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ON LICHNEROWICZ SMOOTH HOMOTOPY INVARIANTS
FOR G-STRUCTURES

WIESLAW KROLIKOWSKI, STEFANO MARCHIAFAVA(*)

Abstract. In [10] A. Lichnerowicz introduced a remarkable smooth homotopy invariant
K(®) for maps ® between almost Kahler manifolds. The generalisations of K(®) for
maps between Riemannian manifolds with given G-structures are described and some appli-
cations are given.

1. INTRODUCTION

In 1969 A. Lichnerowicz found a smooth homotopy invariant, K(®),ofmaps® : M — N
between a compact special almost Hermitian manifold M and an almost Kahler manifold N .
He defined this invariant in terms of Kéhler forms of the manifold as

K(tb):/ <wM &*wV > dv,,.
M

He also showed that K (®) can be expressed by means of two partial energies E'(®) and
E"(®) naturally associated to the map & , if one refers to the almost complex structures of
M and N.

Interesting applications of K(®) were given in [10,11] and by others (see e.g. [5] for a
report on this subject).

We were surprised very much in observing that the idea of the construction of K(® ) can
be applied to many different contexts. Under suitable general hypothesis a homotopy invariant
K fﬂ(tb) can be considered for smooth maps ® : (M,g9) — (N, h) between Riemannian

manifolds which admit «canonically» defined p-forms ¢ € APM and n € APN playing a
role of the Kahler 2-form in the complex case (Th. 2.1).

Indeed, we noticed that in the case of Riemannian manifolds with the holonomy group
contained in the well known Berger list ([3], p. 301) such forms always exist and can be used
in the definition of the homotopy invariant without any additional hypothesis (Th. 2.2).

In particular we show that even in the case of U(n) the main Lichnerowicz invanant is
only the first of a series of possible ones

It is also remarkable, although definitively obvious, that in the case of forms ¢ and 7n of

maximal degree (equals to the common dimension of the manifolds in question) the invariant
K¢ ,(®) is expressed by the degree of @ up to a constant depending on Vol( M) .

A.M.S. Classifications: 53C10-53C40

(*) This work was supported by the program of G.N.S.A.G.A. of C.N.R. and the scientific exchange between Polish
Academy of Sciences and C.N.R. (financed by M.U.R.S.T.)
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As an application of the homotopy invariants introduced in this paper we prove some
results on the homotopicity for some classes of smooth maps ® : M — N, where M and
N are manifolds equipped with G-structures from the Berger list.

The other applications and relations between the homotopy invariants and appropriate
partial energies will be a matter of further research.

LICHNEROWICZ-TYPE INVARIANTS FOR G-STRUCTURES

Let G C SO(m) and G' C SO(n) be two Lie groups. Suppose that , € APR™ and
§o € APR™ are given forms of degree p which are invariant by G and G’ respectively.

Suppose that (M ™, g) and (N", h) are smooth, oriented, Riemannian manifolds with
given G-structure and G'-structure subordinate to their respective SO(m)— and SO(n)-
structure.

In the following the manifold M™ will be always assumed to be compact.

Notice thaton M™ and N™ there are canonically defined p-forms 7 and £ corresponding
to n, and &, , respectively.

Definition 2.1. Let ® : (M™,g) — (N",h) be a smooth map. Define

K (@)= /M < n,®¢ > dV,.

where £ and n are the p-forms defined above.

Theorem 2.1. If € is closed and 1 co-closed then K n.c(®) is a smooth homotopy invariant,

i.e. it is constant on the connected components of C(M, N) (space of smooth maps from
M™ to N™ endowed with the usual topology of uniform convergence).

A key point in proving the result of Lichnerowicz and its present generalisation is the
following fundamental lemma ([11] p. 358; [5] p. 49).

Homotopy lemma. Let &, : M — N be a smooth family of maps between the manifolds
M and N, parametrized by a real number t. If w is a closed p-form on N then

(9/0t) (P w) = d[ P, ( W) ],

where iy, w denoltes the interior product of the vector W (t) := (0/0t)(®,) with the form
w.

Proof of the theorem 2.1. If «*» denotes the Hodge operator on forms then we have (see, e.g.
[12], p. 185)

K (®)= / D*E A x7m.
M
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Let ®, and ¥, br two maps from M to N, homotopic through the smooth family ®,,t €
[0, 1]. Since, by hypotesis d(xn) = 0, Homotopy Lemma yields

DrE — DJE = (8/8t)(®;€)dt = f d[ D, (i yw)]dt = dp,
[0,1] [0,1]

where p := [ |, @ (g, w)dt.

Therefore

K, (@) — K, ((®g) = f <, ®E — B > dV), = /M(fbra _ @) Aw

M
= f dph*n=-/ d(pN\x*n) =0.
M M
Then, we obtain K,e(®) = K (D),as required. =

Notice that in the case when G C U(m'),G' C U(n),m = 2m',n = 2n and
n=wM £ =w", where wM and w" denote the Kihler forms on M and N, respectively,
Theorem 2.1 is nothing but the result of Lichnerowicz [10] (see also [S], p. 48).

Let us return to the general case and assume that G, G', n, , §, are as above. The following

statement is a special case of Theorem 2.1:

Theorem 2.2. Let (M™,qg) and (N", h) be Riemannian manifolds with holonomy groups
G and G', respectively. Suppose that n and & are p-forms correspondingto n, and &, ([12],
p. 113), which are invariant by the parallel transport. Then K (®) is a smooth homotopy

invariant of the smoothmaps ® : (M™,g) — (N",h).

Proof. It is sufficient to remark that since n and £ are invariant by the paralle] transport then
they are closed and co-closed, respectively (cf. [12], p. 189). @

3. GENERALISATION OF LICHNEROWICZ INVARIANT
IN THE COMPLEX CASE

Assume that G = U(m) and G’ = U(n) . Recall that the standard Kéhler 2-form of R>™ =
C™ (18]
wy = (1/2)(dz' Adz' + ...+ dz™ Adz™)

is U(m)-invariant. Also, the r-th exterior powers of wy,(wy)" = wy A ... A wg, are
U(m)-invariant forr=1,...,m.
Let (M2™ g) and (N>™ h) be two almost Hermitian manifolds equipped with the

M

Kahler forms w™ and w? , respectively. For a smooth map @ : (M>™,g) — (N>™ h)

we define

KT(‘I)):./ {(mM)r,(iD*wN)T}dVM, r=1,...,m.
M
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Theorem 3.1. Let (M>™,g) and (N> h) be almost Kahler manifolds. Then K (®) isa
smooth homotopy invariant for r=1,..., m.

Proof. By the hypothesis d(w™)™ = d(w™)™ = 0 for any positive integer ». By the below
Lemma 3.1 we also have d[«(w™)"] = 0, then we apply Theorem 2.1. =

Remark 3.1. If we weaken the hypothesis and assume that (M>™,g) is a special almost
Hermitian manifold (i.e. d(xw™) = 0) then for » = 1 we obtain nothing but just the Lich-
nerowicz invariant ([5], [10]).

Lemma 3.1. Let w be the fundamental 2-form on an almost Kdhler manifold of real dimen-
sion 2m. Then

(w) =[r/(m-)NIWw"T", forr=1,...,m.

Proof. It is analogous to the proof of Lemma 4.1 in the quaternionic case. Let us only recall
the well known identity (see, e.g. [5]):

w™ = mlvol(R>™),

where vol(R>™) is the volume form corresponding to the canonical Euclidean metric of
R>™ with the canonical orientation. ®

Now, let us give some applications of the invariants introduced above, in view also of the
extension to other cases. Some of them are essentially known (see [5]) but this formulation
seems to be important because it does not use the notions of the partial energies.

Definition 3.1. Let (N*™, h) be an almost Hermitian manifold with an almost complex struc-
ture I and M*™ any smooth, orientable, 2m-dimensional manifold (m < n). Suppose that
® : M>™ — N2" is a smooth immersion. We say that (M>™, ®) is an immersed almost
complex submanifold of (N-", h) if the following condition is satisfied:

for every point p € M*™ the vector space ® ( T,M *™) is a I-invariant subspace

;
of Ty N°".

Remark 3.2. Notice that the manifold M>™ (as above), endowed by the Riemannian metric
g := ®*h, admits a unique almost complex structure [’ suchthat o ®_ = ®_o ', With

respect to I’ the (M>™,¢g) is an almost Hermitian manifold and ® is holomorphic (Cf. [5],
p. 48).

Proposition 3.1. Ler (N-", k) be an almost Kéhler manifold with an almost complex struc-
ture I and (M*™,®) be a compact immersed almost complex submanifold of (N2", k).
Then, the immersion ® : M-™ — N=>™ is not homotopic to a constant map. In particular, if



On Lichnerowicz smooth homotopy invariants for G-structures 201

M?>™ is homeomorphic to the sphere S>(m = 1) the map ® defines a non-trivial element
in the homotopy group m,(N-").

Proof. By Remark 3.2, consider M>™ as an almost Hermitian manifold. Then w¥ = ®*w¥
is the Kéhler form on M2™. Hence (M*™, g) is almost Kihler and at every point p € M32™
weget < wM, ®*w" > = [lwM||> = m. Inparticular, K, (®)# 0 and the statement follows
by the Theorem 3.1. .

Definition 3.3 ([7]). Let (N>™, h) be an almost Hermitian manifold with an almost complex
structure 1 and M>™ any smooth 2m-dimensionam manifold. Suppose that ® : M>™ —
N>™ s a smooth immersion. We say that (M*>™,®) is an immersed Lagrangian subman-
ifold of (N>", k) if at every point p € M>™ the vector subspaces @ (T,M*™) and

1o (T,M >m) are totally orthogonal in TomN 2n

Proposition 3.2. Let (N>", h) be an almost Kahler manifold. Suppose that M*™ is a
compact, oriented, 2m-dimensional manifold (m < n). Let ®, : M*™ — N’" and
D, : M?2™ — N2™ be two immersions such that (M>™ ®,) and (M>™, ®,) are almost
complex and Lagrangian, respectively. Then ®, and ®, can not be homotopic.

Proof By Remark 3.2, we can consider M>™ as an almost Kdhler manifold with respect to
the Riemannian metric ¢ := ®*h and the almost complex structure /' naturally induced by
& . By the Definition 3.3 we get ®;(w?") = 0 (see [7], p. 87). Hence K,(®,) = 0.
On the other hand, by Proposition 3.1, we have K,(®,)# 0. Then the statement follows
immediately by the Theorem 3.1. =

The following propositions are simple generalisations of the known results (see e.g. [5];
Proposition 8.9, Corollary 8.12 and Proposition 8.21).

Proposition 3.3. Let (M>™,g) and (N>",h) be almost Kahler manifolds. Suppose that
®d : M?™ — N3" is a smooth map such that the cohomology class [®*(w")"] equals
c, [(wM)] for some r € {1,...,min(m,n)} and some c, € R. Then

K(®)=c[m!r'/(m—7)!]Vol(M).

In particular, c.#0 ifandonly if K (®)70.

Proof. By hypothesis ®*(w")" = c (wM)" + dp forsome p € A""!' M. Then by Lemma
3.1 we get
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K,(®) Ldrv*@%"m@”)f=c,,fM(w“)fm(wM)wfMdpm(wM)f

e [rt/(m =) [ @M+ [/ (m =01 [ dlon ()™

c,[m!r!/(m —r)!]Vol( M)

as required. s

Proposition 3.4. Let (M>™, g) and (N>™ h) be two connected, compact, almost Kahler
manifolds of real dimension 2m. Assume that ® : M>™ — N>™ is a smooth map. Then

K_(®) = (m!)” deg(®) - Vol(N),

where deg(®) denote the degree of © (see, e.g. [1] p. 273).

Proof. By the definition of deg(®) we have

f P (dVy) = deg(®) - Vol(N).
M

Then, by Lemma 3.1 we get

f¢'(dVN)=(l/m!)/ ¢*(w”)m=[1/(m!)31f O (wh)™ A (W)™
M M M
=[1/(m!")* 1K, (®)

as required. =

Proposition 3.5. Let (M°™,g) and (N-",h) be almost Kéihler manifolds. Suppose that
® : M>™ — N>" is a smooth map such that the cohomology class [® *w"] equals c[w™M]

forsome c € R. Ifrank (d®) <2m, then K (®) =0 forr=1,...,m.

4. HOMOTOPY INVARIANTS IN THE QUATERNIONIC
CASE AND APPLICATIONS

Let Sp(m) be the group of the automorphisms of the right quaternionic vector space H™

which are unitary with respect to the canonical Hermitian product: ¢ -¢' = 5 ¢ “CE, (.(' €
H™.
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Recall that the enhancement Sp(m) - Sp(1) of Sp(m) is the group of R-linear auto-
morphisms Ty ~ of H™ defined by

Tyo(Q) = AC-q, (E€H™,

where ”." means the quaternionic multiplication by a unitary quaternion ¢ € Sp(1) and A

is a transformation from Sp(m).
The group Sp(m) - Sp(1) preserves the Euclidean product g (¢,¢') = Re(¢ - {')

in H™ = R%™, hence it is a subgroup of SO(4m). Moreover, the multiplication by a

quaternion A € H is preserved up to a conjugation in H, ie. if w,({) := ¢ - X then
T olws (O] = w1 2a[ T, (O]
So, if (1,1,,1,,4;) is anormal base of H (i.e. 17 = i3 =143 = —1 and 1,151 = —1),

defined up to the conjugation, then the right multiplication by —1,, —2, and —2; determines

atriple (I,, I,, I;) of complex structures of R4™ = H™ satisfying the following conditions:

I

£

=1

12

=I; =-I1d, I,I,I;=-Id,

where Id stands for the identity mapping in R4™.
Any two such triples ([, I,, I3) and (I}, I3, ;) are related by a transformation

ILZZCMI&: h=1,2,3,
1,3

with (¢;,) € SO(3).

Definition 4.1. The standard enhanced quaternionic structure of H™ is the 3-dimensional
subspace Q, of End,H™ generated by (any one of) such triple (1,,1,, 1), called an ad-
missible hypercomplex base of Q) (we also write (1,,1,,13) € Q,)

Let (I,,1,,I;) € Q,. Consider the 2-forms w,,w, and w; defined by

we(¢,¢) =g, ([,£,¢), k=123
Definition 4.2 (cf. /3], p. 419). Define

Qﬂ:= Wy Aw; + wy Awy +wy Awy.

Remark 4.1. Q_ is a well defined 4-form, indipendent of (1,,1,,13) € Q, and invariant by
the group Sp(m) - Sp(1). Moreover, it is non-degenerate, being

()™= (2m+ 1)!vol(R*™)
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(see, e.g. [2], p. 83).

Definition 4.3. /)4 Riemannian manifold (M*™, g) with a given Sp(m) - Sp( 1)-structure
is called an almost Hermitian quaternionic manifold. The 4-form €2 corresponding to Q_ is

called the fundamental 4-form (or Kihler form) of (M*™, g). Yet, we will denote by Q the
3-dimensional subbundle of EndT M*™ corresponding to Q..

2) An almost quaternionic Hermitian manifold (M*™, g) is called an almost quaternionic
Kahler manifold if the fundamental 4-form Q is closed.

3) An almost quaternionic Hermitian manifold ( M*™, g) is called a quaternionic Kéhler
manifold if its holonomy group is contained in Sp(m) - Sp(1).

Remark 4.2. The most important example of an almost quaternionic Kihler manifold is the
quaternionic projective space HP ™ with standard metric (cf. [14] or [4]).

Remark 4.3. 1) Since Sp( 1) - Sp(1) = SO(4), every 4-dimensional oriented Riemannian
manifold is naturally an almost quaternionic Kahler manifold. 2) Recently, see [15], p. 136,
it was shown that if 4m > 8 then the holonomy group of an almost quaternionic Kahler
manifold is contained in Sp(m) - Sp(1).

Proposition 4.1. Let (M*™,g) and (N*", h) be almost quaternionic Kahler manifolds
(M*™ being compact). Suppose that ® : (M*™, g9) — (N*™ h) is a smooth map. Then

KL (D) :=/ <(QM) (@*QN) > av,,,
M

are smooth homotopy invariants for r=1,... ,m.

Proof. The statement follows directly by the Theorem 2.1. It is enough to notice that the
forms (QM)" and (Q")" are evidently closed and co-closed by the following lemma. =

Lemma 4.1. Let Q be the fundamental 4-form on an almost quaternionic Kahler manifold
of real dimension 4m. Then

*(RQ7)=a Q" r=1,...,m

where o, = ||Q7||° /(2m + 1)!. Inparticular, a; = 12m/(2m)!.

Proof. We follow the idea of Bonan ([4], p. 59). Observe that x(Q)) and Q""" are both
of the same degree and invariant by the group Sp(m) - Sp(1) for r = 1,..., m. Suppose
that «(€27) # kQ™~" for any real number k£. Then, it would imply that on HP™ (whose

holonomy group is Sp(m) - Sp( 1)) the harmonic forms x( QHF)" and (QHP)™" are not
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proportional. But it contradicts the well known fact that the Betti number b, _.,(HP™) is
equal to 1. Hence

x(Q2,) =a,Q"", r=1,....,m

for some coefficients a. which can be computed as follows. By Remark 4.1 we get

(Q)) AX(RQ]) = a,(Q,)™ = a,(2m+ 1)!vol(R*™).

T,
*

On the other hand by the definition of Hodge operator we have

(@) AX(Q]) = ||Q7||7 vol(R*™).

Hence
o, = 19711 /(2m + 1)1

Finally, the indicated value of a, follows from the formula ||Q,||*> = 12m(2m + 1), that we
will establish in the proof of Proposition 4.2. .

Definition 4.4. Let (M*™,g) and (N*™ h) be two almost quaternionic Hermitian
manifolds and ® : (M*™ g) — (N*", h) a smooth map. ® is called Q-holomorphic

if the following condition is satisfied:

for every point p € M*™ and each hypercompex base (I}, I5,I}) belonging to Qf
there exists a hypercomplex base (I,,1,,1I;) € Q:;;' () such that

(4.1) Iﬂ(fb,)p=(¢*)pl'; fora=1,2,3

Example 4.1. Any 4-dimensional, oriented, Riemannian manifold (M*,g) can be con-
sidered as an almost quaternionic Kdhler manifold (see Remark 4.3). A diffeomorphism
® :(M?*, g) - (M?,g) is Q-holomorphic iff it is conformal and preserves the fixed orien-
tation.

Remark 4.3. Let (N*" h) be an almost quaternionic Hermitian (resp. Kéhler) manifold
and M*™ any smooth, orientable, 4 m(< 4 n)-dimensional manifold. Suppose that ¢ :
M4™ — N%" is a smooth immersion an the following condition is satisfied:

for every point p € M*™ the space o (T, M 4m) is a quaternionic subspace of
TompmN*".

Consider on M*™ the Riemannian metric g := ®*h. Then, there is a unique (natural)
quaternionic structure Q™ on M*™ such that (M*™, g) is an almost quaternionic Hermitian
(resp.. Kihler) manifold endowed with the fundamental 4-form QM := ®*QY and ¢ :
(M*™ g) — (N*" h) is a Q-holomorphic map. (M*™,® ) is called an immersed almost
quaternionic submanifold of (N in h).

The following proposition is a partial extension to the quaternionic case of the results of
Lichnerowicz ([11], p. 379; see also [5]. Cor. 8.20).
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Proposition4.2. Let (M*™ g) and (N*", h) be two almost quaternionic Kéhler manifolds.
Suppose that ® : (M*™,g) — (N*", h) is a Q-holomorphic isometric immersion. Then

Ko(®) = 12m(2m+ 1) Vol( M)

In particular ® can not be homotopic to a constant map.

Proof. Let p € M*™ . Chose orthonormal bases of the form

/ / f / / f
(e, l,e,1,e,,13e,...,e,11e ,Ire_ ,Ise ),

and

(fl?Ilfl!Ilfl!If*!flJ“*vfni‘{lfnfflfniflfn)w

in T,M*™ and Ty, N*" respectively, where (I},I5,13) is a hypercomplex base of
Qf,(I, ,I,, I;) is a hypercomplex base of ng} and the suitable condition (4.1) holds.

Suppose that ® is Q-holomorphic. It is clear that QM = &*QY and < QM,
oQN > = || M ||fj . Notice that the only components of QPM which are different from
0 are those that correspond (up to the permutations) to the 4-ples of vectors

(4.2) (e,,1,e,,e,,le)) ,(le. le, Ie, Ie) fort,s=1,....,m,t¥s
and
(4.3) (e, 1,e,,le,,Ie) fort,s=1,...,m,

for any circular permutation (a,b,c) of (1,2,3). It is easy to see that, up to the permuta-
tions, there are 3m(m — 1) different components of the type (4.2), 3m(m — 1) different
components of the type (4.3) with t# s and m different components of the type (4.3) with
t = s. By a simple calculation we get

Qe,. I ,e,,e,.[e)=Q(Ie, 1e, le.le)=Q(e.le, e [e)=2
for t#s
and
Q(e,. [ e, .le,.[e)=6.

Since [|QM||z = 3m(m — 1)2° + 3m(m — D2° + m6° = 12m(2m + 1). then by

integrating we get the required formula. ®
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Remark 4.4. The proposition 4.2, with a slight modification, holds when ® is a conformal
iImmersion.

Let us recall that 4-dimensional immersed quaternionic submanifolds M* of a quater-
nionic Kdhler manifold (N*", h),n > 1, are totally geodesic (see e.g. [16]) and semi-
conformally flat. In the case when the scalar curvature of ( N*", h) is positive the only pos-
sible types for compact M* are HP' = §* and CP* ([13)).

Corollary 4.5. Every immersed quaternionic submanifold of (N*™, h) which is isometric to
HP' defines a non-trivial element in the group m,( N*™).

Remark 4.5. The above fact was well known in the case when (N*" k) is the quaternionic
projective space HP™ and @ : HP' — HP™ is a canonical immersion of a quaternionic
projective line (see, e.g. [17], p. 30).

The following three propositions are simple extensions of those considered in the complex
case, Section 3.

Proposition 4.3. Let (M*™ g) and (N*™ h) be almost quaternionic Kéhler manifolds
(M*™ being compact). Suppose that ® : (M*™, g) — (N*™, h) is asmooth map such that
the cohomology class [®*(QV)7] equals c [(QM)T] for some c. € R,r € {1,..., min
(n,m)}. Then

KL(®)=ca (2m+ 1)!Vol( M).

Proposition 4.4. Let (M*™ g) and (N*™ h) be two connected, compact, almost quater-
nionic Kahler manifolds of the same dimension 4m. Suppose that ® : (M*™ g) —
(N*" h) is a smooth map. Then

K3®) =[(2m+ 1)!]? deg(®)Vol(N).

Proposition 4.5. Let (M*™, g) and (N*™ h) be two almost quaternionic Kahler manifolds
with M*™ compact. Suppose that ® : (M*™ g) — (N*" h) is a smooth map such that
[® QY] = c[QM] for some c € R and rank(d®) < 4m. Then KL(®P) = 0 for

Corollary 4.6. Let (M*™ g) and (N*" h) be two almost quaternionic Kéihler manifolds.
Suppose that ® : (M*™.g) — (N*", h)(m > n) is a Q-holomorphic submersion (not
necessarily Riemannian). If dim H*(M*™ ,R) = 1(e.g.M*™ = HP™) then m = n.

To prove the Corollary 4.6 we need the following;:
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Remark 4.6. Let ® : (M*™ g) — (N*" h) be a Q-holomorphic submersion. Then on
M?*™ there exists a metric ¢’ such that (M*™, g’) is an almost quaternionic Kahler manifold
and ®' :=® : (M*™, g') - (N*" h) is a (Q-holomorphic) Riemannian submersion. The
construction of g’ is the following.

Let V and H be the vertical and horizontal distributions defined by ® on M*™ of di-
mension 4(m — n) and 4 n, respectively: V := Ker®,, H := V+. Note that for each point

p € M*™ the spaces V, and H  are quaternionic subspaces of T, M 4m  We define the new
metric g’ by requiring that the restrictions of ¢’ and g to V, coincide and that the restriction
of ®, to H is an isometry, being V, and H, still orthogonal.

Proof of Corollary 4.6. By Remark 4.6 we can suppose that @ is a Riemannian submersion,
say (- holomorphic. Then, analogously like in the proof of the Proposition 4.2, we get

KH(®) = 120((2n+ D) Vol( M).

If m > n, the proposition 4.5 would give K,(®) = 0, that is a contradiction. =

The following definition and proposition are analogous to the Definition 3.3 and Proposi-
tion 3.2.

Definition 4.5 ([7]). Let (N*™ h) be an almost quaternionic Hermitian manifold and M*™
any smooth 4 m-dimensional manifold. Suppose that ® : M*™ — N*™ is a smooth im-
mersion. We say that (M*™, ¢) is an immersed Lagrangian submanifold of (N*™ h) if at
every point p € M*™ and any hypercomplex base (I,,1,,1;) € Qg{p} the four subspaces

Q*(TFM““),I&‘I)*(TFME’“)(& = 1,2,3) are totally orthogonal in T¢(p}N4ﬂ*

Proposition 4.6. Let (N%™ h) be an almost quaternionic Kéhler manifold. Suppose that
M*™ is a compact, oriented, 4 m-dimensional manifold (m < n). Let ®, : M*™ — N*»
and ®, : M?*™ — N*" be two immersions such that (M*™,®,) and (M*™,®,) are
almost quaternionic and Lagrangian, respectively. Then ®, and ®, can not be homotopic.

We omit the proof, which is similar to that one of Proposition 3.2.

5. SPECIAL CASES: HOLONOMY GROUPS G, AND SPIN(7)

In this section we consider G,-and Spin( 7)-structures. We must point out that the existence
of compact manifolds with holonomy group &G, or Spin(7) is still an open problem. Never-
theless, if the holonomy group is contained in G5 or Spin(7) one can easily construct some

examples.
Let (R7,g,) be the standard Euclidean -dimensional space with the standard orientation

and metric g, . Itis well known that by an appropriate identification of R 7 with the imaginary
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octonions (endowed with the octonion multiplication) one can define an alternating vector-
cross-product P : R7 x R7 — R satisfying the following properties:

1) P(X,Y) is orthogonal to both vectors X and Y,

2) [IPCX, V)| = IXIPIYIP — [g0(X,¥)).

(Such a vectorial product is unique up to the isometries).

The Lie group G, is characterised as the subgroup of SO(7) which preserves P (see,
e.g. [6], [7]).

The 3-form «, € A°R’ defined by —

0 (X,Y,2) = go(X,P(Y,2)), X, Y,Z€R' [

is invariant by G, .

Every 7-dimensional, oriented, Riemannian manifold (M7, g) with a given (=, -structure
becomes naturally equipped with a fundamental 3-form «, corresponding to o, (we can also
consider a fundamental 4-form 3 := xa).

The following proposition is an immediate application of the Theorem 2.2.

Proposition 5.1. Let (M',g) and (N7, h) be Riemannian manifolds with holonomy groups
contained in G, . Suppose that M" is compactand ® : M — N’ is a smooth map. Then

K. (®) :=f <aM,®*a" >dV,, and Ky(P) :=f < pM, o8N > dv,,
M M

are smooth homotopy invariants.

Recall that a 3-dimensional vector subspace V> of R’ is called special if it is closed
under P. Then it admits an orthonormal base of the form ( X, Y, P(X,Y)) (see, e.g. [6]).
Similarly, we say that a 4-dimensional vector subspace V* of R’ is special if it is orthogonal
to a 3-dimensional special subspace. Correspondingly, if (M7, ¢) is a Riemannian manifold

with a given G, -structure one can introduce a notion of a special submanifold of dimension
3or4.

Proposition 5.2. Let (N7, h) be a Riemannian manifold with holonomy group contained in
G,. Then an immersion ® : M> — N’ (resp. ® : M* — N') of a compact, oriented,
special 3-dimensional (resp. 4-dimensional) submanifold of (N’ ,h) can not be homotopic
to a constant map. In particular, if M* (resp. M* ) is homeomorphic to the sphere S* (resp.
S* ) then the map ® defines a non-trivial element in the homotopy group m,(N') (resp.

'JT_,‘(NT)}.

Proof. For simplicity consider only the 3-dimensional case. Observe that for any 3-dimen-
sional oriented Riemannian manifold (M?,g) and for any smoothmap ® : M> — N7 we
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can consider the quantity

Kde,a(‘D) :=/ <dVM,tb*cuN:>dVM,
M

which 1s homotopy invariant by Theorem 2.1.
Now, let M be a special submanifold immersed by ® . Consideron M* the Riemannian
metric g := ®* h. Then dV,, = ®*a” (eventually by exchanging the orientation of M?)

and we have
* N _—

Hence, K,y ,(®) isdifferent from zero, then @ can not be homotopic to a constant map.=

We can obtain similar results for the group Spin(7) . Let us recall its definition.
By the appropriate identification of R® with the Cayley algebra of octonions one can
define an alternating three-linear product:

P":R® x R® x R® - R?®
satisfying the following properties:
1) PMX,,X,,X,) is orthogonal to each vector X,, X, and X;,
2) |IPMX, X5, X3)|P = det[go(X;, X)), 1,7 =1,2,3.
(There are two of such products up to isometries of R ).

The Lie group Spin(7) is the authomorphism group of R® which preserves such fixed

product P".
The 4-form ~, € A* R® defined by

WG(XTY*JZ:T) = gﬂ(XmPh(Ya ZwT))

is obviously invariant by the group Spin(7) as well the form ~; = x~, .

Every 8-dimensional oriented Riemannian manifold (M2, g) with a given Spin(7)-
structure is naturally equipped with a fundamental 4-form ~. In analogy to the case of G,
we have the following:

Proposition 5.3. Let (M 8 9) and (N3, h) be Riemannian manifolds with the holonomy
group Spin( 7). Suppose that M3 is compact and ® : M® — N*® is a smooth map. Then

K,I((D):=[ <M Dy > dVy, anquf('iD)::‘/ {W’M,(D’WIN}'dVM
M M

are smooth homotopy invariant.

Remark 5.1. One can also introduce a notion of special subspace of R® with respect to P*,
i.e. a 4-dimensional subspace closed under P, to find an analogue of Proposition 5.2.
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Remark 5.2. The hypothesis on (M7, g) (resp. (M8, g)) in the Proposition 5.1 (resp. 5.3)
can be weakened by supposing that a G, -structure (resp. Spin( 7)-structure) is given and

d(xa™) = 0 (resp. d(xy™) =0).
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