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QUASINORMABLE SPACES OF HOLOMORPHIC FUNCTIONS
SEAN DINEEN

Quasinormable spaces were introduced by Grothendieck [34] as a collection of spaces,
with good stahility properties, which included all Banach spaces and all nuclear spaces (a
recent article of Meise-Vogt [44] quantifies this statement in an elegant fashion for Fréchet
spaces). Quasinormable spaces in which the bounded sets are precompact are called Schwartz
spaces and form a more restrictive but even more stable class of spaces (they are closed under
the formation of arbitrary products and quotients).

In this article we study these properties on space of holomorphic tlnctions with the three
standard topologies of infinite dimensional holomorphy, 7,, 7, and 7;. In the presence of
one or more of a variety of countability conditions on the underlying locelly convex space
we found that the spaces of holomorphic functions tumed out to be either quasinormable or
Schwartz spaces. The compact open topology, 7, , and nuclear spaces both enjoy intrinsic
compactess properties and in these cases (§ 1 and 2) we found it possible to study directly
the Schwartz property. For the 7, topology our countability conditions were-each compact
Set is contained in the absolutely convex hull of a null sequence, Sequential completeness,
and each null sequence is Mackey null. We only considered the 7, and 7; topologies on
nuclear spaces as the result for the compact open topology is well known and we assumed the
existence of a basis and a property which can be compared on the one hand to the defining
property of A-nuclear spaces and on the other hand to the sequence space characterization of
Schwartz spaces. To obtain generd results for the 7 and 7; topologies we used countable
neighbourhood systems (in Fréchet spaces) and countable systems of bounded sets (in DF
spaces) together with S-absolute Schauder decompositions of holomorphic function spaces
on balanced domains.

In all cases we found new results which both smplified and contained known results and
which suggest further possibilities towards the redlization of a more unified theory of locally
convex space structures on spaces of holomorphic functions on infinite dimensional domains.

1. BASIC DEFINITIONS AND THE SCHWARTZ PROPERTY
FOR THE COMPACT OPEN TOPOLOGY
We let E denote a locally convex space over the complex numbers C and let cs( E) denote
the set of all continuous seminorms on E. We refer to Grothendieck [34, 35] and Horvath
[37] for properties of locally convex spaces and to Dineen [23] for holomorphic functions on
locally convex spaces.

If U is an open subset of a locally convex space E we let H(U) denote the space of
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all C-valued holomorphic functions on [J and let H,,(U) denote the set of all C-valued
Gateaux holomorphic functions on [/ which are continuous on the compact subsets of U.
The compact open topology on H ,,( U) and H(U) is denoted by 7, . A seminorm p on
H(U) is called 7, continuous if there exists a compact subset K of U/ such that for every
open subset V of [ containing K there exists ¢(V) > 0 such that

p(f) < c(V)||flly

for every finH(U) . In this case we say that p is ported by the compact set K, The 7,
topology is the topology generated by all ,, continuous seminorms on ‘H(U) . A seminorm

p on ‘H(V) is 7, continuous if for any increasing countable open cover of U, ( V)%, , there

exists a positive integer ny and C > 0 such that

p() < Cliflly,

for every f in H(U) .

The 7; topology is the topology generated by all 7; continuous seminorms. We aways
have 7, < 7, < 7. For any positive integer n we let P(™ E) denote the space of (con-
tinuous) C-vaued n-homogeneous polynomials on E. On P( “E) the topologies r,, and

7; coincide. If U is a balanced open subset of E and f ¢ H(U) we let E d’;{(o) B
=0 )

d"£(0)
n!

note the Taylor series expansion of f at 0. We have :

€ P("E) for all n. We let
S={(e,)&;, € Cand lim sup,__|a,|'/" <1}.

Definition 1.1. ({23, p. 114]) A Schauder decomposition {E, }, of a locally convex space
E is called an S-absolute decomposition if the following conditiom are satisfied;

[o o]
o0
(1.D Jor anyE Inh € E,z, € E all njand (o), €S the serieszana:,, €E,

n=1 n=1

if p €cs(E) and ( o), € Sthen the seminorm

(1.2) p (Z %) =3 leylp(x,)
n=1 n=1

1z, € E, all n, belongs to cs( E).

Example 1.2. ([23, chapter 3]) If U is a baianced open subset of a locally convex space E
then {(P("E), 1)}, isan S-absolute decomposition for (H(U) .7) where r = 7,7,

or 7;. The expansion used to obtain this decomposition is the Taylor series expansion a the
origin.
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Example 1.3. A subset B of adomain [J in alocally convex space E is said to lie strictly
inside [J if there exists a neighbourhood V of zero such that B+VC U .If U is an open
subset of alocally convex space we let H,( U) denote the subspace of H(U) consisting of
those functions which are bounded on the bounded subsets of E which lie strictly inside U'.
We let 38 denote the topology on #,(U) of uniform convergence on these sets. If [/ isa
balanced domain in a locally convex space E then {('P( " E), 8)}32, is easily seen, by the
methods employed to obtain the result given in example 1.2, to be an S-absolute decomposi-
tion for (M,( U), B). For further information regarding this space we referto [2, 32,33, 38,
39].

To simplify notation when considering holomorphic functions on balanced domains we

o0
shall, unless there is some possibility of confusion, write f = Z P, as the Taylor series

expansion at the origin where P, = -—ﬂl € P( " E) and, we may often suppose we are

dedling with seminorms on the function space F which satisfy
p (Z:Pn) =>"p(P,)
n=0 RO

o0
forany Y P, in F.
n=0

We now define quasinormable spaces.
Definition 1.4. (34,35, 37]) A locally convex space E is quasinormable if for every neigh-

bourhood U of 0 in E there exists a neighbourhood V of 0 in E such that for all X > 0
there exists a bounded subset M, of E with

(1.3) V C M +)\U

Clearly it suffices to consider U and V from a fundamental neighbourhood basis system
and in terms of seminorms we may rephrase (1.3) as follows.

E, alocally convex space, is quasinormable if for every p € cs( E) there exists q €
cs( E) such that for any ) > O there exists a bounded subset M, of E with

(1.4) {z€Eq(z) <1}YC M, +{z€ E:p(z) <))

When a seminorm g satisfies (1.4) with respect to the seminorm p then we shall say that
q IS associated with p. If p, and p, are equivalent seminorms on E then g € cs(E) is
associated with p, if and only if it is associated with p, .
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Definition  15. A locally convex space E is aSchwartz space ifandonly ifit is quasinormable
and its bounded sets are precompact.

The following proposition gives two further characterizations of Schwartz spaces (the first
is comparable with (1.3)).

Proposition 1.6. /34,35, 37] A locally convex space E is a Schwartz space if and only if
either of the following equivalent conditions are satisfied.

(a) For every p € cs( E) there exists q € c¢s( E) , g > p, such thatfor every \ > O there
exists a precompact subset K, of E satisfying

(15) {z€E;q(z) <1}CK,+{z€E,p(z) <}

(b) For every p € cs(E) there exists q € cs( E) , q > p, such that if {z,}, CE, q( z,,)
< Llalln, then {z }, contains a p-Cauchy subsequence.

DF spaces (and in particular Banach spaces) are quasinormable and a Fréchet-Montel
space is quasinormable if and only if it is a Fréchet-Schwartz space.

For the next theorem we need the following two conditions on a locally convex space E.
(1.6). Every compact subset of E is contained in the closed absolutely convex hull of anull
sequence.

(1.7). Every null sequence{z,}, isMackey null, i.e. there exists a sequence of positive real
numbers (X,), such that A, — +oo and X,z, - 0as n — o0.

A locally convex space which satisfies (1.7) is said to satisfy the Mackey condition. If for
every absolutely convex bounded subset A of a locally convex space E there exists another
absolutely convex bounded subset B of E such that E, the vector subspace of E spanned
by B and normed with the Minkowski functional of B, induces its original topology on A
then we say that E satisfies the strict Mackey condition. If E satisfies the strict Mackey
condition then E satisfies the Mackey condition. An infrabarrelled locally convex spaceis
quasinormable if and only if its strong dua satisfies the strict Mackey condition ([34, p. 106]).
It is well known that Fréchet spaces satisfy both (1.6) and (1.7).

An inductive limit ( E, 7) = Iiﬂ ( E,,7,)issad to be compactly regular if for each com-

acA
pact subset K of E there isan « in A such that K is contained and compact in ( E,, 7).
Compactly regular inductive limits of spaces satisfying (1.6) and (1.7) also satisfy both con-
ditions. In particular strict and compact inductive limits of Fréchet spaces satisfy (1.6) and
(1.7). From this and some known results it is easy to see that DF M spaces satisfy (1.6)
and (1.7) if and only if they are DFS spaces. For further details and examples we refer to
Bierstedt [7] and Floret [30].
If E is a Banach space and P € P("F) welet ||P|| = sup{|P(z)|;||z|| < 1).



Quasinormable spaces of holomorphic functions 159

Lemma 1.7. Let P € P("E), E a Banach space. If ||y|| < land ||z — y|| < 1 then
|P(2) - P(y)| < n(2€)"||Pl|l|z — ]|

Proof. Let A denote the unique symmetric »-linear form associated with P .
It is well known that ||P|| < ||| := supy; <1 [A(zy, . . ., ) [ < €| P||. We have

|P(z) = P(y)| = |P(y + £ —y) = P(v)|
chy(x-wwrf
=M

<t Y (7 e = bl

j=1

< eIPIICClyll + NIz = yiD™ = lylI™)
< e"|Pllllz — vlln sup (|lz = y|| + |ly]))’
1<j<n

= n(2¢)"||P||l|z = yll-

The following theorem extends results of Nelimarkka [54, corollaries 3 and 4]. We let T ( A)

and T (A) denote respectively the balanced convex hull and the closed absolutely convex
hull of the subset A of the locally convex space E .

Theorem 1.8. Let E denote a sequentially complete locally convex space satisfying (1.6)
and (1. 7). If U isan open subset of E then (K(U), 1) isa Schwartz space.

Proof, Since the compact open topology is a local topology and products and subspaces of
Schwartz spaces are Schwartz spaces it suffices, as in [54, proposition 1], to consider the case
where [J is a convex balanced open subset Of E .

Let K denote an arbitrary compact subset of U and let {z,}, denote a null sequence in E
such that K C T'( {z,},) CU .By(1.7), we can choose a sequence of positive real numbers
(A,),suchthat X\, — ooand X\ z, - 0asn — co.Since E is sequentially complete
we may suppose without loss of generality that T ( {)\,z,},) iS aso a compact subset of UJ.
Choose o > 1 such that £ := ol ( {),z,},) IS again @ compact subset of /. For £ in
H(U) we let

= d"£]0)
ile =" —
=0 I &
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If f e HU) and |||f|||z < 1then for each positive integer m

d™ £(0 d™ £(0
O _ g |T5O) |
e Kk €K m!
By restricting d’"n{: (' 9 to the subspace of E spaned by K, E;, we obtain an element of

P(™Eg) when E; isendowed with the norm whose unit ball is K.1fzeT( {z,}n) V€
K and 0 < 6 < 1 then lemma 1.7 implies

(z+ 6y) =

am£(0
(1.8) ’f)
m

d’;j:('o) ($>{ <m(2e)™6.

Let ( f,), denote a sequence in H(U) satisfying ||| £, |||z < 1 for all n.
By taking subsequences and using a diagonal process, if necessary, we may suppose that

(—d f"|( 0)) converges uniformly as n — oo on the compact subsets of sp{z,, . .., z,}
m.

for all m and [. To complete the proof, it suffices, by proposition 1.6(b) to show that
Nfa =fullk =0 a8 n,m — oo

Let € > O be arbitrary. For all n we have

dn£,(0)
m!

|

Hence, we can choose m, such that

<Hfallle <1
K

00
> a”

m=0

(1.9) >

for all n,

€

Let ¢ = Now choose 1 such that A, > l, foralln>1.1f n> [ then
€

m“—l

Z m(2e)™

m=1

?'l eT({\,z,},)and z, € €K .
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If n<1thenz, €T ({z,}\) . Hence
(1.10) KcT({z,},c T({z,} )+ K

Hence, we can choose n, such that

d"£,(0)  d"£.(0)
m! m!

(1.11)

Knsp{z, .z}

form=20,1,..., my — landall n,k > n,
Let n k > T1,, and z € K be arbitrary. By (1. 10) we have T =y + ¢'z Where v €

T({z,}.,)andz€ K. Then

lf,.(:c)—fk(znszg LD g - dmfk(o) )‘
m=0 !

I——”‘”( +e’z)——dmf".(°)(y)‘
urt m!

IN

3

S sz 0
(by1.9) + E d———-«;fn,( ) () - TLOD )(y)‘
m=0 ) :
dmfk( 0, _& fk(O)( e el 2 e
m=0
my—1 my -1
((1.8)and(1.11)) <2 E m(2e)™e + Z —+2€
m=1 m=0

<2etet+2e=Se.

Hence ||f, - fillx < & for m, k> ny and this completes the proof.

2. NUCLEAR SPACES

In this section we consider entire functions on certain fully nuclear spaces with basis. If [J
is an open subset of a dua nuclear space then a result of Boland [IO] and Waelbroeck [56]
says that (H( U), 7,) is nuclear and hence Schwartz. For this reason we only consider the
7,. and 7 topologies in this section. A locally convex space which is reflexive, nuclear and
dua nuclear is called fully nuclear ([II], [23, chapter 5)). If E isafully nuclear space with
basisthen E ~ A(P) where P is a set of weights. The Grothendieck-Pietsch criterion for
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nuclearity then says that for all («,), € P, there exists (8,), € P, and (u,), € [, such
that

2.1 o, <|u,|B, foralln

6. >1and

n’ n

A sequence space E & A(P) is caled A-nuclear ([24]) if there exists (§,)

1
Eéf < oo such that

(2.2) (a,), € P implies (o, 6,), € P.

Comparing (2.1) and (2.2) we see that A-nuclear spaces are nuclear and satisfy a «uniform»

Grothendieck-Pietsch criterion. By [24], (H( E) , 7,) and (‘H(E) , 75) are nuclear spaces
when E is areflexive A-nuclear space (reflexive A-nuclear space are fully nuclear). Hence
we obtain the Schwartz property in these two cases.

To obtain new results we define a class of spaces satisfying a property intermediate be-
tween (2.1) and (2.2) and which may also be compared with the following characterization of
Fréchet-Schwartz spaces; a Fréchet space E ~ A(P) is a Schwartz space if and only if for
all (o), € P there exists (8,), € P and (7,), € ¢, such that

(2.3) a, < 7,18, foralln
Defi nition 2.1. A C-nuclear space E is afully nuclear space with basis A( P) which satisfies

" . . 1
the following condition; there exists 6 =(¢,), , 6, >1and (5_> € ¢y such that (a,), €

n n

P implies (6,a,), € P.
Our methods are based onmonomial expansion and we now briefly recall some definitions

and results in this direction. If m = (m,), € N'M (the set of sequences of non-negative

e ¢}
integers which are eventually zero) and (z,), € A(P) welet z™ = H 2. We also denote
n=1
by 2™ the mapping
(z)n €E A(P) — 2™

Since 2™ isa product of continuous coefficient functionals it is a homogeneous polynomial
oo

of degree |m| = E m,. If a@) is a fully nuclear space with basis then {z™} . yw
n=1

forms an absolute basis for (X ( A( P)) , 7,,) and an unconditional equicontinuous basis for
(H(N(P)),T5). If f € H(A(P)) wewrite

f(z) = Z a,z"

meN(M
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and call this the monomial expansion of f. The coefficientsa,,, m € NV are given by th
Cauchy integral formula over finite dimensional polydiscs.

Propostion 2.2. Let E = A(P) denote a C-nuclear space with § = (4,), dejining C
nuclearity. If
f(2) = Y anz" € H(E)
meN™)

then

g(2) = Z a,06™z™ € H(E)

meN(N)

If pis aT, continuous seminorm on H( E) then p defined by

ﬁ( > am2”> = D lonl6p(z")

meNM meNM)

is a 7, continuous seminorm on H(E) .

Proof. The mapping (z,), € A(P) — (6,2,), € A(P) is a linear topological isomorphisn
Hence its transpose
fFEH(E) — fobeEH(E)
maps H(E) onto X(E) .
If
f(z)=zamz"'€ H(E)
meN(Nl
then
FO82)=) en(8" =) a, 6™ =g (2)
meN(N) TIIEN(N)
belongs to li(E) .
Since the monomials form an absolute basis for H(E) the seminorm

p.< ) a,,,z"'> = 3 laglp(z")

me NN meNM

is T, continuous. Since the linear topological isomorphism mentioned above maps compac
sets onto compact sets and neighbourhood systems (of compact sets) onto neighbourhoo
systems (of compact sets) it follows that the mapping f — p, ( f o 6) defines a T, continuou
seminorm on ‘H(E) . Since

pi(fod) = Y la,lp((80)™ = 3 |a,6™p(z™) = #(f)
meN'™ meNM

this completes the proof.



164 Sean Dineen

Theorem 2.3. [f E is a C-nuclear space then (‘H(E), 7,) und (K( E), 7;) are Schwartz
spaces

Proof. We first consider the 7, case. Let p denote a r,, continuous seminorm with closed
unit ball . We may suppose without loss of generality that

meNN) meNM
Let
q< 5 ) S fonlsp(z™)
meNM meNM
and let

V={feH(E);q(f) <1}

If A > 0 we can choose J finite in N such that gl; <\ifmglJ.
Let
B, = Z a,2™;q Z a,z" | <1
m€Jand meJand
p(2™)70 p(z™)70
Since ¢> p it follows that B, is a compact subset of (H(E),7,).
If f= Z a,z™ € H(E) and q(f) < 1 then

meN(N)
£ = E a,z" + E a,z"
€Jand méJor
=70 %
We have g a,z™ | <1 and
A%

e
™
3@
N
3
1]

D lanlp(z™ = ) 6Lm]am|5mp(zm)

mgJor mgJ méJ

IN

2D lanl6™p(2™) < .

megJ
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Hence
{f € H(E); a(f) <1} C By + {f € H(E); p(f) < X}
and proposition 1.6(a) implies that (HX( E) , 7)) is a Schwartz space.
We now consider the 7; topology. Let U denote the closed unit ball of the 73 continuous
seminorm p which we may suppose has the form

p( Z amz"‘> = sup p (E Amamz"')
meENW) Am€C Py|<1 meJ

JcN(N)
Jl<oo

This implies, in particular, that

(2o er( )

meNN) meNWN)

if b,] < |a,,| forall m in N¥).
Since the mapping
(Zn)'n E E s (6nzn)n

maps increasing countable open covers of E onto increasing countable open covers of E it

follows that
q( E amz’"> ::p< E amémzm)

meNN) meNWN)

also defines a 7; continuous seminorm on H( E) . With the same choice of B, and ¢ asin

the 7,, case the proof is completed by noting thét, if ¢ ( Z amzm> <1 then
meN(N)

1
D g a,z™ | =p ( 6—mam5"’z’") < Ap ( E amé"‘z"'>
meJ

mgJor mgJ
p(2™)=0

< xp< > am6m2m> = Aq< > amz"'> <A

meNM meNN

3. FRECHET SPACES

To prove quasinormability results on Fréchet spaces we use the following abstract results. A
minor variation will also be used in the next section.
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Theorem 3.1 Let {E, }%2, denote an S-absolute decomposition of the locally convex space

E. If

(3.1 E, is quasinormablefor all n,
and
(3.2) for any sequence ( p,), , P, € cs( E,) , there exists a sequence

ofpositive real numbers (e, ), such that p := Z a,p, € cs( E)

n=1

then E is quasinormable.

Proof. Let p=Y p, € cs( E) . For each positive integer n there exists, by (3.1),a g, €
n=1
cs( E,) associated with p, . By (3.2) there exists a sequence of positive real numbers (o),
such that ¢ := Y %4, € cs(E) .
Let

i n = "ﬂ( ﬂ) 2'"( ﬂ)
q(;1> gaqx +g:npz

for )" z, € E. Since {E, }%, is an S-absolute decomposition it follows that § € cs( E).
n=1

We now show that § is associated with p. Let A > O be arbitrary. Choose 7, , a positive

integer, such that L,< i.lfx=zzneEanda(1)<1then
ng 2 . -

n=1

oy pz)< Y wp(z,) <q| Yz, | <]

n=n, n=ny n=ny

> |
p I, | <5<

By (14) there exists, for each n. abounded subset M, of E_such that

and

] >

a X )

e

{z,€Eq (z,) < I}C M, + {1,, € E ip,(z,) <

o
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. —1
Let M = Z M&"-. Then M is a bounded subset of E. Moreover, if z, € E, and,

n=1 n

ny—1 1 M A
q E z, | <1, then q"(l'n) < a_ and z, € o {yn € Eui pu(¥n) < 5 2n+| }
n=1

n Qy

Hence

ny—1 "’0_‘ ny—1 ny—1 ny—

ZI EZ "+ EynEEyﬂEEanden(ynS% Zzl_n
A
CM+{y€E;p(y)£5}.

Hence (x € E; §(z) <1} ¢ M + {x €E; p(z) <)} and E is quasinormable. This
completes the proof.

Remarks 32. (g) If E is quasinormable then (3.1) is satisfied.

(b) Condition (3.2) is similar to the countable neighbourhood property (c.n.p.) introduced
by Floret [30]. A locally convex space E has c.n.p. if for every sequence(p,),,p, € cs(E),
there exists a sequence of positive real numbers ( «,,),, and p € cs( E) such that a,p, <p
for all n. If E has c.n.p. then it satisfies (3.2) for any S-absolute decomposition. Futther
properties of locally convex spaces with c.n.p. may be found in Bonet [ 13] and Dierolf [20]
and for applications to infinite dimensional holomorphy we refer to Colombeau-Mujica[ 17]
and [23, corollary 2.301.

(c) Let 7, and 7, be two locally convex topologies on E and suppose {( E,, ;) }2<, is
an S-absolute decomposition for (E, ,),i=1,2.1f i <mand 7 [ =7 |g for all n
then (E, ) satisfies (3.2) if (E, ;) satisfiesit. Thisis the case for the 7, and 7; topologies
on H(U), U a balanced domain in a locally convex space.

(d) If (K,), is a sequence of compact subsets of a Fréchet space E then there exists a

sequence of positive real numbers («,), such that U o, K, isa compact subset of E (see
n
for instance [35, p. 156]). This fact and theorem 3.1 can be combined to reduce the proof of

theorem 1.8 for Fréchet spaces to the homogeneous polynomial case.

The following theorem is due to Bierstedt-Meise [8, proposition 16] for 7 = 7, and E
a Fréchet-Schwartz space (see adso Nelimarkka [53, corollary 4.3] for a proof using operator
ideals) and to J.M. [sidro [40] fora Banach space and T =7, or 7.

Theorem 3.3. If U is a balanced open subset of a Fréchet spacethen (H(U), 7) is quasi-
normablefor 7 =7 or 7.
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Proof. Since (P(“E) , 7,,) = (P( "E),7s) is a countable inductive limit of Banach spaces it
is quasinormable [35, p. 177] and condition (3.1) is satisfied by the S-absolute decomposition
{(P("E),7,)}2, of (H(U),7),7 = T, or 7;. By remark 3.2(c) it suffices to complete
the proof for 7= 7,

Let (V)2 1den0te a decreasing fundamental neighbourhood system at the origin in E.
Let p, € cs( (P( “E), 7)) for each non-negative integer n. For any pair of positive integers
n and m there exists c,(V,,)> 0 such that

pn(Pn) S Cn( Vm)“Pn“Vm

fordl P, € P("E).
Without loss of generality we may suppose that the sequence { c,(V,,) }%°_, isan increas-

ing sequence for each n. Let o, = for all n. Then

l
(Vo)

(Vi
(V)

o, pa(P,) < IIP llv,, < 11Zllv,

foralln>mandall P,e P("E).

Letp=>" a,p, and suppose ) P, € H(U) . If m isany positive integer then
FO n=0

p(fjp,.) ZZ i ||P||v+2|1P||v

n=0 "

(V.2
sup <Cm(vﬂn) >2";0 ”Pn”Vm‘

IA

|<n<m

A simple application of the Cauchy inequalities shows that p is ported by { 0 } and in partic-
ular it is 7, continuous and (3.2) is satisfied. This completes the proof.

To give a corollary to the above theorem we need the following lemma. This lemma could
also be used to shorten the proof of theorem 1.8 and it also clear that a genera theorem of the
same kind is true for any S-absolute composition.

Lemma 3.4. If [/ is a balanced open subset of a locally convex space E and 7 = 7, 7, Of
75 then the following are equivaient

(a) the bounded subsets of (H(U) , T) are precompact,

(b) the bounded subsets of (P( " E) . 7) are precompact for every non-negative integer n.

Proof. Since (P( “E) . 7) isaclosed complemented subspace of (H( /). ) it follows that
(a) = (b).
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Now suppose (b) is true. Let B denote a bounded subset of (H( U), 7) and let p denote
a r-continuous seminorm on H( U) . We may suppose without loss of generality that

= d"f(0 = [ drf(0 = d"f(0
(5742) - 5o (P42 orn S 22 enr
n=0 ) n=0 : n=0 )

Let B, = {w;f € B}. It is easily seen that B, isabounded subsets of (P("E), 7)

for all n.

Let e > 0 be arbitrary. For each n there exists afinite subset F, of P("E) such that
B,c F,+ {P € P("E); p(P) < f— .

Let

p (E dnfd(o)> =Y n'p (@) forallZO: % in H(U).

n=0 n=0

Since {(‘P(“E) , T}, is an S-absolute decomposition for (‘H(U) , 7) it follows that 5 is
r-continuous. Now choose n; , @ non-negative integer, such that
x
E M,<ewhere M = sup p( f)
el feB

Let

ny—1
F= {ZPH;P,,EF" alln} .
n=0

>
<
~

(=]
~

n!

| So(20)} £ e

jeB Lo

Since each F, isfinite F is also finite. If f € B then p ( ) < = and hence

Hence

ny -1 1
BcF +{ FEHWUYP <Y, 2%+é CF+{feHWU);p(f) <3¢}
n=0 )

and this complete the proof.
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Corollary 3.5. If U is a balanced open subset of a Fréchet space then the following are
equivalent

(@) m=m,0n‘P(™E) for all n,

(b) (P("E), 1,)isaDFM space for all n,

(c) T, = 7, on H(U),

(d) (H(U),,)isa Schwartz space,

(e) (H(U),7s)isareflexive Schwartz space.

Proof. The equivalence of(a) and (c) is given in Ansemil-Ponte [4]. For any positive inte-
gern, (P("E), ,) isaninfrabarrelled DF space and (P( "E), 7,) is a semi-Montel space.
Hence ( a) = ( b) . Since (H(V) , 7,) is a complete barrelled space and (‘H(U) , 7,) is com-
plete, theorem 3.3 and lemma 3.4 show that (d) and(e) are satisfied if and only if (P( “E), 7,,)
is semi-Montel for all n. Hence (b), (d) and (e) are all equivalent. To complete the proof we
show that ( b) = (a). Lét (B,,)32, denote a fundamental sequence of convex balanced
bounded closed subsets of (P(" E), 7,), n a non-negative integer. If (b) is satisfied then
each B,, is r,-compact and since 7, > 7 it follows that 7[5 =7 |g_for all m. Now
(P("E) , 1) = li,['p B,, in the category of topological spaces and continuous mappings [50].

Hence 7> 7, on P( "E) and since we always have 7, > 7, this implies 7, = 7, on
P( “E) . Hence ( b) = (a) and this completes the proof.

Any Fréchet-Schwartz space satisfies the conditions of the above corollary [ 11, 42, 50, 51]
and if the conditions are satisfied by a Fréchet space then this space must be Fréchet-Montel.
For Fréchet-Montel spaces we have negative [5] and positive results [4, 26, 3 1]. A survey of
results conceming the coincidence of o and 7, 0N Spaces of holomorphic functions is given
in[1].

We now consider holomorphic functions of bounded type on a balanced domain in a
Fréchet space (example 1.3).

Proposition 3.6. [f U is a balanced open subset of a Fréchet space E then (H,(U), §)is
quasinormable ifand only if ( P(™E), B8) isquasinormablefor egch integer n.

Proof. By theorem 3.1 it suffices to show that (3.2) is satisfied by the S-absolute decomposi-
tion {( P(" E), B)}2, of (H,(U),B).Letp, €cs((P("E), B))for each positive integer
n. For each n there exists a bounded subset B, of E such that

p,(P) < ||P||B” for all P€ P("E)

By [35, p. 156] there exists a sequence of positive real numbers (), such that B =
U X, B, is abounded subset of E. On multiplying by a scalar if necessary we may sup

pose B is a drictly bounded subset of U .
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Then
d"f(0)
n!

1) &n (0) 00
(5220)-5

n=0 n=0

B

defines a 8 continuous seminorm on H,(U) . Moreover,

S, (dnﬁfo’) <y

n=0 n=0

d£(0)

n!

(o]
<)
B n=0

Aﬂn

‘ d" f(PH
n!
B

o In o]
for all E 2 ﬁ'( 0 € K,(U) and hence E Anp, isa B-continuous seminorm on Hy(U) .
n=0 )

n=0

Hence (3.2) is satisfied and the proof is complete.

Example 3.7. If E isanormed linear space then (P(“E), §) is a Banach space and henceis
quasinormable. Proposition 3.6 implies that (H,(U) , B) is quasinormable for any balanced
open subset of E. This result is due to Ansemil-Ponte [2] for convex balanced domains and
to Isidro [39] for balanced domains. If E is a distinguished Fréchet space with absolute basis
and U is a balanced open subset of E then ( H,(U), B) is quasinormable. This result and
further examples arose in a different context and will appear in [27].

4. LB AND LF SPACES

In this section we consider holomorphic functions on various countable inductive limits of
Fréchet spaces (LF spaces) and Banach spaces (CZ3 spaces). The situation for compact
inductive limits is relatively straightforward and well known. If E is a compact inductive
limit of Banach spaces then E isa DFM space and 7, = 7, = 7, on H(U) for any
open subset U of E. Moreover, (H(U), 7,) isaFréchet-Montel space and(H(U),7)is
quasinormable if and only of E isa DFS space ([22, 53])-this also follows from theorem
1.8 and the remarks before lemma 1.7.

Our general approach is to first «localize» the seminorms involved to the Fréchet and Ba-
nach spaces used to construct theinductive limits. We then apply the results of the previous
section and finally use a Hahn-Banach type extension theorem for homogeneous polynomials
to lift the results to the whol e space. The extension method forced us to restrict ourselvesto
strict inductive limits-which may be considered the extreme opposite of the compact induc-
tive limit-and this is fortunate in view of the above remarks. Recently Bonet-Peris [ 13] have
given an example of a strict inductive limit for which the space of 2-homogeneous polyno-
mialsis not quasinormable. Their method was to show that certain tensor mappings were not
monomorphisms. Because of the close connection between monomorphism and extension
theorems we were able to combine our method with a modification of the Bonet-Peris method
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to fully characterize, with mild restrictions, the standard strict £ spaces of Moscatelli type
on which the spaces of holomorphic functions are quasinormable. This gives simple concrete
examples of quasinotmability and non-quasinormability.

We also obtain positive results for direct sums of Fréchet-Schwartz spaces with Schauder
basis which admit continuous norms. The continuous norm condition is probably just a tem-
porary convenience, athough, we show by example that our approach does require this hy-
pothesis. The basis requirement and the Schwartz with continuous norm hypothesis imply that
the space of holomorphic functions contains a 7,, dense subspace of fimctions each of which
is bounded on every neighbourhood of a basic neighbourhood system (this is dways true for
Banach spaces) and gives rise to an approximation problem which may be of independent
interest.

We begin this section by stating without proof a strong version of theorem 3.1.

Theorem 4.1. Let {E, }, denote an S-absolute decomposition for the locally convex space
E. Then E is quasinormable of and only if the following two conditions are satisfied.

(4.1) Each E,, is quasinormable

If Z p, € cs(E) , p, € cs( E,) all n, then there exists for each n a seminorm

m=1

o o]
(4.2) g, € cs( En) | associated with p,, such that q := 2 g, € cs(E) .

Comparing theorems 3.1 and 4.1 we note that conditions (3.1) and (3.2) may be checked
separately while condition (4.2) only makes sense when conditions (4.1) is satisfied. Theorem
4.1 is more useful than 3.1 in the nontrivid LB case.

We now discuss the extension property. A continuous linear mapping T: E - F is
caled a monomotphism if T: E — T(E) is an isomorphism. If E is a locally convex
space we let ® E denote the vector space of symmehic n-tensors on E with the projective

nm,8

topology.

Lemma 4.2. If Fisa closed subspace of alocally convex space E then the following are
equivalent for each positive integer n.

(1) The canonical mapping J, @ Fo ® E is a monomor phism.

nw.s nm.8

(2) Each locally bounded subset of P( ™ F')extends to a locally bounded subset of P("E).
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If in addition, E is metrizable then the above are equivalent to
(3) Each element of ‘P(" F) extends to an elementof P("E).

i i
Proof. We have (@ F> =P(“F) and the equicontinuous subsets of <® F) areiden-
7,8 nm,8
tified with the locally bounded subsets of P(" F) and similarly for E. Since the topology of
alocally convex space is the topology of uniform convergence on the equicontinuoussubsets

of the dual it follows that (1) and (2) are equivalent.
If E is metrizable then ® F and ® E are metrizable and [4 1, corollary p. 265] implies

nm,s nms
that J, is a monomorphism if and only if (3) is satisfied.

The mapping J,, is a monomorphism if and only if its extension to the completionsis also
a monomorphism. If E and F are metrizable and 7 : F — E is a continuous injective linear
mapping and each P € ‘P(" F) can be extended using i to an element of P(* E) then [37,
corollary p. 265] also implies that : is @ monomorphism. For this reason we only considered
subspacesin Lemma 4.2 and for the same reason our main technique (theorem 4) only applies
to strict inductive limits.

Definition 4.3. If F is a subspace of E andfor each n condition (2) of lemma 4.2 holdsfor
the pair ( F, E) then we say that ( F, E) hasthe polynomial extension property.

Lemma 4.4. [f the pair of Banach spaces ( F, E) has the polynomial extension property then
for each n and each € > 0 there exists a > 0 such that each P € ‘P( * F) has an extension
to P € P( "E) satisfying

1Pllysav < (14 O)1Plly
(U isthe unit ball of F and V the unit pall of E).

Proof. Since U and V N F define equivalent norms on F there exists § > 0 such that
U c V. By the polynomial extension property there exists for each n, M, > 0, such that

each P ¢ P("F) satisfying ||P||,, < | has an extension P satisfying ||P||;, < M, . Hence
gach P € P( “F) has an extension P satisfying

Py < MIPl,

The method of lemma 1.7 can now be used to show

1P

n-1 n
lr-av <Py 1+Z|aé f<j>) M,

and by choosing a sufticently small we obtain the required estimate.
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Definition 4.5. The strict inductive limit, lim E_, is said to have the extension property if
n

each E, has a convex balanced neighbourhood basis at the origin V,, such that for all/ n and
all V €V, there exists W € V., such that the pair (( E,), ., ( E,., ), ) has the polynomial
extension property.

A dtrict inductive limit of Banach spaces has the extension property if and only if (E,,
E.., ) has the polynomia extension property for all n.

Proposition 4.6. If the strict inductive limit E = lim E, has the extension property then

(E, ,E) has the polynomial extension property for all n.

Proof, 1f n and m are positive integers and F is alocally bounded subset of P( "E, ) then
there exists V,, € v,, and M > 0 such that supp z |||y, < M < co. We now choose
inductively a sequence ( V;);.., V€ V;, such that (( E].)V)_, ( EJ‘”)V,-H ) has the polynomial
extension property for all j > m. By the remarks preceding definition 4.3, we see that V; N E,
and v, N E, are unit balls of equivalent norms on E, for all ¢ > m, all j > ¢ and all k > ¢.
If we let a,, = 1 we can choose inductively, using lemma 4.4, a sequence of positive real

such that each P € F has an extension P to E = | | E; satisfying
jzm

numbers (a;);5m

P +
1Pl gy <M+ 1

Since 35, @, V; isaneighbourhood of zero in E this completes the proof.

Theorem 4.7. [f U is a balanced open subset of a strict LF space E = lim E_ and E

has the extension property then (H(U), 7,) (resp. (H(U), 75)) is quasinormable if the
Sollowing condition holds;

for each T, (resp. ;) continuous seminorm p on H( U) there exists a positive integer m
such that

(4.3) if feHU)and f ;g =0 then p(f) = 0.

Proof. Let p denote a 7; continuous seminorm on H(U) . We may suppose, without loss of
generaity, that

(o)

p(iPﬂ) = Zp(P") for all i P, € H().
n=0 RO =0
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and we aso suppose that (4.3) is satisfied by the positive integer m .

For each positive integer n, we define p| 5 on P("E, ) by the formula p| (P) = p(P)
where P € P("E) and P|;_ = P. By the extension property such a P exists for each P €
P("E,,) . Moreover, if R, S€ P("E,) and R|g_= S| then (4.3) implies that p(R) =
p( S) and hence p|, is awell defined seminorm on P'(""Em) for all n. By proposition
4.6, p| E, is boundec'ln on locally bounded subsets of P("E,,) and hence is 7, continuous.

Theorem 3.3 and its proof imply that for each = there exists a 7,, continuous seminorm g,
on P( "E,,) whichis associated t0 p|, on P( "E,,) and there exists a sequence of positive

(o]
real numbers ( a,,), such that ¢:= ) "

n=0
by {0}.
We now define §, on P(*E) by the formula

is T, continuous on H(U N E,,) and ported

'lqul

3.(P) = ¢,(Plg).

Since E,, is a Frechet space the 7, bounded subsets of P( "E,) are locally bounded. Since
E has the extension property proposition 4.6 implies that ¢, is a 7,-continuous seminorm on

00
P("E).Leti=)  a,d,.
F O

If V isaneighbourhood of zero in E then V N E,, is aneighbourhood of 0in E,, and
hence there exists ¢( V N E, ) > 0 such that

g (Z Pn) =Y 0,0,(P) <AV N Ep) SR lyos,
n=0 n=0

n=0

forall ) " P, € H(UNE,).If Y P, € H(U) then
n=0 n=0

: (EP») = Y @,d,(P) = ) 0Pl
=0 n=0 =0

<AVNE, Y IIPlg llvne,

n=0

<AVNE,) Y IRy

n=0
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and hence § is a 7,, continuous seminorm on H(U) .
Now fix n. Since g, is associated with p|; there exists for every X > 0 a 7, -bounded

subset B, of P("E,,) such that
{PeP("E,);q,(P) <1} C B, +{P € P("E,);plg (P) <A},

By the extension property and since 7, bounded sets in P( "E,,) are locally bounded there
exists a locally bounded subsets B, of P("E) such that By = {P|g_; P€B,}.

If PeP("E)and g,(P) < 1then q,( Plg ) < land there exists Q € B, and
RE P("E,,) such that pls (R <Aand Plp = Q +R

Let Q € B, satisfy Q| = Q and suppose ReP("E,)ischosen oo that k| =R
Then P=Q+R+P—-Q - Rwhere Q€ B, and p(R+ P - Q — R) = p(R) < ) since
P-Q-Rlp =Plp ~Q-R=0and

p(R) = plg (Rlg) = plg (R) <X

00
We have thus shown that for each 7; continuous seminorm p = Z P, On H(U) there exists
n=0
ar, continuous seminorm ¢ = E a,q, On H(U) such that ¢, in associated with p, for
n=0
all n. Since each 7, continuous seminorm on P( “ E) can be realised as a component of a
7; continuous seminorm on ‘P( “E) it follows that (P( “E) , 7,) is quasinormable, and (4.2)
is satisfied. Since 7; > 7, the above aso implies that (4.1) is satisfied and this completes the
proof.

Condition (4.3) is satisfied by a drict inductive limit of Banach spaces [28, proposition
4] and the same result for a direct sum of Banach spacesis givenin [21]. We will prove
that (4.3) is true for any CB space. To prove this we need the following result conceming
holomorphicity of functions on LF spaces. A function f : U — C, U adomain in alocdly
convex space, iS Gateaux holomorphic if its restriction to the finite dimensional sections of
[ are holomorphic as functions of several complex variables.

0
Proposition 4.8. Let E = lim E, be an inductive limit of Fréchet spaces and let f = Z P,
" m=0
denote a Gateaux holomorphic function on E. Let ( V,,), denote a sequence of subsets of
E,V, c E,,nV, CV,., andsupposeV, isaneighbourhoodofOin E, .

If

(44) Sup “Pm”V,l < oo for al[72
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then f € H(E).

Proof. We firt fix n and consider f | . If @> 0 is arbitrary then there exists a positive
integer mg such that 2V, ¢ V,, .By (4.4),

sup [|Pyllaar, < sup [|Pully, = M < oo

m2m, 2my

Hence
M
S 1Pallr, < 3 2 <o
m>m, m>m,
By (4.4), wehave ||P,||,, <ooform=0,1,...,m;—1 andhence } 2 ||P,|l,y, < oo

for every o > 0. Thisimplies that flE,, € H( E,) and that, moreover, it is of uniformly
bounded type. i.e.

(4 .5) lim sup || P,,|I7 =
m—0od

We now show that f is locally bounded and this will complete the proof. Let ¢ € E. Without
loss of generality, we may suppose z € E, . By (4.4) and (4.5)

sup IPmll2z+v, = My <00

By (4.5) there exists a positive integer m, such that

1

IPmll2zevysv, < 5 forall m > m,.

Using the method of lemma 1.7 we can find X, > 0 such that || P, ||, 4y, «y,v, < M + -21—

for all m.
By induction and the same method we can find a sequence ( A,,,),, , A, = 1, such that

00
|Pullageaw < M, + 1for allm where2 W =3 AV, . The set |/ is convex balanced
n=1
and absorbing and each V,, is a neighbourhood of 0 in E, . Hence I is a neighbourhood of
O in E. Since

3 - | M+
Wllew € 3 WPl € 3 55 lPallseaw € 32 o < o0
m=0 m=0

m=0

f is localy bounded. This completes the proof.
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Remark 4.9. If E=lim E, isan LB space then (4.4) may be replaced by

limsup ||P,,||, <oo foralln
m—oo

but this cannot in general be used for LF spaces.

Example 4.10. (3) Let E = lim_E, denote an inductive limit of Banach spaces. Then (4.4)

(e 9]
holds for f = Z P, : E— Cif and only if f e H,( E,) for all n. By Grothendieck
m=0
[35, chapter 4,§3, proposition 5] each bounded subset of E is contained in the closure of a
bounded subset of some E,, . Hence ¥ ¢ H,(E) . A recent result in [28] implies, for strict
inductive limits of Banach spaces, that (4.4) is only satisfied by all entire functions in the
trivial case E~ C'V) | In the CB space E = lim E, isa DFS space with compact linking
n

maps then it is easily seen that f , Gateaux holomorphic on E, is holomorphic if and only if
(4.4) is sdtisfied.

(b) Let E = lim E, denote an C3 space and let f=>"P,:E— C be Gateaux
m=0

holomorphic. If for each positive integer n there exists a positive integer m_ such that
Pnlg, = 0for allm > m,_ then (4.4) reduces to ||P,||,, < oo for all m and n. Since
Banach spaces have bounded neighbourhoods of the origin we see that the condition is aways
satisfied by CB spaces when P, | is continuous for all m and n.

(c) In this example we give a new proof of a known result ([40, example 1.3], [3], [ 15,
proposition 4.1], [33]). We include the proof as we refer to it later. Let E= li’r7n E,_ be an

CB space and let B, denote the unit ball of £, . We may suppose, without loss of generality,
that nB, ¢ B,,, for all n. By the result of Grothendieck quoted in (a), {B,}2, forms a
fundamental sequence of bounded subsets of E. Let ( P;);< denote a S-bounded sequence
in P("E) . Since nB, cB,., it follows that

lim SUp ||B[| 5 = hm P 1P|l =

J—oo
for every bounded subset B of E .

(o]
Hence supj||Pj]|Bn < oc for all n. By proposition 4.8, E Pj € H(E) . Hence for any
=1
z in E, there exists a neighbourhood of 0, V, , such that

lim sup ||P;'|[lf’{,1 = lim sup [[Fj{] .y, <00
j=0o

]—0c
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This implies that the sequence { P;}; is locally bounded and hence 7, bounded. Since 7, > 3
and (P( ™E), B) is metrizable we conclude that 7,, = 8 on P( ™E) for all m.
We now show that (4.3) is satisfied by CB spaces.

Proposition 4.11. Let [J denote a balanced open subset of the CB space E = lim E, and
n

let p denote a7; continuous seminorm on H( U) . There exists a bounded subset B of some
E,, suchthat for all n,p( P) < ||P||g for all P in P("E). Moreover, there exists a positive
integer m such that p(F) =0 for all f € ‘H(V) satisfying f |,z = O.

Proof. We may suppose that p<z P,,) = Ep(Pn) for all EP,, € X(V). Let B,
n=0 n=0 n=0

denote the unit ball of E, and suppose nB, ¢ B,,, for all n. Suppose the result is not true.
Then for each positive integer n there exists a homogeneous polynomia P, such that

p(P,) > [IPll,, > H*E™||B, |5,

for all n.
We first suppose that there exists a positive integer n, (the case n, = 0 hividly leads
to a contradiction) such that deg( P,) = n, for an infinite number of positive integers. If

A = {n;deg(P,) = ny and ||P,||g = 0} is infinite then { n5 } is a bounded
n n p(Pn) "EA

nP,

p(FP,)
example 4. 10(c). If Ais not infinite then we may suppose |P,||5 , # O for all n. The sequence

subset of (P(™E), B8).Since p< > = n for all n this contradicts the conclusion of

P is a bounded subset of (P(™ E,B)).Since p Py > nv
[EATN 1Pl

this again contradicts the conclusion in example 4.10(c).

Hence, by taking a subsequence if necessary, we may suppose that deg( P,) is strictly
increasing.

Let
n(degP..)P
—_— % §f P =0
Q _ p(PPn) “ ﬂ“B,I
Yol s==— it 1Bl 20
A B

' ]
Since||Q,llp, < —~ for all n we have

o
Do 11Qulls <00
n=0
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for any B contained and bounded in some E,,. By example 4.10(a) this implies that
)" @Q, € H(E) . Since
=0

p(Q,) > n*eF)=2 >

for all n > 3 thisisimpossible.
Hence there exists a positive integer m and B a bounded subset of E,, such that for all

p(P) < ||P|l|g forall PeP("E).

A

If fe H(U)and f lyng, = 0 then d-"—rfl{ﬂ =0 for all nand
N
& (@O
p(f)—Zojp<—n! )—0

This completes the proof.

If J is a balanced open subset ofan Ct3 space with the extension property then proposition
4.11 and the proof of theorem 4.7 show that for each 7, bounded subset F of H(U) and
each 7, continuous seminorm p on H( U) there exists a locally bounded subset of H(U) , F,
such that

sup p(f) = sup p(f) < oo.

feF feF
Hence 7, and 7; define the same bounded subsets of H(U) . This result for direct sums
of Banach spaces is given in [2 I, propostion 3.1] and example 4.22 (below) provides new
examples.

We now show how (4.3) can be combined with theorem 4.1 to show that the quasinorma-
bility problem is equivalent for the different topologies and different function spaces on an
inductive limit of Banach spaces.

Proposition 4.12. Jf U is a balanced open subset of the LB space E =lim_E, then the
n

following are equivalent;

(B) (H,(U),B)isquasinormable,
(r,) (HU), 7,) is quasinormable,
(15) (H(U).7s)isquasinormable.

Proof. By example 4. 10(c), we have r, = 7, = g on ‘P(“E) for any positive integer n.
Hence if any of the three conditions is satisfied then (P(" E), ) is quasinormable and it
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suffices to show that if one of the conditions is satisfied then (4.2) is satisfied by any one of
the others.

Let (F(U), 7;) denote one of the spaces and (G(U) , 7, ) another. We suppose that (7, )
is satisfied. Let p, denote a 7,-continuous seminorm on G( U) . We suppose that

D (ipﬂ )= Ep(P") forallEPn € G(U)
n=0 n=

0

By proposition 4.11, if 7, = 7, or 7y, and by definition if , = 3, there exists a bounded
subset B of E such that for all n

py(P)< ||P|lg  forall P € P("E).

= 01 > . =
Let q<z P,,) = Y —p,(P) forall P, € F(U). Since q<>_4 pn)
n=0 n=0 n n=0 =0

< EHP,,HLB it followsthat ¢ is 7, continuous. Since (F(U) , 7 ) is quasinormable there
n=0 "

exists a 7, -continuous seminorm § which is associated with ¢. Again by propostion 4.11, if
7, =1, Of 75, and by definition if 7, = 8, there exists a bounded subset B, of E such that
for alln

i(P) <||Pllg, forallPcP("E).

For each 7, 4lp() is equivalent to p, Ip(» ) @d hence |y, is associated to p, lpcmy
The Seminorm ¢, defined by

@ (f: P,,) = fj Lacp)for 3 P, €G(U)
n=0 n=0 " n=0

is 7, continuous since
9 ( pn> < Y IR lrp, forall P, € G(U).
n=0 n=0 n=0

Hence (4.2) is satisfied by (G(U), r ) and 0 (G( U), 7 ) is quasinormable and this com-
pletes the proof.
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Theorem 4.7 and propositions 4.11 and 4.12 show that the spaces ( H,( U), B) , (K(U) ,
7,,) and (H(U), 75) are quasinormable for U a balanced open subset of a strict CB space
E if E has the extension property. This will be the case if E has a representation as a strict
inductive limit lim E, suchthat (E,, E,.,) has the polynomia extension property for all n.

n
00 n
If E isadirect sum of Banach spaces, say E = Z F,then E =lim E,where E, = % "I,
j=I " 7o
for all n. Since E_ is complemented in E,,, , P€ P(™ E,) can be extended to E_, , by
the formula P( z +y) = P(z) for zin E, and y in F,,,. Hence (E,, E,.,) has the
polynomia extension property. We thus have the following example.

Proposition 4.13. If U is a balanced open subset of a direct sum of Banach spaces then
(KU),7,),(K(U), ) and (H,(U),B) arequasinormable.

Example 4.14. To obtain further examples-and in particular examples not covered by propo-
sition 4.13-it is natural to consider a situation in which we can extend polynomials. This is
the case by [6, 18,291 if E = lim E, and for each n

(€)) E,— E,, — E,.

The simplest case in which this may be redlised is to take a non-reflexive Banach space E

and to let ( E,), denote an increasing sequence of Banach subspaces of E” containing E.

If F=Ilim E, then F has the extension property ((*) is satisfied since E «— E,_ implies
n

E"— E;and we have E, - E,., «— E' « E") and the spaces of holomorphic functions

we considered on balanced domains of F are all quasinormable. It is not, however, clear if

F is or is not isomorphic to a direct sum of Banach spaces. To give an example which is not
a direct sum we use a space constructed by Moscatelli [48] (see also [46]).

o) oo
Let X, = £, and ¥, = ¢y forall n. Let E = <€Byﬂ) - Then E" = (@ X,,>
n=1 n=l

¢ ¢

For each n let E, = {(@X,) @ (EBY,)] . Then E, — E_, < E for all
¢

i<n I i>n
= 3 ¢,
n. By [48, lemma 3] the inductive limitlim E_ is not isomorphic to a direct sum of Banach
n

spaces. The spaces ¢, and £,, may be replaced by Banach spaces X and X" provided X
is not complemented in X”.

The space considered in the previous example is called a standard strict CB space of
Moscatelli type. The structure of these spaces has been investigated in recent years and we
refer to [ 14, 45, 49] for details. We now characterize two collections of standard strict CB
spaces of Moscatelli type by quasinormability of spaces of holomorphic functions.
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A normal Banach sequence spaceisa Banach space ( ), .|) satisfying

(@ CM e ) CV

(0 if a=(a,), €rand b= (b,), € CV satisfy |b,| < |a,]| for all n then b € } and
18ly < laly

Any Banach space with a 1-unconditional basis is anormal Banach sequence space.

If (X,), isasequence of Banach spaces then

M@ = G il )

is a Banach space when normed by ||( z,,),||:=(||z,[|,) |, - Let Y denote a subspace of the
Banach space X . For each nlet E, = /\(@X,) where X, =X form <nand X, =Y

m

for m > n. Using coordinates we see that there is anatural inclusionfrom E_ into E_, , . The
strict inductive limit E = lim E, is called a standardstrict CB space of Moscatelli type and
denoted by X(X, Y) . The space X(X, Y) may be identified algebraically with a subspace
of X ¥ If 7, and =* denote, respectively, the projections on X ¥ onto the first k and all but
the first k coordinates then the restriction of both m, and 7* to X(X, Y) and each E, gives
rise to continuous projections. We have m( A( X, Y)) 2 X5 7*( A( X, Y)) & X(X, Y) and
m( En) =M 8,Y,), Y, =Y allm, for k > m. Let By denote the unit ball of X and
B, the unit ball of E_ . By [ 14], (B,)2, formsafundamental sequence of bounded subsets
of A\(X,Y) and

{@ek3k+55,;5k>0allkand6>0}
keN

forms afundamental system of neighbourhoods of the origin. A dual construction leadsto a
collection of Fréchet spaces called standard quojections of Moscatelli type. Specifically, if Y

is a subspace of X we let F, = ) (@Xk> where X, = X for k <nand X, = X/Y
k
for n > k . This gives a sequence of quotient mappings F, ., — F, and our quojection is

X(X, X/Y) = lim F,.

If )} is also a normal Banach sequence space then X(X, ¥'); = Xp( X', X'/YY) . If Zisan
arbitrary Banach space then X(X, Y) x Z is a strict inductive limit of Banach spaces and in

fact we have
MX,Y)x 7= Iirﬂ E . x Z
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and we may think of Z as the final coordinate space.

The following lemma is a variation of a fundamental lemma which first appeared in [55]
and which was subsequently modified in [ 19] and [ 16]. Our version is modeled on that given
in [ 16, lemma 1] and the proof there can be modified to prove our lemma. Propostion 4.16
is also motivated by a result in [ 16].

Lemma 4.15. Let Y denote a subspace of a Banach space X and suppose Y has the ap-
proximation property. If n is a positive integer and for every € > () there exists a > (

T () (s e ()

where the closures are taken in ®X , then the canonical mapping

nm,38

L QY -Q)x

nm,s8 nm,38

is a monorphism,

Proposition 4.16. Let X(X, Y) denote a standard strict L3 space of Moscatelli type and
let Z denote a Banach space. Suppose Y and Z have the approximation property and
(P(™(X(X,Y) x2)), 7,)is quasinormable. Then the canonical inclusions

(4.6) In:®(YxYxZ)—>®(xxYxZ)
nm,3 nm,s
and
(4.7) 1. Py x 2) » Pxx 2)
nw.s nm,s

are monomorphism.

Proof If (P("( M X, Y) X 2)), 7,) iS quasinormable, then since it is infrabarrelled, its
strong dual satisfies the strict Mackey condition. By [41, p. 186], @X(X, Y) x Z) is

nms

infrabarrelled and hence is isomorphic to a subspace Of its second dual (‘P(™*( (X, Y) X
Z)),7,)s- Hence ®(,\(X,Y) X Z) aso satisfies the strict Mackey condition. Hence

nh.S
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there exists a positive integer m, a sequence of positive real numbers ( €,), and § > 0 such
that

r (@B, x BZ> r <®((€BekBX +6B,) x BZ)>
n,s n,8 k
Cc e (@(Bm x BZ)> ,

where the closures are taken in ®(>\(X, Y)x Z).
nm,s
Projecting onto the m!* | (m+ 1)*t and final coordinates gives

o <®(By X By X Bz)> r (@((eme + 8By) X (€,.1Bx + 6By) X Bz)>

n,s

C5F<®BY><BY><BZ>,

ns

where the closures are taken in ®(X XY x Z). Let o= inf{l,¢, €, ,,,6°}. Hence

nm,s

r ((X)(BY x By X BZ)> (el (@(BX x By x BZ)>

ns

CeF(@ByxBysz)1

ns
where the closures are taken in ®( X x Y x Z) . An application of lemma 4.15 shows that
n,s

(4.6) is true and (4.7) follows by projecting onto the m'* and final coordinates.

If Eisalocally convex space we write E” in place of ( Ej), . If E isinfrabarrelled then
E” isthe natural bidual in the sense of Grothendieck [34].

Proposition 4.17. (a) If E s an infraharrelled locally convex space then (E, E”) has the
polynomial extension property.
(b) If Eisaninfrabarrelled DF spacethen

(%) (P("E"), B)/ (pepnemy:pl -0y = (P("E), B)
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and
(*x) (Hb(E”)»ﬁ)/{feu,,(E");ﬂfO} = (Hb( E),B).

Proof. () We have included the infrabarrelled the infrabarrelled hypothesis as our defi-
nition of the polynomia extension property only applies to subspaces and E is a subspace of
E” if and only if E isinfrabarrelled.

If nis apositive integer and F is a localy bounded subset of P( ™ E) then there exists a
p € cs( E) and M > 0 such that

sup{|P(z)[;p(z) <1} < M < oo.

Let Ep denote the completion of the space (E/p~! (0) , p) and let i, denote the canonical
quotient mapping of E into &,. For each P € F there existsaunique P ¢ P( *( E,)) such
that P = P o i,. Hence

sup HP“B(E,,) <M <oo.
PeF
By [ 18, theorem 3] each P € P( *( £,)) has an isometric extension P to ( Ep)” ie.
|1Bll 5,y = 1Pl -

Let Jg denote the canonical mapping from a locally convex space into its second dua E”.
We let i;‘ denote the second transpose of the mapping iy If P € F the above gives the
following commutative diagram.

E — Ep
N Vi
Jge 1 P C P | U
p
N
EII — (E)/I

Let P = P oilf. Then P" € P("E") and Pl p =P
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Since ig is continuous V := (iﬁf)" ( B f‘:,,)") is a neighbourhood of 0 in E”. Hence

sup 17"l = 30 1P, = M <o
(b). By (a) the restriction mapping
Ry : PCE") = P('E)
P _p|E

is surjective and ker( R)={P € P(E"); P|[p=0}.

Since E and E” are D.F-spaces it follows that (‘P( "E), 8) and (P( "E"), B) are
Fréchet spaces. Since bounded subsets of E are also bounded subsets of E” it follows that
R is continuous. An application of the open mapping theorem shows that (*) is true.

If f= E Q—Z}Q € ‘H(E) and there exists a neighbourhood V of 0 in E such that
n=0 )

1
n

lim sup f '( O\ = 0 then an examination ofthe estimates in (a) shows that each LA j( )
n—oo n ]
v
has an extension to £ asg—f;(ﬂ and there exists a neighbourhood ¥ of 0 in E" such that
_ 1
lim sup @ 1(0) 0.
n-m n! X
4

Such holomorphic functions are said to be of uniformly bounded type (see the proof of propo-
sition 4.8). By [33, proposition 7] each element of H,( E) is of this type and o the mapping

Rp: H,(E") = H,(E)
f- f|E

is surjective and a further application of the open mapping theorem completes the proof.
Our proof of the above proposition was motivated by results in [ 18] and [33]. We remark
that the proof in (a) shows that the restriction mapping on germs H( 0g.) — H( 0,) is dso
surjective. Further results regarding completeness and extensions and their relationship with
one another can be found in [6, 25, 43].
By [ 18, theorem 1] any Banach space X has the following property; each P € P("X), n
arbitrary, has an extension P, to X" such that for every convex bounded subset B of X and

every =** € AR there exists anet ( z,,), in B, which converges in the weak* topology
toz**, and P(z,) — P;(z**) as ¢ — oo.
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Proposition 4.18. [f Y is a subspace of the Banach space X and (Y x Y, X x Y') has
the polynomial extension property thenY” is complemented in X"

Proof. Let P(y,y’) =y'(y) for (y,4') € Y xY'. Snce P € P("(Y xY’)) there exists
P € P( ™ X x Y") which extend P. Let P, denote the extension of P to X x Y™,
described above, and let Q be its restriction to X” x Y’ If z**€ X" andy’ € Y’ we let

[m(z*)1(y) = Q(z™,y).

Since Q is continuous, w( z**) € Y” and 7 : X" — Y” is continuous and linear. If
y* €Y |ly*||<1,andy’ €Y’ then the weak* closure of By x {y’}, contains y** x {y'}.
Hence there exists anet in By, (y,), , which converges weak* to y** , such that

Qly™,v) = Jim_Q(y,, y) = lim y'(v,) =y (¥) = [7(y™)1(y)

Hence w( y**) = y** for all y** € Y”. The mapping 7 is the required projection of X" onto
Y”.

We are now in a position to give our characterizations of two collections of Moscatelli
type spaces.

Theorem 4.19. Let \( X, Y) denote a standard strict CB-space of Moscatelli fype and sup-
pose Y has the approximation property The following are equivalent.
(a) For all positive integers n the canonical mappings

It Q¥ x 1) = QX x v)

nms nm.s

are  monomorphism,

(b) X(X,Y) has the extension property,

(¢) (Hy(U),B8),(H(U).7,) and (H(U),7;) arequasinormable for any balanced open
subset U of M(X,Y),

(d) P(("(NMX.,Y)).B)isquasinormablefor every positive integer n.

Proof. (a)=> (b).If (8) holds then the pair ( E,.E, ., ) hasthe polynomial estension property
and hence X (X, Y) has the extension property and (b) holds.

(b)= (c). If holds then theorem 4.7 and proposition 4. I 1imply that (c) holds.

(¢)=> (d). Thisis trivial since (P( "( A\( X, Y"))) 3) is a complemented subspace of any
of the spaces in (c).

(d)= (a). This follows from (4.6) in proposition (4.16).
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Theorem 4.20. Let X(X, Y) denote a standardstrict CL3 space of Moscatelli type. Suppose
Y has the approximation property and ) is a reflexive normal Banach sequence space. The
following are equivalent.

(@) Y" is complemented in X",

(b) N(X, X'/Y1) is a product of Banach spaces,

(€) MX",Y")= (M(X,Y)p)p is a direct sum of Banach spaces,

(d) (H,(U),B),(H(U),7,) and (H(U),7;) arequasinormable for any balanced open
subset of A( X, Y) x Z where Z is any Banach space with the approximation property,

(e (P(™X(X Y)x2), B))isquasinormablefor all n andfor any Banach space Z with
the approximation property.

Proof(a)=>(b). If Y” is complemented in X" then X'/Y * is complemented in X’ and
(XX, Y= N(X', X'/Yh) = E, x 2"

where Z is a topological complement of X'/Ytin X". Hence X(X, Y)[g is a product of
Banach spaces.

(b)+(c). If (b) holds then (( X(X, ¥))g)s = X(X", Y") is a direct sum of Banach spaces.
By proposition 4.13 and 4.17, (c) is true when U = E.

If (d) istrue for U = E then trivialy (€) is true.

If (€) holds then lemma 4.2 and (4.7) imply that the pair (Y x Y’, X x Y’) has the
polynomia extension property. By lemma 4.18, Y” is complemented in X" and hence (e)=
(a).

If (e) holds then lemma 4.2 and (4.6) imply that (Y X Y x Z, X X Y x Z) has the
polynomia extension property. By theorem 4.6 and proposition 4.11 this implies that (d) = (€)
for arbitrary balanced U . This completes the proof.

Remark 4.21. Theorem 4.20 can be strengthened by noticing that we did not use all the
hypothesis a all stages. For instance in condition (d) and (€) we can replace Z by the single
Banach space Y' . Clearly it suffices in condition (€) to have this condition for one value of
n > 2. The result also shows that if we have quasinonnability for one balanced domain then
we have it for all balanced domains. The general method of proof can be adapted to more
general CB spaces of Moscatelli type-spaces of the form ( [ (X,), , (Y,),]) and aso to the
nonsymmetric case-in fact condition (a) shows that we get the same results for both cases.

Example 4.22. [t is how simple to give both positive and negative examples. If Y isa
closed non-complemented subspace of a reflexive Banach space X (any Banach space not
isomorphic to a Hilbert space contains such a subspace) then (P(" (X, Y) x Y’)), 8) is
not quasinormable for any n > 2 .
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On the other hand theorems 4.19 and 4.20 show that positive results not covered by propo-
sition 4.13 are rather similar to that given in example 4.14. Further examples are obtained by
taking a subspace Y of X such that Y is an M-ideal in X but not isomorphic to an M-
summand in X . This occurs for instance if Y is a closed but non-weak* closed ideal T in a
W*-algebra d since in this case 7** is a M-summand in A** and hence is complemented
(for further information on M-idedls and M-summands we referto [36, chapter 3]). Further
examples may be found in [ 16] and [ 19].

We now turn to the case of a direct sum of Fréchet-Schwartz spaces. In this case we
trividly have the extension property but condition (4.3) is not adways true (see example 4.26).

o0
Proposition 4.23. Let E = Z F, denote a direct sum of Fréchet-Schwartz space and sup-

n=1
pose each F, has a Schauder basis and admits a continuous norm. Letl/ denote a balanced
open subset of E and suppose p is a 7; continuous seminorm on H(U) . There exists a
positive integer m such that for each positive integer n there exists a compact subset K, of
E., satisfying

p(P) < ||Pllg, forall P € P("E).

In particular, if f € H( U) and f IUOZM r = 0then p(f) = 0.
j=1 ]

n
Proof. Let 7 denote the projection from E onto E,, := E F,.We first suppose that for all n
=1
there exists n; and P, € P(" E) such that P, |z = 0and p( P,)# 0. Since P, 0w, — P,
locally @ m— co We may suppose that for each n there exists j, suchthat P, =Po .
Now fix n. The space E; is a Fréchet-Schwartz space with continuous norm and Schauder

basis. Let T, denote the projection in £, onto the first £ coordinates and let
Qe( z) = P,(Ty( an( z))) forallz cE.

Since 7, = 7, 0n ‘P( "% E; ) (see proposition 3.5) it follows that Q, - P, as £ — o0
in(P(™E), 7,) . Hence we can choose ¢ sufficiently large so that p(Q, ) # 0. Let R, =

ann/p(an). We have p(R,) = nand R,|p =0andif W, isthe unit ball of a continuous
norm on E, then||R, ||y, < oo forall m.

We consider two possihilities;
() there exists a positive integer k such that R, € P(*E) for an infinite number of n.
The method of example 4.1 O(c) can be adapted to show that this gives a contradiction,
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(b) there exists an infinite subset M of N such that n# min M imply n; # m;. By
proposition 4.10(b), Y P,€ H(E) . Since > p( P,) = oo this is impossible.

neM neM
Hence both possibilities lead to the contradiction and we have shown that there exists a
positive integer m such that if f € H(U) and f|;ng_=Othenp(f) =0.
Since 1, = 7, on P("E,,) for any positive integers m and n the seminonn p|; on
P( "E,,) defined by

plg (P)=p(POm,) forallPeP("E,)

is well defined and 7, continuous. Hence there exists for each n a compact subset K, of E,,
suchthat p|g ( P) <||P||g, forall P € P("E,,). If P € P("E) then (P—Pom,)|g =0

and hence
p(P) = p(Po m,) <||P||g,

for Pe P("E) and this completes the proof.

The basis requirement in proposition 4.23 could be avoided if we know the answer to the
following  question.

If E isa Fréchet space with continuous norm does E contain a neighbourhood basis at
the origin, V , such that for ali n

() {P € P("E); ||P|ly < o0}

Vey

isT, densein P( “E) ?
It is easily seen that the proof of the above proposition can be adapted to obtain the fol-
lowing.

Proposition 4.24. If U is a balanced open subset of a direct sum of Fréchet-Schwartz spaces

o
E = E E, each having a Schauder basis and admitting a continuous norm then 7, = 7,
n=1

on ‘H() . If iy =m0n H(UN E,,) for all mthen 7, = 7;0n H(U).

Ifwe let F, a s (the space of rapidly decreasing sequences) then E a D (the space of
test functions on R") and we recover, in propostion 4.24, a result proved in [ 12]. With the
same hypotheses we have the following.
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Corollary 4.25. (H(U),,) is a Schwartz space and (H(U), 7;) is an ultrabornological
Schwartz space.

Proof. The result for 7, follows either from theorem 1.7 or from theorem 4.7 and propo-
sitions 4.23 and 4.24. Since T, = 7,, = 7; on P("E) the result for 7, implies that the
bounded subsets of (P( "E) , ;) are precompact. Lemma 3.4 then implies that the bounded
subsets of (H(U), 75) are precompact. By theorem 4.7 and proposition 4.23, (H( U), 7) is
quasinormable and this implies that (H(U) , 73) is a Schwartz space.

The Fréchet-Schwartz spaces in propositions 4.23, 4.24 and Corollary 4.25 may be re-
placed by Fréchet-Montel spaces for which 7, = 7, on P("E,,) for all n and m (see for
instance corollary 3.5).

Finaly we give an example which shows that the continuous norm hypothesis in proposi-
tions 4.23 and 4.24 is necessary and the example also shows that condition (4.3) of theorem
4.7 is not aways satisfied by strict CF spaces.

[o o]
Example 4.26. Let F; = CV and F;=C fori>2.Then E=) F,=C" xCMisa
=1

direct sum of Fréchet-Schwartz spaces each of whic!, nas a Schauder basis. Let

u, =0, ...,1,0,..)inF, and let v, denote aunit vector in F, for n>2
1
ntposition
The seminorrn
2 F(0) )\ _ |42 (0 & £(0)
p (20: T) - ZO: T A TR Y

00 In
for E di& € H(U), U any balanced open subset of E,is, but not 7, continuous
n=0 :

([21]). Hence the conclusion of proposition 4.24 is not valid in this case. The seminorm
p does not have the property given in proposition 4.23. On the other hand E is a reflex-
ive A-nuclear space with basis and hence (H( E), %), (K(E), 7,) and (H(E), 7,) are all

Schwartz (and even nuclear) spaces and % the conclusion of corollary 4.25 is vdid for this
space (when U = E). We refer to[21] and [23, chapters | and 5] for further details.
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