary, has an extension Pd  to X” such that for every convex bounded subset B of X and
every x** E g-“J’) there  exists a net ( z,), in B, which converges  in the weak* topology
to x** , and P(x,)  -)  P,Jx**) as Q -f 00.
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Proposition 4.18. If Y is  a subspace  of the Banach space X and (Y x Y’, X x Y’) has
the polynomial extension property then Y” is complemented in X”.

Proof:  Let P(y,  y’) = y’(y) for (y,y’)  E Y x Y’. Since P E P(“(Y  x Y’)) there  exists
P E P( “(  X x Y’)) which extend P. Let pd  denote  the extension of F to X” x Y”‘,
described above,  and let Q be its restriction to X” x Y’ If z**  E X” and y’ E Y’ we let

[~~**)I(Y’) = Q(s**,Y’).

Since Q is continuous, n( z**)  E Y” and n : X” + Y” is continuous and linear. If
y”  E Y”, lly**11  5 1 , and y’ E Y’ then the weak*  closure of B, x {y’}, contains y”  x {y’}.
Hence there  exists a net in B,, ( y,), , which converges  weak*  to y”  , such that

Q(Y**,Y’) = ‘@mQ(~,,~‘) = ‘@mi’  = Y**(Y’)  = [~Y**)I(Y’)

Hence n( y**)  = y**  for ah  y**  E Y”. The mapping 7r is the required projection of X” onto
Y”.

We are now in a position to give our characterizations of two collections of Moscatelli
type spaces.

Theorem 4.19. Let X(  X, Y) denote  a standard strict CB-space of Moscatelli type  and sup-
pose Y has the approximation property The following  are equivalent.
(a) For al1  posi t ive  integers  n  the canonica1 mappings

J, : @(Y x Y) + @x x Y)
“,X.8 n,n,J

are monomorphism,
(b) X(X, Y) has the extension property,

(4  (~Hb(W~B)r(H(W.~u~)  and (WWjr,) are quasinormable for av  balanced open
subset  U of X(X,Y),
(dl P(  (“(  X(  X?  Y)) . /3)  is quasinormable for eveT  positive integer n.

Proof:  (a)+  (b). If (a) holds then the pair ( E,. E,- , ) has the polynomial estension property
and hence  X(X, Y) has the extension property and (b) holds.

(b)+  (c). If holds then theorem 4.7 and proposition 4. Il imply  that (c) holds.
(c)+  (d). This is trivial since  (‘P( “(  X( X. E*))) 3) is a complemented subspace  of any

of the spaces in (c).
(d)+-  (a). This follows from (4.6) in proposition (4.16).
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Theorem 4.20. Let X(X, Y) denote  a standardstrict CL3 space of Moscatelli type. Suppose
Y’ has the approximation property and X  is a reflexive  norma1  Banach sequence  space. The

fol lowing are  equivalent .
(a) Y” is complemented in X”,
(b) X’(  X’, X’/Y’) is  a  product  of Banach spaces,
(c) A(X”,Y”)  = (A(x,Y);)b is  a  direct  sum of Banach spaces,

(4  (%(W,B),(NW,L,)  and (WW,d are quasinormable for any balanced open
subset  of X(  X, Y) x Z where Z is any  Banach space with the approximation proper&
(e) ( P( “( X(X, Y) x Z)) , B))  is quasinormablefor al1  n andfor any  Banach space Z with
the approximation property .

Proof(a)+(b).  If Y” is complemented in X” then X’/Y’ is complemented in X’ and

(X(X, Y));  = X’(X’,  X’/Yl)  = E, x ZN

where Z is a topologica1 complement  of X’/Y’ in X’. Hence X(X, Y);  is a product of
Banach spaces.

(b)+(c). If (b) holds then (( X(X, Y))$b  = X(X”, Y”) is a direct sum of Banach spaces.
By proposition 4.13 and 4.17, (c) is true  when U = E.

If (d) is true  for U = E then trivially (e) is true.
If (e) holds then lemma 4.2 and (4.7) imply that the pair (Y x Y’, X x Y’) has the

polynomial extension property. By lemma 4.18, Y” is complemented in X” and hence (e)=+
(a).

if (e) holds then lemma 4.2 and (4.6) imply that (Y x Y x Z, X x Y x Z) has the
polynomial extension property. By theorem 4.6 and proposition 4.11 this implies that (d) +- (e)
for arbitrary  balanced U . This completes  the proof.

Remark 4.21. Theorem 4.20 can be strengthened by noticing that we did not use ah the
hypothesis at ah stages. For instante in condition (d) and (e) we can replace Z by the single
Banach space Y’ . Clearly it suffices in condition (e) to have this condition for one value  of
R.  2 2 . The result also shows that if we have quasinonnability for one balanced domain  then
we have it for all balanced domains. The general method of proof can be adapted to more
general CB spaces of Moscatelli type-spaces of the form ( [ (X,), , (Y”),])  and also to the
nonsymmetric case-in fact condition (a) shows that we get the same results for both cases.

Example 4.22. It is now simple to give both positive and negative examples. If Y is a
closed non-complemented subspace  of a reflexive Banach space X (any Banach space not
isomorphic to a Hilbert space contains such a subspace) then (P(“A(  X, Y) x Y’)), p) is
not quasinormable for any n 2 2 .
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On the other hand theorems 4.19 and 4.20 show that positive results not covered by propo-
sition  4.13 are rather similar to that given in example 4.14. Further examples are obtained by
taking a subspace  Y of X such that Y is an M-idea1 in X but not isomorphic to an M-
summand in X . This occurs for instante if Y is a closed but non-weak* closed idea1  Z in a
W*-algebra d since in this case Z” is a M-summand in d** and hence is complemented
(for further information on M-ideals and M-summands we referto [36,  chapter  31).  Further
examples may be found in [ 161 and [ 191.

We now turn to the case of a direct sum of Fréchet-Schwartz spaces. In this case we
trivially have the extension property but condition (4.3) is not always true (see example 4.26).

Proposition 4.23. Let E = 2  F,, denote  a direct sum  of Fréchet-Schwartz space and sup-
n=l

pose each  F,,  has a Schauder basis and admits a continuous norm. Let U denote  a balanced
open subset of E and suppose p is a r,,  continuous seminorm on ‘H(U)  . There  exists a
positive integer m such that for each  positive integer n there  exists a compact subset  K,  of
E,,,  satisfling

P(P)  I IlPllK” fora0  P E  p(nE).

rnwrticular,  if f E  H( U) and f lU”c;,  Fj  = 0 then p(f) = 0.

n

Proof:  Let T,,  denote  the projection from E onto E,,  :=  c Fj  . We first suppose that for all n
]=l

there  exists n,  and P, E P( 5 E) such that P,,  IEm = 0 and p( P,) + 0 . Since P,,  o x,,,  -+ P,,

locally  as m + 03 we may suppose that for each n there  exists j, such that P,,  = P o  ~j,.

New fix n. The space EIn  is a Fréchet-Schwartz space with continuous norm and Schauder

basis. Let Te  denote  the projection in Ein onto the first e coordinates  and let

Qe( 5) = P,( T,(  7rj.(  5))) for al1 z E E.

Since 70 = Tu, on ‘P( n é El,)  (see proposition 3.5) it follows that Qe + P,,  as C -+ 00

in (P( nj E) , 7,) . Hence we can choose f? sufficiently large SO that p( Qe,) 9 0 . Let R,  =

Q”/PcQ~“)~ Wehavep(R,)  = nand RnlE, = 0 and if PV, is the unit ball of a continuous

norm on E,  then IIR,,llw,  < 00 forall  m.

We consider  two possibilities;
(a) there  exists a positive integer IC such that R,  E P( ‘E)  for an infinite number of n.

The method of example 4.1 O(c) can be adapted to show that this gives a contradiction,
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(b) there  exists an infinite subset M of N such that nf m in M imply nj f mi.  By

proposition 4.10(b), c P,,  E H(E) . Since c p( P,,)  = 03 this is impossible.
nEM MM

Hence both possibilities lead to the contradiction and we have  shown that there  exists a
positive integer m such that if f E 3c( U) and flrrnE,  = 0 then p(f) = 0 .

Since 7s = rw on P(nE,,,)  far any positive integers m and n the seminonn pIEm on

P( “E,) defined by

plEm(  P) = p( P 0 7~~) for all P E  P(“E,)

is well defined and T~ continuous. Hence there  exists for each n a compact subset K, of E,,,
suchthat pjE,(  P) 2 llPllK,  fora11  P E  PCnEm). If P E  P(“E)  then  (P-po~,)l~,  = 0

and hence

P(P) = P(P 0 %J  2 IIPIIK”

for P E P( “E) and this completes  the proof.

The basis requirement in proposition 4.23 could  be avoided if we know the answer to the
following question.

If E is a Fréchet space witb  continuous nonn does E contain  a neighbourhood basis at
the ongin,  V  , such that for al1  n

n {P E PC%  IIPllv  < 4
VEU

is rW  dense in P( “E) ?

It is easily seen that the proof of the above  proposition can be adapted to obtain the fol-
lowing.

Proposition 4.24. If U is  a balanced open subset o f  a d irec t  sum o f  Fréchet-Schwartz spaces

E=FE n each  having a Schauder basis and admitting a continuous norm then r,,  = r,,,
n=l

on ‘H(U) . If TO  = r6  on ?-i(  U II E,,,) for al1  m then T, = ra  on 31(U).

Ifwe let F, x  s (the space of rapidly decreasing sequences) then E = V (the space of
test functions  on R”) and we recover, in proposition 4.24, a result proved in [ 121. With the
same hypotheses we have the following.
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Corollary 4.25. (H(  U) , 7O  ) is  a Schwartz space and (3-1(  U) , TJ is  an ultrabornological
Schwartz  space.

Proof  The result for T,, follows either from theorem 1.7 or from theorem 4.7 and propo-
sitions 4.23 and 4.24. Since r0 = rw = Tu on P(“E) the result for r0 implies that the
bounded subsets  of (P( “E)  , Q) are precompact. Lemma 3.4 then implies that the bounded
subsets  of (X(U)  , TJ  are precompact. By theorem 4.7 and proposition 4.23, (H(  Cr),  r6)  is
quasinormable and this implies that (3c(  U) , 5) is a Schwartz space.

The Fréchet-Schwartz spaces in propositions 4.23, 4.24 and Corollary 4.25 may be re-
placed by Fréchet-Monte1 spaces far which Tu = rw on ‘P(nE,,J for all TZ and m (see for
instante  corollary 3.5).

Finally we give an example which shows that the continuous norm hypothesis in proposi-
tions 4.23 and 4.24 is necessary and the example also shows that condition (4.3) of theorem
4.7 is not always satisfied by strict C3 spaces.

Example4.26.LetF,  =CNandF,=C  fori>2.ThenE=eF,=CN x CcN) is a
i=l

direct sum of Fréchet-Schwartz spaces each of whic:.  nas a Schauder basis. Let

u,  =(0, . . . , I ,O, . . .)  in F, and let v, denote  a unit vector in F,,  for n 2 2

1

nthposition

The seminorrn

Oo  @f(O)far c 7 E 3c( U) , U any balanced open subset of E, is rw but not T-, continuous
Tl=0

([21]).  Hence the conclusion of proposition 4.24 is not valid in this case. The seminorm
p does not have the property  given in proposition 4.23. On the other hand E is a reflex-
ive A-nuclear space with basis and hence (?f( E) , Tu),  (X(  E) , 7,) and (N( E) , T-J  are all
Schwartz (and even nuclear)  spaces and SO the conclusion of corollary 4.25 is valid for this
space (when U = E). We refer to [2l]  and [23,  chapters  1 and 51  for further  details.
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