C-totally real pseudo-parallel submanifolds of S-space forms

Sanjay Kumar Tiwari ${ }^{i}$
Department of Applied Sciences, Babu Banarsi Das Institute of Technology, Ghaziabad dr-sanjay@hotmail.com
S. S. Shukla
Department of Mathematics, University of Allahabad, Allahabad (India)

S. P. Pandey

Department of Applied Sciences, Babu Banarsi Das Institute of Technology, Ghaziabad

Received: 11.8.2011; accepted: 29.3.2012.

Abstract

Let $\bar{M}(c)$ be a $(2 n+s)$-dimensional S-space form of constant f-sectional curvature c and M be an n-dimensional C-totally real, minimal submanifold of $\bar{M}(c)$. We prove that if M is pseudo parallel and $L n-\frac{1}{4}(n(c+3 s)+c-s) \geq 0$, then M is totally geodesic.

Keywords: S-manifolds, Sasakian manifolds, contact manifolds, pseudo-parallel submanifolds.

MSC 2000 classification: 53B20, 53B25, 53B50

1 Introduction

Given an isometric immersion $F: M \rightarrow \bar{M}$, let h be the second fundamental form and $\bar{\nabla}$ the Van der Weather- Bortolloti connection of M. Then Deprez defined the immersion to be semi-parallel if

$$
\begin{equation*}
\bar{R}(X, Y) \cdot h=\left(\bar{\nabla}_{X} \bar{\nabla}_{Y}-\bar{\nabla}_{Y} \bar{\nabla}_{X}-\bar{\nabla}_{[X, Y]}\right) h=0, \tag{1}
\end{equation*}
$$

holds for any vectors X, Y tangent to M. Deprez mainly paid attention to the case of semi-parallel immersion in a real space form [see [9], [10]]. Later, Lumiste showed that a semi-parallel submanifold is the second order envelop of the family of parallel submanifolds [14].

In [11], authors obtained some results on hypersurfaces in 4-dimension space form $N^{4}(c)$ satisfying the curvature condition

$$
\begin{equation*}
\bar{R} . h=L Q(g, h) . \tag{2}
\end{equation*}
$$

[^0]The submanifolds satisfying (1.2) are called pseudo-parallel [[1], [2]].
In [1], authors have shown that if F is a pseudo-parallel immersion with $H(p)=0$ and $L(p)-c \geq 0$, then the point p is a geodesic point of M.

In the present paper, we generalize their results for the case of M, that is a submanifold of S-space form $\bar{M}(c)$ of constant f-sectional curvature c.

We prove the following result:
Theorem 1. Let $\bar{M}(c)$ be a $(2 n+s)$-dimensional S-space form of constant f-sectional curvature c and M be an n-dimensional C-totally real, minimal submanifold of $\bar{M}(c)$. If M is pseudo-parallel and $L n-\frac{1}{4}(n(c+3 s)+c-s) \geq 0$, then M is totally geodesic.

2 Preliminaries

Let (M, g) be an n-dimensional $(n \geq 3)$ connected semi-Riemannian manifold of class C^{∞}. We denote by ∇, R and S the Levi-Civita connection, Riemannian curvature tensor, and Ricci tensor of (M, g), respectively. The Ricci operator Q is defined by $g(Q X, Y)=S(X, Y)$, where $X, Y \in \chi(M), \chi(M)$ being the Lie algebra of vector fields on M. Now we define endomorphisms $R(X, Y)$ and $X \Lambda_{A} Y$ of $\chi(M)$ by

$$
\begin{gather*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, \tag{3}\\
\left(X \Lambda_{A} Y\right) Z=A(Y, Z) X-A(X, Z) Y, \tag{4}
\end{gather*}
$$

where $X, Y, Z \in \chi(M)$ and A is a symmetric (0,2)-tensor.
A concircular curvature tensor Z is defined by

$$
Z(X, Y)=R(X, Y)-\frac{\kappa}{n(n-1)}\left(X \Lambda_{A} Y\right)
$$

where κ is scalar curvature of M.
Let $F: M \rightarrow \bar{M}(c)$ be an isometric immersion of an n-dimensional Riemannian manifold M into a $(2 n+1)$-dimensional real space form $\bar{M}(c)$. We denote by ∇ and $\bar{\nabla}$ the Levi-Civita connection of M and $\bar{M}(c)$, respectively. Also, we denote by $N(M)$ its normal bundle. Then for vector fields X, Y which are tangent to M, the second fundamental form h is given by the formula $h(X, Y)=\bar{\nabla}_{X} Y-\nabla_{X} Y$. Furthermore, for $\xi \in N(M), A_{\xi}: T M \rightarrow T M$ denotes the Weingarten operator in the ξ-direction, $A_{\xi} X=\nabla \frac{1}{X} \xi-\bar{\nabla}_{X} \xi$, where ∇^{\perp} denotes normal connection on M. The second fundamental form h and A_{ξ} are related by $\bar{g}(h(X, Y), \xi)=g\left(A_{\xi} X, Y\right)$, where g is the induced metric of \bar{g} for any vector fields X, Y tangent to M. The mean curvature vector H of M is defined as

$$
H=\frac{1}{n} \operatorname{tr}(h) .
$$

The covariant derivative $\bar{\nabla} h$ of h is defined by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\perp}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right), \tag{5}
\end{equation*}
$$

where $\bar{\nabla} h$ is a normal bundle valued tensor of type $(0,3)$ and is called the third fundamental form of M. The equation of Codazzi implies that $\bar{\nabla} h$ is symmetric and hence

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z)=\left(\bar{\nabla}_{Z} h\right)(X, Y) . \tag{6}
\end{equation*}
$$

Here, $\bar{\nabla}$ is called the Van der Weather - Bortolloti connection of M. If $\bar{\nabla} h=0$, then F is called parallel [13].

The basic equations of Gauss and Ricci are

$$
\begin{gather*}
\bar{g}(R(X, Y) Z, W)=c g(X \Lambda Y(Z))+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W)), \tag{8}\\
\bar{g}\left(R^{\perp}(X, Y) \xi, \eta\right)=g\left(\left[A_{\xi}, A_{\eta}\right] X, Y\right), \quad \xi, \eta \in N(M), \tag{7}
\end{gather*}
$$

respectively. Here R^{\perp} is the curvature operator of the normal connection defined by

$$
R^{\perp}(X, Y)=\nabla_{X}^{\perp} \nabla \frac{\perp}{Y} Z-\nabla \frac{1}{Y} \nabla_{X}^{\perp} Z-\nabla_{[X, Y]}^{\perp} Z .
$$

An isometric immersion F is said to have flat normal connection if $R^{\perp}=0$. If M has flat normal connection, then it called normally flat.

The second covariant derivative $\bar{\nabla}^{2} h$ of h is defined by

$$
\begin{gather*}
\left(\bar{\nabla}^{2} h\right)(Z, W, X, Y)=\left(\bar{\nabla}_{X} \bar{\nabla}_{Y} h\right)(Z, W) \\
=\nabla_{X}^{\perp}\left(\bar{\nabla}_{X} h\right)(Z, W)-\left(\bar{\nabla}_{Y} h\right)\left(\nabla_{X} Z, W\right)-\left(\bar{\nabla}_{X} h\right)\left(Z, \nabla_{Y} W\right)-\left(\bar{\nabla}_{\nabla_{X} Y} h\right)(Z, W) \tag{9}
\end{gather*}
$$

Then we have

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \bar{\nabla}_{Y} h\right)(Z, W)-\left(\bar{\nabla}_{Y} \bar{\nabla}_{X} h\right)(Z, W)=(\bar{R}(X, Y) \cdot h)(Z, W), \\
& =R^{\perp}(X, Y) h(Z, W)-h(R(X, Y) Z, W)-h(Z, R(X, Y) W), \tag{10}
\end{align*}
$$

where \bar{R} is curvature tensor belonging to the connection $\bar{\nabla}$.

3 S-space forms

Let \bar{M} be a $(2 m+s)$-dimensional framed metric manifold [18] (or almost r-contact metric manifolds [17]) with a framed metric structure $\left(f, \xi_{\alpha}, \eta^{\alpha}, \bar{g}\right)$, $\alpha \in\{1,2, \ldots, s\}$, where f is a $(1,1)$ tensor field defining an f-structure of
rank $2 \mathrm{~m}, \xi_{1}, \xi_{2}, \ldots, \xi_{s}$ are vector fields, $\eta^{1}, \eta^{2}, \ldots, \eta^{s}$ are 1 -forms and \bar{g} is a Riemannian metric on \bar{M} such that for all $X, Y \in T \bar{M}$ and $\alpha, \beta \in\{1,2, \ldots, s\}$,

$$
\begin{gather*}
f^{2}=-I+\eta^{\alpha} \otimes \xi_{\alpha}, \quad \eta^{\alpha}\left(\xi_{\alpha}\right)=\delta_{\beta}^{\alpha}, \quad f\left(\xi_{\alpha}\right)=0, \quad \eta^{\alpha} o f=0, \tag{11}\\
\bar{g}(f X, f Y)=\bar{g}(X, Y)-\sum_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y) \tag{12}\\
\Omega(X, Y) \equiv \bar{g}(X, f Y)=-\Omega(Y, X), \quad \bar{g}\left(X, \xi_{\alpha}\right)=\eta^{\alpha}(X) . \tag{13}
\end{gather*}
$$

A framed metric structure is an S-structure [3] if $[f, f]+2 d \eta^{\alpha} \otimes \xi_{\alpha}=0$ and $\Omega=d \eta^{\alpha}$ for all $\alpha \in\{1,2, \ldots, s\}$. When $s=1$, a framed metric structure is an almost contact metric structure, while an S-structure is a Sasakian-structure. When $s=0$, a framed metric structure is an almost Hermitian structure, while an S-structure is Käehler structure. If a framed metric structure on \bar{M} is an S-structure, then it is known [3] that

$$
\begin{align*}
\left(\bar{\nabla}_{X} f\right) Y & =\sum_{\alpha}\left(\bar{g}(f X, f Y) \xi_{\alpha}+\eta^{\alpha}(Y) f^{2} X\right) \tag{14}\\
\bar{\nabla} \xi_{\alpha} & =-f, \quad \alpha \in\{1,2, \ldots, s\} \tag{15}
\end{align*}
$$

The converse may also be proved. In case of Sasakian structure (i.e. $s=1$) (3.4) implies (3.5). In Käehler case (i.e. $s=0$), we get $\bar{\nabla} f=0$. For $s>1$, examples of S-structure are given in [3] [4] [5].

A plane section in $T_{p} \bar{M}$ is called a f-section if there exists a vector $X \in T_{p} \bar{M}$ orthogonal to $\xi_{1}, \xi_{2}, \ldots, \xi_{s}$ such that $\{X, f X\}$ span the section. The sectional curvature of a f-section is called a f-sectional curvature. It is known that [14] in an S-manifold of constant f-sectional curvature c

$$
\begin{align*}
\bar{R}(X, Y) Z & =\sum_{\alpha, \beta}\left\{\eta^{\alpha}(X) \eta^{\beta}(Z) f^{2} Y-\eta^{\alpha}(Y) \eta^{\beta}(Z) f^{2} X\right. \\
& \left.-\bar{g}(f X, f Y) \eta^{\alpha}(Y) \xi_{\beta}+\bar{g}(f Y, f Z) \eta^{\alpha}(X) \xi_{\beta}\right\} \\
& +\frac{(c+3 s)}{4}\left\{-\bar{g}(f Y, f Z) f^{2} X+\bar{g}(f X, f Z) f^{2} Y\right\} \tag{16}\\
& +\frac{(c-s)}{4}\{\bar{g}(X, f Z) f Y-\bar{g}(Y, f Z) f X+2 \bar{g}(X, f Y) f Z\},
\end{align*}
$$

for all $X, Y, Z \in T \bar{M}$, where \bar{R} is curvature tensor of \bar{M}. An S-manifold of constant f-sectional curvature c is called an S-space form $\bar{M}(c)$.

A submanifold M of an S-space form $\bar{M}(c)$ is called a C-totally real submanifold if and only if $f\left(T_{x} M\right) \subset T_{x}^{\perp} M$, for all $x \in M\left(T_{x} M\right.$ and $T_{x}^{\perp} M$ are respectively the tangent space and normal space of M at x). When ξ_{α} is tangent to M, M is a C-totally real submanifold if and only if $\nabla_{X} \xi_{\alpha}=0$, for all
$X \in M, \alpha \in\{1,2, \ldots, s\}$, where ∇ is the connection on M induced from LeviCivita connection $\bar{\nabla}$ on \bar{M}. It is to see that the C-totally real submanifolds M of \bar{M} are submanifolds with $\xi_{\alpha} \in T^{\perp} M$.

We already know that [1] if M is an n-dimensional C-totally real submanifold of a $(2 m+s)$-dimensional S-space form $\bar{M}(c)$, then following statements are equivalent:
(i) M is totally geodesic.
(ii) M is of constant curvature $K=\frac{1}{4}(c+3 s)$.
(iii) The Ricci tensor $S=\frac{1}{4}(n-1)(c+3 s) g$.
(iv) The scalar curvature $\kappa=\frac{1}{4} n(n-1)(c+3 s)$.

Following the argument as in [11], we can prove
Theorem 2. Let M be a minimal, C-totally real submanifold of an S-space form $\bar{M}(c)$, then

$$
\kappa>\frac{n^{2}(n-2)}{2(2 n-1)}(c+3 s)
$$

implies that M is totally geodesic.
Following the argument as in [10], we can prove:
Proposition 1. If M is an n-dimensional C-totally real submanifold of an S-space form $\bar{M}(c)$. Then the following conditions are equivalent:
(i) M is minimal.
(ii) The mean curvature vector H of M is parallel.

4 Main Results

Theorem 3. Let $\bar{M}(c)$ be a $2 n+s)$-dimensional S-space form of constant f-sectional curvature c and M be an n-dimensional C-totally real, minimal submanifold of $\bar{M}(c)$. If M is pseudo parallel and $L n-\frac{1}{4}(n(c+3 s)+c-s) \geq 0$, then M is totally geodesic.

Proof. Let M be an n-dimensional C-totally real submanifold of a $(2 n+$ s)-dimensional S-space form $\bar{M}(c)$ of constant f-sectional curvature c. We choose an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}, f e_{1}=e_{1}^{*}, \ldots, f e_{n}=e_{n}^{*}, e_{n+1}^{*}=\xi_{1, \ldots}\right.$, $\left.e_{n+s}^{*}=\xi_{s}\right\}$. Then for $1 \leq i, j \leq n, n+1 \leq \alpha \leq 2 n+s$, the components of second fundamental form h are given by

$$
\begin{equation*}
h_{i j}^{\alpha}=g\left(h\left(e_{i}, e_{j}\right), e_{\alpha}\right) \tag{17}
\end{equation*}
$$

Similarly, the components of first and second covariant derivative of h are given by

$$
\begin{equation*}
h_{i j k}^{\alpha}=g\left(\left(\bar{\nabla}_{e_{k}} h\right)\left(e_{i}, e_{j}\right), e_{\alpha}\right)=\bar{\nabla}_{e_{k}} h_{i j}^{\alpha} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{i j k l}^{\alpha}=g\left(\left(\bar{\nabla}_{e_{l}} \bar{\nabla}_{e_{k}} h\right)\left(e_{i}, e_{j}\right), e_{\alpha}\right)=\bar{\nabla}_{e_{l}} \alpha_{i j k}^{\alpha}=\bar{\nabla}_{e_{l}} \bar{\nabla}_{e_{k}} h_{i j}^{\alpha} \tag{19}
\end{equation*}
$$

respectively. It is well known that

$$
h_{i j}^{k^{*}}=h_{k j}^{i^{*}}=h_{i k}^{j^{*}}, \quad h_{i j}^{(n+1)^{*}}=0
$$

If F is pseudo-parallel, then by definition, the condition

$$
\begin{equation*}
\bar{R}\left(e_{l}, e_{k}\right) \cdot h=L\left[\left(e_{l} \Lambda_{g} e_{k}\right)\right] h \tag{20}
\end{equation*}
$$

is fulfilled where

$$
\begin{equation*}
\left[\left(e_{l} \Lambda_{g} e_{k}\right) h\right]\left(e_{i}, e_{j}\right)=-h\left(\left(e_{l} \Lambda_{g} e_{k}\right) e_{i}, e_{j}\right)-h\left(e_{i},\left(e_{l} \Lambda_{g} e_{k}\right) e_{j}\right) \tag{21}
\end{equation*}
$$

for $1 \leq i, j, k, l \leq n$.
Now using (2.2) in (4.5), we get

$$
\begin{align*}
\left(e_{i}, e_{j}\right)= & -g\left(e_{k}, e_{i}\right) h\left(e_{l}, e_{j}\right)+g\left(e_{l}, e_{i}\right) h\left(e_{k}, e_{j}\right) \\
& -g\left(e_{k}, e_{j}\right) h\left(e_{l}, e_{i}\right)+g\left(e_{l}, e_{j}\right) h\left(e_{k}, e_{i}\right) . \tag{22}
\end{align*}
$$

By (2.9) we have

$$
\begin{equation*}
\left(\bar{R}\left(e_{l}, e_{k}\right) \cdot h\right)\left(e_{i}, e_{j}\right)=\left(\bar{\nabla}_{e_{l}} \bar{\nabla}_{e_{k}} h\right)\left(e_{i}, e_{j}\right)-\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{l}} h\right)\left(e_{i}, e_{j}\right) . \tag{23}
\end{equation*}
$$

Making use of (4.1), (4.3), (4.6) and (4.7), the pseudo-parallelity condition (4.4) gives us

$$
\begin{equation*}
h_{i j k l}^{\alpha}=h_{i j l k}^{\alpha}-L\left\{\delta_{k i} h_{l j}^{\alpha}-\delta_{l i} h_{k j}^{\alpha}+\delta_{k j} h_{i l}^{\alpha}-\delta_{l j} h_{k i}^{\alpha}\right\}, \tag{24}
\end{equation*}
$$

where $g\left(e_{i}, e_{j}\right)=\delta_{i j}$ and $1 \leq i, j, k, l \leq n, n+1 \leq \alpha \leq 2 n+s$.
Recall that the Laplacian $\Delta h_{l j}^{\alpha}$ of $h_{l j}^{\alpha}$ is defined by

$$
\begin{equation*}
\triangle h_{l j}^{\alpha}=\sum_{i, j, k=1}^{n} h_{i j k k}^{\alpha} \tag{25}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
\frac{1}{2} \triangle\left(\|h\|^{2}\right)=\sum_{i, j, k, l=1}^{n} \sum_{\alpha=n+1}^{2 n+s)} h_{l j}^{\alpha} h_{l j k l}^{\alpha}+\|\bar{\nabla} h\|^{2}, \tag{26}
\end{equation*}
$$

where

$$
\begin{align*}
\|h\|^{2} & =\sum_{i, j, k,=1}^{n} \sum_{\alpha=n+1}^{2 n+s}\left(h_{l j}^{\alpha}\right)^{2} \tag{27}\\
\|\bar{\nabla} h\|^{2} & =\sum_{i, j, k, l=1}^{n} \sum_{\alpha=n+1}^{2 n+s}\left(h_{l j k l}^{\alpha}\right)^{2} \tag{28}
\end{align*}
$$

are the square of the length of second and third fundamental forms of M, respectively. In view of (4.1) and (4.3), we obtain

$$
\begin{align*}
h_{l j}^{\alpha} h_{i j k k}^{\alpha} & =g\left(h\left(e_{i}, e_{j}\right), e_{\alpha}\right) g\left(\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{k}} h\right)\left(e_{i}, e_{j}\right), e_{\alpha}\right) \\
& =g\left(\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{k}} h\right)\left(e_{i}, e_{j}\right), g\left(h\left(e_{i}, e_{j}\right), e_{\alpha}\right), e_{\alpha}\right) \tag{29}\\
& =g\left(\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{k}} h\right)\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right)
\end{align*}
$$

Therefore, due to (4.13), equation (4.10) becomes

$$
\begin{equation*}
\frac{1}{2} \triangle\left(\|h\|^{2}\right)=\sum_{i, j, k,=1}^{n} g\left(\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{k}} h\right)\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right)+\|\bar{\nabla} h\|^{2} \tag{30}
\end{equation*}
$$

Further, by the use of $(4.4),(4.6)$ and (4.7), we get

$$
\begin{align*}
g\left(\left(\bar{\nabla}_{e_{k}}\right.\right. & \left.\left.\bar{\nabla}_{e_{k}} h\right)\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right)=g\left(\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{i}} h\right)\left(e_{k}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) \\
= & g\left(\left(\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{k}} h\right)\left(e_{j}, e_{k}\right)\right)-L\left\{g\left(e_{i}, e_{j}\right) g\left(h\left(e_{k}, e_{k}\right), h\left(e_{i}, e_{j}\right)\right)\right. \\
& -g\left(e_{k}, e_{j}\right) g\left(h\left(e_{k}, e_{i}\right), h\left(e_{i}, e_{j}\right)\right)+g\left(e_{k}, e_{i}\right) g\left(h\left(e_{j}, e_{k}\right), h\left(e_{i}, e_{j}\right)\right) \tag{31}\\
& \left.-g\left(e_{k}, e_{k}\right) g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right)\right\}
\end{align*}
$$

From equations (4.14) and (4.15), we have

$$
\begin{align*}
& \frac{1}{2} \triangle\left(\|h\|^{2}\right)=\sum_{i, j, k=1}^{n}\left[g\left(\left(\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{j}} h\right)\left(e_{k}, e_{k}\right), h\left(e_{i}, e_{j}\right)\right)\right. \\
& \quad-L\left\{g\left(e_{i}, e_{j}\right) g\left(h\left(e_{k}, e_{k}\right), h\left(e_{i}, e_{j}\right)\right)-g\left(e_{k}, e_{j}\right) g\left(h\left(e_{k}, e_{i}\right), h\left(e_{i}, e_{j}\right)\right)\right. \tag{32}\\
& \left.\left.\quad+g\left(e_{k}, e_{i}\right) g\left(h\left(e_{j}, e_{k}\right), h\left(e_{i}, e_{j}\right)\right)-g\left(e_{k}, e_{k}\right) g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right)\right\}\right] \\
& \quad+\|\bar{\nabla} h\|^{2}
\end{align*}
$$

Further by definitions

$$
\begin{aligned}
\|h\|^{2} & =\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) \\
H^{\alpha} & =\sum_{k=1}^{n} h_{k k}^{\alpha} \\
\|H\|^{2} & =\frac{1}{n^{2}} \sum_{\alpha=n+1}^{2 n+s}\left(H^{\alpha}\right)^{2}
\end{aligned}
$$

and after some calculations, we get

$$
\begin{equation*}
\frac{1}{2} \triangle\left(\|h\|^{2}\right)=\sum_{i, j=1}^{n} \sum_{\alpha=n+1}^{2 n+s} h_{i j}^{\alpha}\left(\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{j}} H^{\alpha}\right)-L\left\{n^{2}\|H\|^{2}-n\|h\|^{2}\right\}+\|\bar{\nabla} h\|^{2} . \tag{33}
\end{equation*}
$$

Using minimality condition, equation (4.17) reduces to

$$
\begin{equation*}
\frac{1}{2} \triangle\left(\|h\|^{2}\right)=L n\|h\|^{2}+\|\bar{\nabla} h\|^{2} \tag{34}
\end{equation*}
$$

Now, using the arguments as Blair has shown in [9], we have

$$
\begin{gather*}
\frac{1}{2} \triangle\left(\|h\|^{2}\right)=\|\bar{\nabla} h\|^{2}-\sum_{\alpha, \beta=n+1}^{2 n+s}\left\{\left[T_{r}\left(A_{\alpha} o A_{\beta}\right)\right]^{2}+\left\|\left[A_{\alpha}, A_{\beta}\right]\right\|^{2}\right\} \tag{35}\\
+\frac{1}{4}(n(c+3 s)+c-s)\|h\|^{2} .
\end{gather*}
$$

From (4.18) and (4.19), we have
$0=\left(L n-\frac{1}{4}(n(c+3 s)+c-s)\right)\|h\|^{2}+\sum_{\alpha, \beta=n+1}^{2 n+s}\left\{\left[T_{r}\left(A_{\alpha} o A_{\beta}\right)\right]^{2}+\left\|\left[A_{\alpha}, A_{\beta}\right]\right\|^{2}\right\}$,
if $\operatorname{Ln}-\frac{1}{4}(n(c+3 s)+c-s) \geq 0$, then $T_{r}\left(A_{\alpha} o A_{\beta}\right)=0$.
In particular, $\left\|A_{\alpha}\right\|^{2}=T_{r}\left(A_{\alpha} o A_{\beta}\right)=0$, then $h=0$ and hence M is totally geodesic.

Corollary 1. Let $\bar{M}(c)$ be a $(2 n+s)$-dimensional S-space form of constant f-sectional curvature c and M be an n-dimensional C-totally real, minimal submanifold of $\bar{M}(c)$. If M is semi-parallel (i.e. $\bar{R} . h=0$) and $n(c+3 s)+c-s \leq$ 0 , then it is totally geodesic.

5 Acknowledgement

Acknowledgements. Authors are grateful to referees for their valuable suggestions.

References

[1] A. C, Asperti, G. A, Lobos, F. Mercuri : Pseudo parallel immersions in space forms. Math. Contemp. 17 (1999), 59-70.
[2] A. C, Asperti, G. A, Lobos, F. Mercuri : Pseudo parallel immersions of a space forms. Adv. Geom, 2 (2002), 57-71.
[3] D. E. BLaIR: Geometry of manifolds with structural group $\mathrm{U}(\mathrm{n}) \mathrm{O}(\mathrm{s})$, J. Diff. Geometry 4 (1970), 155-167.
[4] D. E. Blair : On a generalization of the Hopf fibration, An. Sti.Univ. "Al. I. Cuza" Iasi Sect.I a Mat. (N.S.) 17 (1971), 171-177.
[5] D. E. Blair, G. D. Luden, K. Yano : Differential Geometry Structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973), 175-184.
[6] A. Brasil, G. A. Lobos G. A, M. Marino : C-Totally real submanifolds with parallel curvature in λ-Sasakian space forms, Math. Contemp. 34 (2008), 83-102.
[7] J. L. Cabrerizo, L. M. Fernandez, Fernandez M. : The Curvature of Submanifold of S-space form, Acta Math. Hungar. 62 (1993), no. 3-4, 373-383.
[8] J. L. Cabrerizo, L. M. Fernandez, Fernandez M. : On certain anti-invariant submanifolds of an S-manifolds, Portugal. Math. 50 (1993), no. 1, 103-113.
[9] J, Deprez : Semi parallel surface in Euclidean space, J. Geom. 25 (1985), 192-120.
[10] J, Deprez : Semi parallel hypersurfaces, Rend Sem Mat Univers Politecnico Torino 44 (1986), 303-316.
[11] R. Deszcz, L. Verstralen, S. Yaprak : Pseudosymmetric hypersurfaces in 4dimensional space of constant curvature. Bull. Ins. Math. Acad. Sinica 22 (1994), 167-179.
[12] F. Dillen, L. Vrancken : C-totally real submanifolds of Sasakian space form, J. Math. Pures Appl. (1990), 85-93.
[13] D. Ferus : Immersions with parallel second fundamental form, Math. Z 140 (1974), 87-93.
[14] U. Lumist : Semi-Symmetric submanifolds as the second order envelope of symmetric submanifolds, Proc. Estonian Acad. Sci. Phys. Math. 39 (1990), 1-8.
[15] M. M. Tripathi, J. S. Kim, M. K. Dwivedi : Ricci curvature of integral submanifolds of an S-space form, Bull. Korean Math. Soc. 44 (2007), no. 3, 395-406.
[16] Sanjay Kumar Tiwari, S. S. Shukla : C-totally real warped product submanifolds in S-space forms, Aligarh Bull. Math. Vol. 27 (2), 2008, 95-100.
[17] S. Vanzura : Almost r-contact structures, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 97-115.
[18] K. Yano, M. Kon : Structures on manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984.
[19] S. Yamaguchi, M. Kon, T. Ikawa : C-totally real submanifolds, J. Diff. Geometry 11 (1976), 59-64.
[20] A. Yildiz, C. Murathan, K. Arslan, R. Ezentas : C-totally real pseudo-parallel submanifolds of Sasakian space forms, Monatsh. Math. 151 (2007), 247-256.

[^0]: ${ }^{\mathrm{i}}$ Corresponding author
 http://siba-ese.unisalento.it/ © 2012 Università del Salento

