C-totally real pseudo-parallel submanifolds of S-space forms

Sanjay Kumar Tiwari
Department of Applied Sciences, Babu Banarsi Das Institute of Technology, Ghaziabad
dr-sanjay@hotmail.com

S. S. Shukla
Department of Mathematics, University of Allahabad, Allahabad (India)

S. P. Pandey
Department of Applied Sciences, Babu Banarsi Das Institute of Technology, Ghaziabad

Received: 11.8.2011; accepted: 29.3.2012.

Abstract. Let $\mathcal{M}(c)$ be a $(2n + s)$-dimensional S-space form of constant f-sectional curvature c and M be an n-dimensional C-totally real, minimal submanifold of $\mathcal{M}(c)$. We prove that if M is pseudo parallel and $Ln - \frac{1}{4}(n(c + 3s) + c - s) \geq 0$, then M is totally geodesic.

Keywords: S-manifolds, Sasakian manifolds, contact manifolds, pseudo-parallel submanifolds.

MSC 2000 classification: 53B20, 53B25, 53B50

1 Introduction

Given an isometric immersion $F : M \rightarrow \mathcal{M}$, let h be the second fundamental form and ∇ the Van der Weather- Bortolloti connection of M. Then Deprez defined the immersion to be semi-parallel if

$$R(X,Y).h = (\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]} - \nabla_{[X,Y]}) h = 0,$$ \hspace{1cm} (1)

holds for any vectors X, Y tangent to M. Deprez mainly paid attention to the case of semi-parallel immersion in a real space form [see [9], [10]]. Later, Lumiste showed that a semi-parallel submanifold is the second order envelop of the family of parallel submanifolds [14].

In [11], authors obtained some results on hypersurfaces in 4-dimension space form $N^4(c)$ satisfying the curvature condition

$$\mathcal{R}.h = LQ(g,h).$$ \hspace{1cm} (2)

1Corresponding author
http://siba-ese.unisalento.it/ © 2012 Università del Salento
The submanifolds satisfying (1.2) are called pseudo-parallel [1, 2].

In [1], authors have shown that if F is a pseudo-parallel immersion with $H(p) = 0$ and $L(p) - c \geq 0$, then the point p is a geodesic point of M.

In the present paper, we generalize their results for the case of M, that is a submanifold of S-space form $\mathbb{M}(c)$ of constant f--sectional curvature c.

We prove the following result:

Theorem 1. Let $\mathbb{M}(c)$ be a $(2n+s)$--dimensional S-space form of constant f--sectional curvature c and M be an n-dimensional C-totally real, minimal submanifold of $\mathbb{M}(c)$. If M is pseudo-parallel and $Ln - \frac{1}{4}(n(c+3s)+c-s) \geq 0$, then M is totally geodesic.

2 Preliminaries

Let (M, g) be an n-dimensional ($n \geq 3$) connected semi-Riemannian manifold of class C^∞. We denote by ∇, R and S the Levi-Civita connection, Riemannian curvature tensor, and Ricci tensor of (M, g), respectively. The Ricci operator Q is defined by $g(QX,Y) = S(X,Y)$, where $X, Y \in \chi(M)$, $\chi(M)$ being the Lie algebra of vector fields on M. Now we define endomorphisms $R(X,Y)$ and $X \Lambda_A Y$ of $\chi(M)$ by

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z, \quad (3)$$

$$(X \Lambda_A Y)Z = A(Y,Z)X - A(X,Z)Y, \quad (4)$$

where $X, Y, Z \in \chi(M)$ and A is a symmetric $(0,2)$-tensor.

A concircular curvature tensor Z is defined by

$$Z(X,Y) = R(X,Y) - \frac{\kappa}{n(n-1)}(X \Lambda_A Y),$$

where κ is scalar curvature of M.

Let $F : M \to \mathbb{M}(c)$ be an isometric immersion of an n-dimensional Riemannian manifold M into a $(2n+1)$--dimensional real space form $\mathbb{M}(c)$. We denote by ∇ and ∇ the Levi-Civita connection of M and $\mathbb{M}(c)$, respectively. Also, we denote by $N(M)$ its normal bundle. Then for vector fields X, Y which are tangent to M, the second fundamental form h is given by the formula $h(X,Y) = \nabla_X Y - \nabla_X Y$. Furthermore, for $\xi \in N(M)$, $A_\xi : TM \to TM$ denotes the Weingarten operator in the ξ--direction, $A_\xi X = \nabla^\perp_X \xi - \nabla_X \xi$, where ∇^\perp denotes normal connection on M. The second fundamental form h and A_ξ are related by $\bar{g}(h(X,Y), \xi) = g(A_\xi X, Y)$, where g is the induced metric of \bar{g} for any vector fields X, Y tangent to M. The mean curvature vector H of M is defined as

$$H = \frac{1}{n} \text{tr}(h).$$
C-totally real pseudo-parallel submanifolds of S-space forms

The covariant derivative ∇h of h is defined by

$$(\nabla_X h)(Y, Z) = \nabla_X^\perp(h(Y, Z)) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z),$$

where ∇h is a normal bundle valued tensor of type $(0, 3)$ and is called the third fundamental form of M. The equation of Codazzi implies that ∇h is symmetric and hence

$$(\nabla_X h)(Y, Z) = (\nabla_Y h)(X, Z) = (\nabla_Z h)(X, Y).$$

Here, ∇ is called the Van der Weeder - Bortolotti connection of M. If $\nabla h = 0$, then F is called parallel [13].

The basic equations of Gauss and Ricci are

$$g(R(\nabla_X Y) Z, W) = cg(\nabla_X Y Z) + g(h(\nabla_X Y, Z), h(Y, W)) - g(h(\nabla_X Y, Z), h(Y, W)),$$

where R is curvature tensor belonging to the connection ∇.

3 S-space forms

Let \mathcal{M} be a $(2m + s)$-dimensional framed metric manifold [18] (or almost r-contact metric manifolds [17]) with a framed metric structure $(f, \xi_\alpha, \eta^\alpha, g)$, $\alpha \in \{1, 2, \ldots, s\}$, where f is a $(1, 1)$ tensor field defining an f-structure of
rank 2m, \(\xi_1, \xi_2, \ldots, \xi_s \) are vector fields, \(\eta^1, \eta^2, \ldots, \eta^s \) are 1-forms and \(\bar{g} \) is a Riemannian metric on \(\overline{M} \) such that for all \(X, Y \in T\overline{M} \) and \(\alpha, \beta \in \{1, 2, \ldots, s\} \),

\[
f^2 = -I + \eta^\alpha \otimes \xi_\alpha, \quad \eta^\alpha(\xi_\alpha) = \delta^\alpha_\beta, \quad f(\xi_\alpha) = 0, \quad \eta^\alpha \alpha f = 0, \tag{11}
\]

\[
\bar{g}(fX, fY) = \bar{g}(X, Y) - \sum_\alpha \eta^\alpha(X)\eta^\alpha(Y), \tag{12}
\]

\[
\Omega(X, Y) \equiv \bar{g}(X, fY) = -\Omega(Y, X), \quad \bar{g}(X, \xi_\alpha) = \eta^\alpha(X). \tag{13}
\]

A framed metric structure is an S-structure [3] if \([f, f] + 2d\eta^\alpha \otimes \xi_\alpha = 0 \) and \(\Omega = \eta^\alpha \otimes \xi_\alpha \) for all \(\alpha \in \{1, 2, \ldots, s\} \). When \(s = 1 \), a framed metric structure is an almost contact metric structure, while an S-structure is a Sasakian-structure. When \(s = 0 \), a framed metric structure is an almost Hermitian structure, while an S-structure is Käehler structure. If a framed metric structure on \(\overline{M} \) is an S-structure, then it is known [3] that

\[
(\nabla_X f)Y = \sum_\alpha (\bar{g}(fX, fY)\xi_\alpha + \eta^\alpha(Y) f^2 X), \tag{14}
\]

\[
\nabla \xi_\alpha = -f, \quad \alpha \in \{1, 2, \ldots, s\}. \tag{15}
\]

The converse may also be proved. In case of Sasakian structure (i.e. \(s = 1 \)) (3.4) implies (3.5). In Kähler case (i.e. \(s = 0 \)), we get \(\nabla f = 0 \). For \(s > 1 \), examples of S-structure are given in [3] [4] [5].

A plane section in \(T_p \overline{M} \) is called a \(f \)-section if there exists a vector \(X \in T_p \overline{M} \) orthogonal to \(\xi_1, \xi_2, \ldots, \xi_s \) such that \(\{X, fX\} \) span the section. The sectional curvature of a \(f \)-section is called a \(f \)-sectional curvature. It is known that [14] in an S-manifold of constant \(f \)-sectional curvature \(c \)

\[
\bar{R}(X, Y)Z = \sum_{\alpha, \beta} \{\eta^\alpha(X)\eta^\beta(Z)f^2 Y - \eta^\alpha(Y)\eta^\beta(Z)f^2 X
\]

\[
- \bar{g}(fX, fY)\eta^\alpha(Y)\xi_\beta + \bar{g}(fY, fZ)\eta^\alpha(X)\xi_\beta
\]

\[
+ \frac{(c + 3s)}{4} \{ -\bar{g}(fY, fZ)f^2 X + \bar{g}(fX, fZ)f^2 Y \}
\]

\[
+ \frac{(c - s)}{4} \{ \bar{g}(X, fZ)fY - \bar{g}(Y, fZ)fX + 2\bar{g}(X, fY)fZ \}, \tag{16}
\]

for all \(X, Y, Z \in T\overline{M} \), where \(\bar{R} \) is curvature tensor of \(\overline{M} \). An S-manifold of constant \(f \)-sectional curvature \(c \) is called an S-space form \(\overline{M}(c) \).

A submanifold \(M \) of an S-space form \(\overline{M}(c) \) is called a C-totally real submanifold if and only if \(f(T_x M) \subset T_x^+ M \), for all \(x \in M(T_x M \) and \(T_x^+ M \) are respectively the tangent space and normal space of \(M \) at \(x \)). When \(\xi_\alpha \) is tangent to \(M \), \(M \) is a C-totally real submanifold if and only if \(\nabla_X \xi_\alpha = 0 \), for all
X ∈ M, α ∈ {1, 2, . . . , s}, where ∇ is the connection on M induced from Levi-Civita connection ∇ on M. It is to see that the C-totally real submanifolds M of M are submanifolds with ξα ∈ T⊥M.

We already know that [1] if M is an n-dimensional C-totally real submanifold of a (2m+s)−dimensional S-space form M(c), then following statements are equivalent:

(i) M is totally geodesic.
(ii) M is of constant curvature K = \frac{1}{4}(c+3s).
(iii) The Ricci tensor S = \frac{1}{4}(n-1)(c+3s)g.
(iv) The scalar curvature κ = \frac{1}{4}n(n-1)(c+3s).

Following the argument as in [11], we can prove

Theorem 2. Let M be a minimal, C-totally real submanifold of an S-space form M(c), then

\[\kappa > \frac{n^2(n-2)}{2(2n-1)}(c+3s), \]

implies that M is totally geodesic.

Following the argument as in [10], we can prove:

Proposition 1. If M is an n-dimensional C-totally real submanifold of an S-space form M(c). Then the following conditions are equivalent:

(i) M is minimal.
(ii) The mean curvature vector H of M is parallel.

4 Main Results

Theorem 3. Let M(c) be a (2n+s)−dimensional S-space form of constant f-sectional curvature c and M be an n-dimensional C-totally real, minimal submanifold of M(c). If M is pseudo parallel and Ln − \frac{1}{4}(n(c+3s) + c - s) ≥ 0, then M is totally geodesic.

Proof. Let M be an n-dimensional C-totally real submanifold of a (2n+s)−dimensional S-space form M(c) of constant f-sectional curvature c. We choose an orthonormal basis \{e_1, e_2, . . . , e_n, fe_1 = e_1^*, . . . , fe_n = e_n^*, e_{n+1}^* = ξ_1, . . . , e_{n+s}^* = ξ_s\}. Then for 1 ≤ i, j ≤ n, n + 1 ≤ α ≤ 2n + s, the components of second fundamental form h are given by

\[h_{ij}^α = g(h(e_i, e_j), e_α). \] (17)
Similarly, the components of first and second covariant derivative of h are given by

$$h^\alpha_{ijk} = \nabla_{e_k} h^\alpha_{ij},$$

(18)

and

$$h^\alpha_{ijkl} = \nabla_{e_l \nabla_{e_k} h^\alpha_{ij}} = \nabla_{e_l} h^\alpha_{ij},$$

(19)

respectively. It is well known that

$$h^*_{ij} = h^*_{kj} = h^*_{ji}, \quad h^{(n+1)*} = 0.$$}

If F is pseudo-parallel, then by definition, the condition

$$\mathcal{R}(e_l, e_k).h = L[(e_l \Lambda g_e)k]h$$

(20)

is fulfilled where

$$[(e_l \Lambda g_e)k](e_i, e_j) = -h((e_l \Lambda g_e)k)e_i - h(e_i, (e_l \Lambda g_e)e_k)e_j,$$

(21)

for $1 \leq i, j, k, l \leq n$.

Now using (2.2) in (4.5), we get

$$(e_i, e_j) = -g(e_k, e_i)h(e_l, e_j) + g(e_l, e_i)h(e_k, e_j)$$

$$- g(e_k, e_j)h(e_l, e_i) + g(e_j, e_l)h(e_k, e_i).$$

(22)

By (2.9) we have

$$(\mathcal{R}(e_l, e_k).h)(e_i, e_j) = (\nabla_{e_l} \nabla_{e_k} h)(e_i, e_j) - (\nabla_{e_k} \nabla_{e_l} h)(e_i, e_j).$$

(23)

Making use of (4.1), (4.3), (4.6) and (4.7), the pseudo-parallelity condition (4.4) gives us

$$h^\alpha_{ijkl} = h^\alpha_{ijkl} - L\{\delta_{ki} h^\alpha_{lj} - \delta_{li} h^\alpha_{kj} + \delta_{kj} h^\alpha_{il} - \delta_{lj} h^\alpha_{ki}\},$$

(24)

where $g(e_i, e_j) = \delta_{ij}$ and $1 \leq i, j, k, l \leq n$, $n + 1 \leq \alpha \leq 2n + s$.

Recall that the Laplacian $\triangle h^\alpha_{ij}$ of h^α_{ij} is defined by

$$\triangle h^\alpha_{ij} = \sum_{i,j,k=1}^{n} h^\alpha_{ijkl},$$

(25)

Then we obtain

$$\frac{1}{2} \triangle(||h||^2) = \sum_{i,j,k,l=1}^{n} \sum_{\alpha=n+1}^{2n+s} h^\alpha_{ij} h^\alpha_{ijkl} + ||\nabla h||^2,$$

(26)
From equations (4.14) and (4.15), we have respectively. In view of (4.1) and (4.3), we obtain are the square of the length of second and third fundamental forms of M, respectively. In view of (4.1) and (4.3), we obtain

$$h_{ij}^a h_{ijkk}^a = g(h(e_i, e_j), e_\alpha)g((\nabla_{e_k} \nabla_{e_k} h)(e_i, e_j), e_\alpha) = g((\nabla_{e_k} \nabla_{e_k} h)(e_i, e_j), g(h(e_i, e_j), e_\alpha), e_\alpha) = g((\nabla_{e_k} \nabla_{e_k} h)(e_i, e_j), h(e_i, e_j)).$$

Therefore, due to (4.13), equation (4.10) becomes

$$\frac{1}{2} \Delta(||h||^2) = \sum_{i,j,k=1}^n g((\nabla_{e_k} \nabla_{e_k} h)(e_i, e_j), h(e_i, e_j)) + ||\nabla h||^2. \tag{30}$$

Further, by the use of (4.4), (4.6) and (4.7), we get

$$g((\nabla_{e_k} \nabla_{e_k} h)(e_i, e_j), h(e_i, e_j)) = g((\nabla_{e_k} \nabla_{e_k} h)(e_i, e_j), h(e_i, e_j)) - g(e_k, e_j)g(h(e_k, e_i), h(e_i, e_j)) + g(e_k, e_i)g(h(e_j, e_k), h(e_i, e_j)) - g(e_k, e_k)g(h(e_i, e_j), h(e_i, e_j)). \tag{31}$$

From equations (4.14) and (4.15), we have

$$\frac{1}{2} \Delta(||h||^2) = \sum_{i,j,k=1}^n \left[g((\nabla_{e_k} \nabla_{e_k} h)(e_k, e_i), h(e_i, e_j)) - L \left\{ g(e_i, e_j)g(h(e_k, e_i), h(e_i, e_j)) - g(e_k, e_j)g(h(e_k, e_i), h(e_i, e_j)) + g(e_k, e_i)g(h(e_j, e_k), h(e_i, e_j)) - g(e_k, e_k)g(h(e_i, e_j), h(e_i, e_j)) \right\} \right] + ||\nabla h||^2. \tag{32}$$

Further by definitions

$$||h||^2 = \sum_{i,j=1}^n g(h(e_i, e_j), h(e_i, e_j)),$$

$$H^\alpha = \sum_{k=1}^n h_{kk}^\alpha,$$

$$||H||^2 = \frac{1}{n^2} \sum_{\alpha=n+1}^{2n+s} (H^\alpha)^2,$$
and after some calculations, we get
\[\frac{1}{2} \Delta (||h||^2) = \sum_{i,j=1}^{n} \sum_{\alpha=n+1}^{2n+s} h_{ij}^{\alpha} (\nabla_{e_i} \nabla_{e_j} H^\alpha) - L\{n^2||H||^2 - n||h||^2\} + ||\nabla h||^2. \] (33)

Using minimality condition, equation (4.17) reduces to
\[\frac{1}{2} \Delta (||h||^2) = Ln||h||^2 + ||\nabla h||^2. \] (34)

Now, using the arguments as Blair has shown in [9], we have
\[\frac{1}{2} \Delta (||h||^2) = ||\nabla h||^2 - \sum_{\alpha,\beta=n+1}^{2n+s} \left\{ [T_r(A_\alpha o A_\beta)]^2 + ||[A_\alpha, A_\beta]||^2 \right\} + \frac{1}{4}(n(c + 3s) + c - s)||h||^2. \] (35)

From (4.18) and (4.19), we have
\[0 = (Ln - \frac{1}{4}(n(c + 3s) + c - s)||h||^2 + \sum_{\alpha,\beta=n+1}^{2n+s} \left\{ [T_r(A_\alpha o A_\beta)]^2 + ||[A_\alpha, A_\beta]||^2 \right\}, \]
if \(Ln - \frac{1}{4}(n(c + 3s) + c - s) \geq 0 \), then \(T_r(A_\alpha o A_\beta) = 0 \).

In particular, \(||A_\alpha||^2 = T_r(A_\alpha o A_\beta) = 0 \), then \(h = 0 \) and hence \(M \) is totally geodesic.

Corollary 1. Let \(\overline{M}(c) \) be a \((2n+s)\)-dimensional S-space form of constant \(f \)-sectional curvature \(c \) and \(M \) be an \(n \)-dimensional C-totally real, minimal submanifold of \(\overline{M}(c) \). If \(M \) is semi-parallel (i.e. \(R.h = 0 \)) and \(n(c+3s)+c-s \leq 0 \), then it is totally geodesic.

5 Acknowledgement

Acknowledgements. Authors are grateful to referees for their valuable suggestions.

References

C-totally real pseudo-parallel submanifolds of S-space forms

