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1 Introduction

The entire function of the form

) Sk
E.,(z)= _— 1
(2) kz::ol“(ka—l—l) (1)

where a € C; Re(a) > 0; z € C defines the Mittag — Leffler function [2,3].
A generalization of Mittag — Leffler function E,, (2) of (1) is defined and studied
by Wiman [11] as follows:

oo Zk

Eap(z) =) T(ak+ 58) (2)

k=0
where o, 5 € C; Re(a) > 0; Re(8) > 0; z € C.
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A generalization of Mittag — LefHler function E, g (2) of (2) is introduced by
Prabhakar [5, p.7] as follows:

R N T
El”g (2) = ];) I‘(Tj—ﬁ)g (3)

where o, 8,7 € C; Re(a) > 0; Re () > 0; z € C and (\),denotes the familiar
Pochhammer symbol or the shifted factorial , since

(1),, =nl(n € Ny)

and

1 (n=0;X € C\{0})
()‘)n_f\()\)_{)\()\—|—1)...()\+n—1) (ne N; e 0) )
(No = N[ J{0} ={0,1,2...})

Recently generalization of Mittag-Leffler function E 5 (2) of (3) studied by
Srivastava and Tomovski [10] is defined as follows:

£ 0= X ot g

(z,8,7 € C; Re () > max{0, Re(K) — 1}; Re(K) > 0)
which, in the special case when
K=¢q (q€(0,1)UN) and min {Re (8),Re(y)} >0 (6)

was considered earlier by Shukla and Prajapati [8].

A multivariable analogue of Mittag—Leffler function defined in (3) is very re-
cently studied by Gautam [1] and Saxena et al. [7, p.536, Eq. 1.14] in the
following form:

E0) (215 ey 2r] =

(p3):A
oY (71) (’YT) . Zkl._.z’r]?r
((3117“'7;;))7)\ [Zl’ 3] Zr] = E k1 k 1 (7)

P - r ()\ + kipr+ ...+ krpr) (k’l)'(lﬁ«)'

where A, 75, pj € C; Re(pj) > 0; j =1,2,...,7.
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If in (7) we take p1 = pa = ... = p, = lthen it reduces to the following confluent
hypergeometric series [9, p. 34, Eq. (1.4(8))]

=}

1 o) . ('Yz)kl Zfl ke

r) i .
Dy (V1o Ve 3N 2Ly ey 2] = 8
' R D N R T

where X\, v;, z; € C (j = 1,2,...,7) and max {|z1],...,|z|} < LA € Zy=
{0,-1,-2,...}.

A mild generalization of multivariable analogue of Mittag — Leffler function in
(7) is also due to Saxena et al. defined as follows [7, p. 547, Eq.7.1]:

©© k1 Lk

() () (VD kyty - (), zitz
L gy Br) = E 9
(o (21 2) o DN+ Koy + o Eepr) (1)L () )

where A, v;,l;, pj € C; Re(pj) > 0; Re(l;) >0, A ¢ Zy ={0,—-1,-2,....};j =
1,2,...,r.

We consider the following integral operator involving the above generalized mul-
tivariable Mittag — Leffler function in the kernel is defined and represented as
follow:

(’77')7(17-) N
(E(pr)vﬂv(wr)§a+\p) (z) =

/ (2 — 0 B0 s (@ = 0w (@ — 0P (D)t (10)

with > a; wj, pj, V4, lj, p € C; Re(p;) > 05 |wj(x —t)Pi| <1; j=1,2,...,r.
Remark: At [y = Iy = ... = [, = 1 the operator defined in (10) reduces to the
integral operator studied by Gautam [1] and Saxena et al. [7].

In the present paper we consider the following type of differential equations

(D8 (@) = A (EQNL o0) @) + f (@) (11)
with the initial condition
(I3:y) (0+) = ¢
where ¢ is an arbitrary constant and (o, w, pj, v, lj, w; € C; Re(a) > 0;
Re (pj) > 0; Re () > 0; Re(lj) > 055 =1,2,...,7).
Here D, is Riemann — Liouville fractional derivative operator defined by [6]:

(3. 9) (@) = (2)" (17rw) @) (12

aeC:Re(a)>0(n=|Re(er)] +1).
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where (I$, V) (z) is the Riemann — Liouville fractional integral operator defined
by

(Ig4 V) (z) = F(la) /;( LAC R (13)

II)‘—t)l a

(o € C; Re () > 0)

For a = 0 the operator (DS, V) (z) is represented by (D§, V) ().
The Laplace transform of a function f (x) is defined by

o0
Lif(ahsl = [ e (@) do = F (9 (14)
The Laplace transform of fractional derivative (D, f)(z) is given by [4]:
LIDGfis] = 5°F ()= DR 0 (-1 <) (1)
Re(s) >0

(

The Laplace transform of the function E(
tainable in the following form also require

), (lr)
7")7”‘
here

Q

[.] defined in (9) is easily ob-

(O

- sz

- o 29 2])
=1

(i, pjsvjslj,w; € C; Re (s) > 0; Re (pj) > 0; Re (1) > 0; Re(l;) > 0,5 =1,2,...,r

where 1§ is the Fox — Wright hypergeometric function defined as follows [9]:
(a1, A1),y (ap, Ay) X Tz (@) oy 27
p¥Yq s = Z

z| = — 17)
(blvBl)7"'7(bq7BQ) ) n—0 H?:l (bj)Bjn n! (

The following integral involving the generalized Mittag — Leffler function in (9)
is also required

w7 | @B e = 0o —
= ghto- 1E((%)) c(rl—s-)u [wizft, ..., wpaP] (18)

The integral in (18) is established in view of (9) and elementary beta integral.
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We also need the following familiar derivative formula for Laplace transform
here

%[L[y(x)(S)] = (=1)" Lz"y(x)](s) (19)

2 Main Results

Theorem 1. Leta € Ry; o, 1, pj, V5, lj, wj € C; Re(a) > 0; Re(pj) > 0;
Re () > 0; Re(l;) > 0; j =1,2,...,r. Then for x > a, there hold the relations.

D3, [t =)= EQ S n(t — ), ot — a)7]] (a)

= (@ —a) T EQ o1 —a)" (2 — a)7] ()

and

1g, [t =0y B o (= @) we (= @) (@)

= (z —a)tto! E((Z:))/Sl;)a [wi(z —a)’, ..., wy(z — a)’] (2)

Theorem 2. The following fractional differential equation :

(D§.y) (@) = A (EGTNL, or) (@) + F (@) (3)
(@, pjs s by wi € C5 Re(a) > 0; Re(py) > 0;Re () > 0;Re(lj) > 0;5 =
1,2,...,r.) with the initial condition (Il )(0—1—) = ¢ has its solution in the
space L (0,00) given by

a—1

_ Z i ) (i) p pr | |
y(x)_cr( )+)‘ E(pr),u—‘ra—l-l (wlx 17"'7wa )+F<Oz) 0 (.le t) f(t)dt

where ¢ is an arbitrary constant .

Theorem 3. The following fractional differential equation:

0% ™) l'?" ) l'l’ r
(DgLy) (x) = A (E((Zr)),l(lq(()ﬂr)§0+> (z) —I—px“E((ZT){fH)I [wizlt, . wezf] (5)

(Oé, s Pjs Vis lj; wj € C;' Re (Oé) > 0; Re (p]) > 0; Re (:u) > 0; Re(l]) > 0;
Jj = 1,2,...,7) with the initial condition (I&_T_o‘y) (04) = ¢ has its solution in
the space L (0,00) given by

v@) = e + A+ p) B e wpa] (6)
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where ¢ is an arbitrary constant .

Theorem 4. The following fractional differential equation:

2 (Dgey) () = A (B 0L (@) (7)

(o, 1, pj, 755, wj € C;Re(a) > 0;Re(p;j) > 0;Re(n) > 0;Re(l;) > 0;5 =
1,2,...,7) with the initial condition (I&;ay) (04) = ¢ has its solution in the
space L (0,00) given by

a—1

y(e) = s _F(Aa) [ e @ = 0 B o (o = 0 (0= )
(®)

where ¢ is an arbitrary constant.

Theorem 5. The following fractional differential equation:

o _ 3\ (B0 [ s FOEE) D0 ) o)
(DG+y) (x) = A (E(pr),u,(wr)%OJr) ($)+]z; {p ’ ]E(pr 2, uj+1[w1 B el
with the initial condition (Io+ y) (04) = ¢ has its solution in the space L (0, 00)
given by

y(x) = cglia{; + /\x““‘E((Zr))ﬂJr)aH (w1 ..., wpxhr)

N @ , e 10)
pita m(),0) () p(J> (7),.p9 } (
Z {p . E(pr ) pjta+l (wl T ey W )

where ¢ is an arbitrary constant.
Outline of Proofs

Proof of (1): To prove the assertion (1) of Theorem-1, we denote its left hand
side by Aj i.e.

Ay = DG, [(t — a)“*lE((Z:))’ST)[wl (t—a), .. we(t— a)pT]} (x)

)

On using the definition of E((Z:))’im [.] given in (9), we obtain

] e

N A KD S - rwzzzmk»](x)

k1, kr=0i=1
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i.e.
0 s (’Yz)kl k} 1 ” L
A = L ()™ Dg t—a M+Zi:1 piki—1 T
1 kl,-;k‘rml_[l { (k:)! ) U (p+ 3 pik) [( ) } ()
On using the fractional derivative [6] D2, [(t _ a))\} (z) = % (2 — a)’\_o‘

we have

1 (z— a)u+z;l piki—a—1
} U (= a4 320 piki)

A= z 11|

k1,...,kr=01=1

On interpreting in view of the definition of E((Z:;Z’”) [.] given in (9), we at once
arrive at the desired result in (1).

Proof of (2): The assertion (2) of Theorem-2 is proved similarly following the
lines as to prove the result in (1) and using the definition of fractional integral
operator I, therein.

Proof of (4): On using the definition of operator (E((ZT;,ST(ZW) a+\Il) (x) given
n (10) with (¢ = 0 and ¥(z) = 1) and formula (18) with (o = 1) in equation
(3), it takes the following form

(D§yy) (x) = Aat BOIND [wna, o wna? | + f (2) (11)

By applying Laplace transform on both sides of (11) and then using formulae
(15) with (n = 1), (16) and (14) we obtain

@y (s) = e+ AT {1\113 { (. l) ;‘;H +F(s)

i=1

It yields

e | L] AT | SR

Pi
=1 §

in view of (17) , we have

y(s) = +AZH{

} sTRTOm i Pkl P(g).s7 (12)
k1,....kr=0i=1
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Now taking the inverse Laplace transform on both sides of (12), we find by
means of the Laplace convolution theorem that

i.e.

s
pty " pikita
=

xe1 o " T (Vi) . x
v =epgy A, 2 { )t (“’")ﬂ o
j v F(u%—a—l—Zpﬂ%—i—l)
=1
+L/x(x—t)°“1f(t)dt
I'(a) Jo
Now on interpreting second term in view of the definition of E((Z:)) ’l(jT) [.] given
in (9), we at once arrive at the desired result in (4).

Proof of (6): On using the definition of operator ( (( :)),(uzm a+\I/) ()
given in (10) with (¢« = 0 and ¥(z) = 1) and formula (18) with (¢ = 1) in
equation (5), it takes the following form

(07 ” l’r r
(Dgyy) (x) = (A +p)x“E((Z ;£+)1 [wiaf, ..., wraP"] (13)

By applying Laplace transform on both sides of (13) and then using formulae
(15) with (n = 1) and (16), we get

v e+ O T g | 000 2

in view of (17) we obtain

y(s)=cs 4+ (A+p) Z H { Z} [s_“_a_zzzlpiki_l] (14)

k1,....,kr=01=1

On taking inverse Laplace transform on both sides of (14), we have

a—1

y(w) = ey + D) > H{

k1,...,kr=01=1

F'(p+a+>i_piki+1)

Now on interpreting with help of definition of E((Z:)) ’L(LZT)H given in (9), we at

once arrive at the desired result in (6).
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Proof of (8): On using the definition of operator (E((Z:))’ST(LT),GJF\I’) (z) given
n (10) with (¢ = 0 and ¥(z) = 1) and formula (18) with (o = 1) in equation
(7), it takes the following form

z (Dfyy) () = At EQT (0 i, o] (15)

By applying Laplace transform on both sides of (15) and then using formulae
(16) and (19), (15) with (n = 1), we get

L)+ Ly(s) = —rs 1H{ { et ”H

in view of (17), we have

RICRE IR S I

K1, kr=01i=1

} gH—a=Y 0 piki—1

This is a linear differential equation of first order and first degree. Hence

+ecs™  (16)

} 5_0‘_“_2::1 pik;
(1 + 351 piki)

y(s) = -\ Z H{

k1,.. =0:=1

By applying inverse Laplace transform on both sides of (16), we obtain

1 1 [ —p=S""_ piki —a —1/.—«
(M+Z§:1Pik:i)L [Suzmp s+ CLTH (™)

s =-x 3 |G

ki,...,kr=01=1

On using Laplace convolution theorem, we obtain
v = 3 T

(wi) 1}
ki,...,kr=01=1

k
1 1 a—1( . \ut> iy piki 1
Fr 1ty k) T <>/t (z—gyrem? ra)”

Now on changing the order of integration and summation, and then on inter-
E((’YT)) ()
ZONT

a—1

preting the so obtained result in view of definition of [.] given in (9),

we at once arrive at the desired result in (8).
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Proof of (10): On using the definition of operator (E(% T(wr Yot )

given in (10) with (¢ = 0 and ¥(z) = 1) and formula (18) with (o = 1)
equation (9), it takes the following form

(Dgyy) () = )\m“E(( ))Ll+)1 [wizPt, .. wpafT] +

Z{ xugE(v(J) ), <w§])xp<1]) w(j)xp@)} (17)
)H’]+1 ’ T

By applying Laplace transform on both sides of (17), and then using formulae
(15) with (n = 1) and (16) we obtain

y(s) = Cs~a + As~r=a=1 [T {10 (%l 2 ;

G 0y Lo
s 02 55

ﬁ}jﬂ 1
A

n
e
=1

in view of (17), we obtain

y(s) =cs “+ A Z H { } g—H—a=3"1_, piki—1

k1,..,kr=01=1

n 0 r (fyl(]))kl”) . . 0
N D D | N e O | e

j=1 ki, ker=01=1

On applying the inverse Laplace transform on both sides of (18) we have

1 x Tl () H+a+ipiki
o~ kil ki =1
y(z) = C?(a) +A Y ]I { (kik)!l (wi) } . r
kl,...,krzo =1 F(IH'OH‘Z p1k2+1>
=1

i o @y,
" - . (’YZ(]))kil(j) ) K, i +u3+i:z:1pi k;
+> i 2 Il g (W) T
_]:1 kl,..,kr:(] =1 F<M+a+z pg])k1+1)
i=1

(yr)s(lr)

Now on interpreting with the help of definition of E( " [.] given in (9) we at

once arrive at the desired result in (10).
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3 Special Cases

(1) If in Theorems-1 to 4, we take r = 1 then these reduce to the following
results involving generalized Mittag — Leffler function due to Srivastava
and Tomovski [10] as follows:

(i) Let a € Ry; a, u, v, p, I, w € C; Re(a) > 0; Re(p) > 0; Re(u) > 0;
Re(l) > 0. Then for x > a, there hold the relations

Dy, [(t = ) Epplw(t — )] (2) = (@ — a)* T By o [w(x —a)?] (1)

and

I [(t— o) Epll(t — o)) (@) = (@ — )T T By Wz —a)f] (2)
Corollary 1. The following fractional differential equation

(Dgyy) (x) = A (EG,) (@) + f (@) 3)
(0)< a<1l;we C; Re(p) > maz{0, Re (1) — 1}; min {Re (1), Re (y),Re (1)} >
0

With the initial condition
(I&;O‘y>(0+) = ¢ has its solution in the space L (0,00) given by

a—1

y(x):cr(a) 4 gkt (E;7,Lt+a+1)( )_|_F(1a)/033(x—t)a 1f(t)dt (4)

where c is an arbitrary constant and (Egﬂi u) (x) is the integral operator studied

by Srivastava and Tomouvski [10, p.202, Eq. (12)]:

(B0i0) @) = [ @ =0/ B e~ 000dte > 0) (5)

(v,w € C; Re(a) > max{0, Re(K) — 1}; min{ Re(3), Re(K)} > 0).
Corollary 2. The following fractional differential equation
a w,y,l
(D0+y) ( ) =A <EO+7p lL> (x) + px EZ;},Jrl [ P] (6)

((3 <a<1l;weC; Re(p) >maz{0, Re (I) — 1}; min {Re (1), Re(y),Re (1)} >
0
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with the initial condition
(I&;O‘y) (0+) = ¢
has its solution in the space L (0,00) given by

xa—l !
y(r) =cr7=+(A+p) $M+QEZ,’u+a+1 [wz”] (7)
I'(a)
where c is an arbitrary constant and (Eaﬁiu) (x) is the integral operator defined
in (5) .

Corollary 3. The following fractional differential equation

& (Dg,y) (@) = A (B5L ) (@) (8)

0 <a<l;weC; Re(p) > maz{0,Re(l) —1}; min {Re (u),Re (v),Re(l)} >
0) with the initial condition (I&;O‘y> (04) = ¢ has its solution in the space
L (0,00) given by

a—1

y(z) = CI”f @~ F?a) /0 " jo (@ =ty BT [w (x— 1)) dt (9)

where ¢ is an arbitrary constant and (Egﬂ;i u) (x)is the integral operator defined
in (5) .

Remark: The results in (1) to (9) may be obtained from the results of Srivastava
and Tomovski [10] by taking v = Otherein.

(1) If in Theorems-1 to 4, we take I} = Iy = ... = [, = 1 then these reduce to
the following results involving generalized Mittag—LefHer function due to
Gautam [1] and Saxena et al. [7].

(i) Let a € Ry; o, p, pj, v, wj € C; Re(a) > 0; Re(pj) > 0; Re(p) > 0;
7=1,2,...,r. Then for =z > a, there hold the relations

Dg (b= a) B o (t =), wy (= a)]] (2)

p—a-—1 E(,YT) [UJl (IE — a)pl 5 eey Wr (I‘ - a’)pr] (10)

- (33 o a) (pT‘)a/"'fa

and

g [t = o B o (= ) wn (8= )] (@)

= (@ —a) T B o (@ = a) e (0 - )] (1)

Remark: The above results in (10) and (11) are known results due to Gautam
[1] and Saxena et al. [7].
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Corollary 4. The following fractional differential equation

(D§4) (@) = A (B 1 onyor) (@) + f () (12)

(o, 1, pjvj,w; € C; Re (o) > 0; Re(pj) > 0; Re(p) > 055 =1,2,...,7) with the
initial condition (I&;ay> (04) = ¢ has its solution in the space L (0,00) given

a—1 T
— pta () P or 1 _ pna-—l
y () T @ FAHTOE ot w1z, ..., wrw ]Jrr @) /0 (x =) f(t)dt
(13)
where ¢ is an arbitrary constant and (E((Z:)),u,(wr);o +> (x) is the integral operator

defined by Gautam [1] and Sazena et al. [8, p, 540, Eq. 4.1]:

(B oryas®d) @)o(t)dt / (@—a)' T EO for(w— ) wp(z— 1) |o(t)dt
(14)
(x >a)
with w, pj, vj, wj € C; Re(pj) >0; Re(pn) >0;j=1,2,...,7.
Corollary 5. The following fractional differential equation

(Dgsy) (@) = A (EL) oyor) (@) + P B wra?,wa] (15)

(o, i, pj, v, w; € C; Re(a) > 0; Re(p;j) > 0; Re(p) >0;j=1,2,...,7) with the
initial condition (I&;O‘y) (04) = ¢ has its solution in the space L (0,00) given
by

a—1
where ¢ is an arbitrary constant and (E((Z:)),u,(wr);o—k) (x) is the integral operator

defined in (14).
Corollary 6. The following fractional differential equation

@ (D§:9) (2) = A (B o) @) (7)

(o, i, pjv5,w; € C; Re(a) > 0; Re(p;) > 0; Re(p) >0;j=1,2,...,7) with the
wmitial condition <I&;O‘y) (04) = ¢ has its solution in the space L (0,00) given
by

a—1

y () = cl‘f o) —F(Aa) /0 "ol (g — gy EQD (@ = 07w (o= )] dt
(18)
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where ¢ is an arbitrary constant and (E((Z:)) 1, (o ):0+

defined in (14).

) (x)is the integral operator

(1) If in Theorems-1 to 4 we takely =1lo = ... =1, =1, p1 = pg = ... =
pr = 1 then these reduce to the results involving multivariable confluent
hypergeometric function as follows:

(i) Let a € Ry; o, p, vj, wj € C; Re(a) > 0; Re(p) >0; j=1,2,...,7. Then
for x > a, there hold the relations

D (6= a7 8 e s i n (£ = @) o (= )] (2)

- F(I/;(ﬁ)a) (x = )" @ [, s (1= )i wn (2= ) n (2 — )] (19)
and
Ig, [(t — )" B [y, e (E— @) (E— “)]} ()
- F(I/;(i)oa) (2 — ) O 1, s (e a)iwn (2 — a) oy wr (2 — a)] (20)

Remark: The above results in (19) and (20) are also obtained by Gautam
[1] and Saxena et al. [7, p.539, Egs. (6) and (4)] as special cases of their main
results.

Corollary 7. The following fractional differential equation

(D§:9) (@) = A (81 00 (@) + 1 (@) (21)

(o, p,vj,wj € C; Re (o) > 0; Re(p) > 0; j =1,2,...,r) with the initial condi-
tion (Ié;ay) (04) = ¢ has its solution in the space L (0,00) given by

(x) = chOé_1 + Aot <I>(r)[ s+ a4 Lwaft L wpa
y - F(Oé) F(u—l—a—l—l) 2 717"'777“7“ y W1 y ey WM
b [0 p (22)
- r—
I'(«a) Jo

where ¢ is an arbitrary constant and (CDSYZO)J],),O +) (x) is the integral operator

defined by Sazena and Kalla [7] , Srivastava and Sazena [11] and Gautam [1]
defined as follows:
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. 1 T 1 lr
(asy) @ = 15 / (=)0 1, o s st (1), oy wp (=) y (),

(23)
(x> a) (p,vjwj € C; Re(p) >0;j=1,....,7).

Corollary 8. The following fractional differential equation

o j px# T
(DO—I—y) (':L') =A (CI)EZ%LJ),OjL) (1’) + még )[717 ceey Vrs (lu’ + 1);(“)1337 "'7w7"x]
(24)

(o, b, vj,wj € Cy; Re () > 0;Re (1) > 0;5=1,2,...,7)
with the initial condition

(H59) (0) =
has its solution in the space L (0,00) given by

a—1 pto
(A +p)

0 [y, Lwa, .. 25
F(u—i—a—i—l) 2 [717 , Yy pta+ 1wz, 7w7"$] ( )

where ¢ s an arbitrary constant and ((IDSYZL)UJ_),O +) (x) is the integral operator
defined in (23) .
Corollary 9. The following fractional differential equation
« (v5)
T (D0+y) (x) = )\ ((I);Zéwj);(]+) T (26)

(CY,/L,’YJ',OL)]' € Ca Re (a) > 0; Re (M) >0;7=12,.. 7")
with the initial condition

(I&;O‘y) (0+) =c¢
has its solution in the space L (0,00) given by

I S
F'(a)T(p+1)

L =0 O b+ Lion (= 1) (2 — D)
0

y(z) =—
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where ¢ is an arbitrary constant and (@(Vj ) )(x ) is the integral operator

/"‘7("‘)]');04‘
defined in (23).
Remark: The Theorem-5 is further extension of Theorem-3, one can obtain

similar special cases of Theorem-5 as discussed above, and therefore we omit
the details here.
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