Space-like hypersurfaces with vanishing conformal forms in the conformal space

Yang Huizhang ${ }^{\text {i }}$
Department of Mathematics, University of Honghe, Mengzi, Yunnan, 661100 P.R.China
yanghuizhangyn@163.com
Sun Xia
Department of Arts and Science, University of Yunnan Radio \& TV, Kunming, Yunnan, 650223 P.R.China
sunx@sina.com

Received: 14.4.2010; accepted: 7.3.2012.

Abstract

We study the space-like hypersurfaces with vanishing conformal form in the conformal geometry, and classify the the Einstein space-like hypersurfaces in the conformal space.

Keywords: space-like hypersurfaces; conformal space; conformal form.
MSC 2000 classification: 53A30; 53C21; 53C40

Introduction

We define the pseudo-Euclidean inner product $\langle\cdot, \cdot\rangle_{s}$ in R^{n+p} as

$$
\langle X, Y\rangle_{s}=-\sum_{i=1}^{s} x_{i} y_{i}+\sum_{i=s+1}^{n+p} x_{i} y_{i}, X=\left(x_{i}\right), Y=\left(y_{i}\right) \in R^{n+p}
$$

Let $R P^{n+2}$ be a real projective space. $\langle\cdot, \cdot\rangle_{2}$ is the pseudo-Euclidean inner product in R^{n+3}. The quadratic surface

$$
Q_{1}^{n+1}=\left\{[\xi] \in R P^{n+2} \mid\langle\xi, \xi\rangle_{2}=0\right\}
$$

in $R P^{n+2}$ is called the conformal space.
Suppose that $x: M^{n} \rightarrow Q_{1}^{n+1}$ is a space-like hypersurface in the conformal space $Q_{1}^{n+1},\left\{e_{i}\right\}$ is a local orthonormal frame of M^{n} for the standard metric $I=d x \cdot d x$ with dual basis $\left\{\theta_{i}\right\}$. Then we define the first fundamental form I, the second fundamental form $I I$ and the mean curvature of x as

$$
I=\langle d x, d x\rangle_{1}=\sum_{i} \theta_{i} \otimes \theta_{i} ; \quad I I=\sum_{i j} h_{i j} \theta_{i} \otimes \theta_{j} ; \quad H=\frac{1}{n} \sum_{i} h_{i i} .
$$

[^0]In [5], Nie and Wu classified the hypersurfaces with parallel conformal second fundamental form. They obtained

Theorem 1. [5] Let $x: M^{n} \rightarrow Q_{1}^{n+1}$ be a space-like hypersurface with parallel conformal second fundamental form, then M^{n} is conformally equivalent to an open part of one of the following hypersurfaces in Q_{1}^{n+1} :

1) $S^{k}(a) \times H^{n-k}(b) \subset S_{1}^{n+1}$
2) $H^{k}(a) \times H^{n-k}(b) \subset H_{1}^{n+1}$;
3) $H^{k}(a) \times R^{n-k} \subset R_{1}^{n+1}$;
4) $W P(p, q, a) \subset R_{1}^{n+1}, W P(p, q, a)$ is the warped product embedding u : $S^{p}(a) \times H^{q}(b) \times R^{+} \times R^{n-p-q-1} \subset R_{1}^{n+2} \rightarrow R_{1}^{n+1}, a>1, b=\sqrt{a^{2}-1}$, which is given by

$$
u=\left(t u_{1}, t u_{2}, t u_{3}\right), u_{1} \in S^{p}(a), u_{2} \in H^{q}(b), u_{3} \in R^{n-p-q-1}, t \in R^{+} .
$$

In this paper, we consider the space-like hypersurfaces M^{n} with conformal form $C=0$, which also have harmonic curvature. Here is our main theorem

Theorem 2. Let $x: M^{n} \rightarrow Q_{1}^{n+1}$ be a space-like hypersurface in Q_{1}^{n+1} without umbilics. If its conformal form $C=0$ and its curvature tensor is harmonic, then its conformal second fundamental form is parallel.

Every manifold with parallel Ricci tensor has harmonic curvature. This applies, for instance, to Einstein manifolds. Consequently, we have the following corollary

Corollary 1. Let $x: M^{n} \rightarrow Q_{1}^{n+1}$ be a space-like hypersurface in Q_{1}^{n+1} without umbilics. If its conformal form $C=0$ and M^{n} is Einstein hypersurface with respect to conformal metric g, then M^{n} is conformally equivalent to an open part of one of the following hypersurfaces in Q_{1}^{n+1} :

1) $H^{k}(a) \times H^{n-k}(b) \subset H_{1}^{n+1}$;
2) $H^{1}(a) \times R^{n-1} \subset R_{1}^{n+1}$.

1 Conformal invariants for space-like hypersurfaces in Q_{1}^{n+1}

Let $x: M^{n} \rightarrow Q_{1}^{n+1}$ be a space-like hypersurface in the conformal space Q_{1}^{n+1}. The cone of light in R^{n+3} is given by

$$
C^{n+2}=\left\{\xi \in R^{n+3} \mid\langle\xi, \xi\rangle_{2}=0, \xi \neq 0\right\} .
$$

Then there exists a unique lift $Y: M^{n} \rightarrow C^{n+2}$ of x such that $g=\langle d Y, d Y\rangle$ up to a sign, Y is called the canonical lift of x. Then we have

Theorem 3. [6] Two space-like hypersurfaces $x, \tilde{x}: M^{n} \rightarrow Q_{1}^{n+1}$ are conformally equivalent if and only if there exists a pseudo-orthogonal transformation $T \in O(n, 2)$ in R_{2}^{n+3} such that $Y=\tilde{Y} T$.

It follows immediately from Theorem 3 that $g=\langle d Y, d Y\rangle=e^{2 \tau} d x \cdot d x, \quad e^{2 \tau}=$ $\frac{n}{n-1}\left(\sum_{i j}\left(h_{i j}\right)^{2}-n H^{2}\right)$ is a conformal invariant, which is called the conformal metric of $x: M^{n} \rightarrow Q_{1}^{n+1}$.

Let Δ be the Laplacian operator with respect to g. We define

$$
\begin{equation*}
N=-\frac{1}{n} \Delta Y-\frac{1}{2 n^{2}}\langle\Delta Y, \Delta Y\rangle Y \tag{1}
\end{equation*}
$$

It is easy to see that

$$
\begin{gather*}
\langle\Delta Y, Y\rangle_{2}=-n,\langle Y, d Y\rangle_{2}=0 \tag{2}\\
\langle Y, Y\rangle_{2}=\langle N, N\rangle_{2}=0,\langle Y, N\rangle_{2}=1 \tag{3}
\end{gather*}
$$

Let $\left\{E_{i}:=e^{-\tau} e_{i}\right\}$ be a local orthonormal basis for the conformal metric g with dual basis $\left\{\omega_{i}=e^{\tau} \theta_{i}\right\}$. Writing $\left\{Y_{i}=E_{i}(Y)\right\}$, we have

$$
\begin{equation*}
\left\langle Y_{i}, Y_{j}\right\rangle_{2}=\delta_{i j},\left\langle Y_{i}, Y\right\rangle_{2}=\left\langle Y_{i}, N\right\rangle_{2}=0, \quad 1 \leq i, j \leq n \tag{4}
\end{equation*}
$$

If we denote by V is the orthogonal complement space of the subspace $\operatorname{span}\left\{Y, N, Y_{1}, \cdots, Y_{n}\right\}$ in R_{2}^{n+3}, then we have

$$
R_{2}^{n+3}=\operatorname{span}\{Y, N\} \oplus \operatorname{span}\left\{Y_{1}, \cdots, Y_{n}\right\} \oplus V
$$

here V is called the conformal normal bundle of $x: M^{n} \rightarrow S^{n+1}$. We define the local orthonormal basis of V by

$$
\begin{equation*}
E=E_{n+1}:=\left(H, H x+e_{n+1}\right), \tag{5}
\end{equation*}
$$

then $\left\{Y, N, Y_{1}, \cdots, Y_{n}, E\right\}$ is a moving frame of R_{2}^{n+3} along M^{n}, we can write the structure equations as

$$
\begin{gather*}
d Y=\sum_{i} Y_{i} \omega_{i} \tag{6}\\
d N=\sum_{i} \psi_{i} Y_{i}+C E \tag{7}\\
d Y_{i}=-\psi_{i} Y-\omega_{i} N+\sum_{j} \omega_{i j} Y_{j}+\omega_{i, n+1} E \tag{8}\\
d E=C Y+\sum_{i} \omega_{i, n+1} Y_{i} \tag{9}
\end{gather*}
$$

The tensors $A=\sum_{i, j} A_{i j} \omega_{i} \omega_{j}, \quad B=\sum_{i, j} B_{i j} \omega_{i} \omega_{j}, \quad C=\sum_{i} C_{i} \omega_{i}$ are called the Blaschke tensor, the conformal second fundamental form and the conformal
form respectively. All of them are conformal invariants. The relations between conformal invariants and Euclidean invariants of x are given by

$$
\begin{gather*}
B_{i j}=e^{-\tau}\left(h_{i j}-H \delta_{i j}\right), \tag{10}\\
C_{i}=e^{-2 \tau}\left(H \tau_{i}-\sum_{j} h_{i j} \tau_{j}-H_{i}\right), \tag{11}\\
A_{i j}=e^{-2 \tau}\left[\tau_{i} \tau_{j}-\tau_{i, j}-H h_{i j}+\frac{1}{2}\left(H^{2}-\sum_{k}\left(\tau_{k}\right)^{2}+\epsilon\right) \delta_{i j}\right] . \tag{12}
\end{gather*}
$$

Here $\tau_{i}=e_{i}(\tau), H_{i}=e_{i}(H) . \tau_{i, j}$ and ∇ are called the Hessian-matrix and the gradient with respect to $I=d x \cdot d x$ respectively.

We define the covariant derivatives of $C_{i}, A_{i j}, B_{i j}$ as follows

$$
\begin{gather*}
\sum_{j} C_{i, j} \omega_{j}=d C_{i}-\sum_{j} C_{j} \omega_{j i}, \tag{13}\\
\sum_{k} A_{i j, k} \omega_{k}=d A_{i j}-\sum_{k} A_{i k} \omega_{k j}-\sum_{k} A_{k j} \omega_{k i}, \tag{14}\\
\sum_{k} B_{i j, k} \omega_{k}=d B_{i j}-\sum_{k} B_{i k} \omega_{k j}-\sum_{k} B_{k j} \omega_{k i} . \tag{15}
\end{gather*}
$$

Then the structure equations (6)-(9) are equivalent to

$$
\begin{gather*}
A_{i j, k}-A_{i k, j}=B_{i k} C_{i}-B_{i j} C_{k}, \tag{16}\\
C_{i, j}-C_{j, i}=\sum_{k}\left(B_{i k} A_{k j}-B_{k j} A_{k i}\right), \tag{17}\\
B_{i j, k}-B_{i k, j}=\delta_{i j} C_{k}-\delta_{i k} C_{j}, \tag{18}\\
R_{i j k l}=\delta_{i k} A_{j l}-\delta_{i l} A_{j k}+\delta_{j l} A_{i k}-\delta_{j k} A_{i l}-\left(B_{i k} B_{j l}-B_{i l} B_{j k}\right), \tag{19}\\
R_{i j}:=\sum_{k} R_{i k j k}=\sum_{k} B_{i k} B_{j k}+(\operatorname{tr} A) \delta_{i j}+(n-2) A_{i j}, \tag{20}\\
\sum_{i} B_{i i}=0, \sum_{i, j}\left(B_{i j}\right)^{2}=\frac{n-1}{n}, \operatorname{tr} A=\sum_{i} A_{i i}=\frac{1}{2 n}\left(n^{2} \kappa-1\right) . \tag{21}
\end{gather*}
$$

Here $R_{i j k l}$ is the curvature tensor of $g, Q=\sum_{i, j} R_{i j} \omega_{i} \otimes \omega_{j}$ is the conformal Ricci curvature and $\kappa=\frac{1}{n(n-1)} \sum_{i} R_{i i}$ is the normalized conformal scalar curvature of $x: M^{n} \rightarrow S^{n+1}$.

Theorem 4. [6] Two space-like hypersurfaces $x: M^{n} \rightarrow Q_{1}^{n+1}$ and $\tilde{x}: \tilde{M}^{n} \rightarrow$ $Q_{1}^{n+1}(n \geq 3)$ are conformally equivalent if and only if there exists a diffeomorphism $\sigma: M^{n} \rightarrow \tilde{M}^{n}$ which preserves the conformal metric g and conformal second fundamental form B.

2 The proof of main results

Proof of Theorem 2. Let $x: M^{n} \rightarrow Q_{1}^{n+1}$ be a space-like hypersurface in Q_{1}^{n+1} with conformal form $C=0$. From (17), we choose a local orthonormal frame $\left\{e_{i}\right\}$ with respect to g such that A, B are diagonalizable at the same time, i.e.,

$$
\begin{equation*}
B_{i j}=b_{i} \delta_{i j}, \quad A_{i j}=a_{i} \delta_{i j}, \quad 1 \leq i, j \leq n \tag{22}
\end{equation*}
$$

We are assuming that x has harmonic conformal curvature, i.e., $\sum_{i} R_{i j k l, i}=$ 0 . This happens if and only if the Ricci tensor is Codazzi tensor, i.e., $R_{i j, k}=$ $R_{i k, j}$. Thus the scalar curvature of x with respect to g is constant and $\operatorname{tr}(A)$ is constant too. From (20), we have

$$
\begin{align*}
& R_{i j, k}=\sum_{l} B_{i l, k} B_{l j}+\sum_{l} B_{i l} B_{l j, k}+(n-2) A_{i j, k} \tag{23}\\
& R_{i k, j}=\sum_{l} B_{i l, j} B_{l k}+\sum_{l} B_{i l} B_{l k, j}+(n-2) A_{i k, j} \tag{24}
\end{align*}
$$

Since $C=0$, form $(17),(18)$, we have $B_{i j, k}=B_{i k, j}, A_{i j, k}=A_{i k, j}$. Thus from (22) and (23), we get

$$
\sum_{l} B_{i l, k} B_{l j}=\sum_{l} B_{i l, j} B_{l k}
$$

By using (22), for any indices of i, j, k, we get

$$
\begin{equation*}
B_{i j, k} b_{j}=B_{i k, j} b_{k} \tag{25}
\end{equation*}
$$

If $b_{j} \neq b_{k}$, then we have

$$
\begin{equation*}
B_{i j, k}=0 \tag{26}
\end{equation*}
$$

If $b_{j}=b_{k}$, since

$$
\begin{align*}
\sum_{l} B_{j k, l} \omega_{l} & =d B_{j k}+\sum_{l} B_{j l} \omega_{l k}+\sum_{l} B_{l j} \omega_{l i} \tag{27}\\
& =d B_{j k}+\left(b_{j}-b_{k}\right) \omega_{j k}
\end{align*}
$$

It is easy to see from (22) that

$$
\begin{equation*}
B_{i j, k}=0 \tag{28}
\end{equation*}
$$

From (26), (28) and $\sum_{j} B_{i j, j}=0$, for any indices of i, j, k, we get

$$
\begin{equation*}
B_{i j, k}=0 \tag{29}
\end{equation*}
$$

Therefore we obtain our main Theorem 2.

Now let t be the number of the distinct eigenvalues of A, and $a_{1}, a_{2}, \cdots, a_{t}$ be all of distinct eigenvalues. Taking a suitably local orthonormal frame field $\left\{E_{1}, E_{2}, \cdots, E_{n}\right\}$ such that the matrix $\left(A_{i j}\right)$ can be written as

$$
\left(A_{i j}\right)=\operatorname{Diag}(\underbrace{a_{1}, \cdots, a_{1}}_{k_{1}}, \underbrace{a_{2}, \cdots, a_{2}}_{k_{2}}, \cdots, \underbrace{a_{t}, \cdots, a_{t}}_{k_{t}}),
$$

that is

$$
A_{1}=\cdots=A_{k_{1}}=a_{1}, \cdots, A_{n-k_{t}+1}=\cdots=A_{n}=a_{t}
$$

here a_{1}, \cdots, a_{t} are not necessarily different from each other.
Similarly, under the same orthonormal frame field, the matrix $\left(B_{i j}\right)$ can be written as

$$
\left(B_{i j}\right)=\operatorname{Diag}(\underbrace{b_{1}, \cdots, b_{1}}_{k_{1}}, \underbrace{b_{2}, \cdots, b_{2}}_{k_{2}}, \cdots, \underbrace{b_{t}, \cdots, b_{t}}_{k_{t}}),
$$

or equivalently

$$
B_{1}=\cdots=B_{k_{1}}=b_{1}, \cdots, B_{n-k_{t}+1}=\cdots=B_{n}=b_{t}
$$

and b_{1}, \cdots, b_{t} are not necessarily different from each other.
Proposition 1. If the number of the distinct eigenvalues is $t \geq 3$, then $t=3$.

Proof. If $t>3$, then there exist at least four indices $i_{1}, i_{2}, i_{3}, i_{4}$, such that $A_{i_{1}}, A_{i_{2}}, A_{i_{3}}, A_{i_{4}}$ are distinct from each other.

Making the convention on the ranges of indices as follows

$$
1 \leq i_{1}, j_{1} \leq k_{1}, \quad k_{1}+1 \leq i_{2}, j_{2} \leq k_{1}+k_{2}, \cdots, k_{1}+k_{2}+1 \leq i_{t}, j_{t} \leq n
$$

From (15) and $B_{i j, k}=0$, we have $\omega_{i_{m} i_{n}}=0(m \neq n, 1 \leq m, n \leq t)$. Using Gauss equation and from (19), we obtain

$$
\begin{aligned}
& B_{i_{1}} B_{i_{2}}+A_{i_{1}}+A_{i_{2}}=0, \quad B_{i_{3}} B_{i_{4}}+A_{i_{3}}+A_{i_{4}}=0, \\
& B_{i_{1}} B_{i_{3}}+A_{i_{1}}+A_{i_{3}}=0, \quad B_{i_{2}} B_{i_{4}}+A_{i_{2}}+A_{i_{4}}=0 .
\end{aligned}
$$

Consequently, $\left(A_{i_{1}}-A_{i_{4}}\right)\left(A_{i_{2}}-A_{i_{3}}\right)=0$, it contradicts with the assumption that $A_{i_{1}}, A_{i_{2}}, A_{i_{3}}, A_{i_{4}}$ are distinct from each other.

Proposition 2. The Einstein space-like hypersurfaces with vanishing conformal form in conformal space have at most two different conformal principal curvatures.

Proof. If that doesn't happen, $t=3$. Taking a local orthonormal frame field $\left\{E_{1}, E_{2}, \cdots, E_{n}\right\}$ such that

$$
\left(B_{i j}\right)=\operatorname{Diag}(\underbrace{b_{1}, \cdots, b_{1}}_{k_{1}}, \underbrace{b_{2}, \cdots, b_{2}}_{k_{2}}, \underbrace{b_{3}, \cdots, b_{3}}_{k_{3}})
$$

with the multiplicity are k_{1}, k_{2}, k_{3} respectively, and $k_{1}+k_{2}+k_{3}=n$.

$$
\left(A_{i j}\right)=\operatorname{Diag}(\underbrace{a_{1}, \cdots, a_{1}}_{k_{1}}, \underbrace{a_{2}, \cdots, a_{2}}_{k_{2}}, \underbrace{a_{3}, \cdots, a_{3}}_{k_{3}})
$$

Since B is parallel, By Using Gauss equation and from (15), (19), we obtain

$$
\left\{\begin{array}{l}
b_{1} b_{2}+a_{1}+a_{2}=0 \tag{30}\\
b_{1} b_{3}+a_{1}+a_{3}=0 \\
b_{2} b_{3}+a_{2}+a_{3}=0
\end{array}\right.
$$

Obviously, we have

$$
\begin{equation*}
b_{3}\left(b_{1}-b_{2}\right)=-\left(a_{1}-a_{2}\right) \tag{31}
\end{equation*}
$$

Since M is Einstein manifold, i.e., the Ricci curvature $R_{i j}=\frac{r}{n} \delta_{i j}=(n-$ 1) $\kappa \delta_{i j}(n \geq 3)$, so its conformal scalar curvature κ is constant. From (20) we have

$$
\left\{\begin{array}{l}
(n-1) \kappa=\operatorname{tr}(A)+(n-2) a_{1}+b_{1}^{2}, \tag{32}\\
(n-1) \kappa=\operatorname{tr}(A)+(n-2) a_{2}+b_{2}^{2} \\
(n-1) \kappa=\operatorname{tr}(A)+(n-2) a_{3}+b_{3}^{2}
\end{array}\right.
$$

Subtracting the second formula from the the first formula, we get

$$
\begin{equation*}
\left(b_{1}+b_{2}\right)\left(b_{1}-b_{2}\right)=-(n-2)\left(a_{1}-a_{2}\right) \tag{33}
\end{equation*}
$$

Substituting (31) into (33), we obtain

$$
b_{1}+b_{2}=-(n-2) b_{3}
$$

Similarly, we have

$$
b_{1}+b_{3}=-(n-2) b_{2} .
$$

Making subtraction in above two formulas and obtain $b_{2}=b_{3}$, it contradicts with the assumption, so we complete the proof of Proposition 2.

Next, we give the proof of Corollary 1.
Proof of Corollary 1. Suppose that the number of different principle curvatures of the Einstein space-like hypersurfaces is $t=2$, by using the first two formulas of (21) to calculate b_{1}, b_{2}, we obtain

$$
b_{1}=\frac{1}{n} \sqrt{\frac{(n-k)(n-1)}{k}}, \quad b_{2}=-\frac{1}{n} \sqrt{\frac{(n-1) k}{n-k}} .
$$

$$
a_{1}+a_{2}=b_{1} \cdot b_{2}=-\frac{n-1}{n^{2}}<0
$$

$\operatorname{Since}(M, g)=\left(M_{1}, g_{1}\right) \times\left(M_{2}, g_{2}\right), \quad \operatorname{dim} M_{1}=k, \quad \operatorname{dim} M_{2}=n-k$. From (19), (M_{1}, g_{1}) and (M_{2}, g_{2}) have constant curvature R_{1} and R_{2}. By direct calculation, we get

$$
\begin{gathered}
R_{1}=2 a_{1}-b_{1}^{2}, R_{2}=2 a_{2}-b_{2}^{2} \\
R_{1}+R_{2}=-b_{1}^{2}-b_{2}^{2}+2\left(a_{1}+a_{2}\right)=-\left(b_{1}-b_{2}\right)^{2}<0
\end{gathered}
$$

Then at least one of R_{1}, R_{2} is negative, without generality, we let $R_{1}<0$, i.e., $2 a_{1}-b_{1}^{2}<0$.

Since M is Einstein manifold, from (20), we have

$$
(n-1) \kappa \delta_{i j}=R_{i j}=\operatorname{tr}(A) \delta_{i j}+(n-2) A_{i j}+\sum_{k} B_{i k} B_{j k}
$$

Furthermore, we have

$$
\left\{\begin{array}{l}
(n-1) \kappa=\operatorname{tr}(A)+(n-2) a_{1}+b_{1}^{2} \tag{34}\\
(n-1) \kappa=\operatorname{tr}(A)+(n-2) a_{2}+b_{2}^{2}
\end{array}\right.
$$

Adding the above two formulas, we get

$$
2(n-1) \kappa=2 \operatorname{tr}(A)+(n-2)\left(a_{1}+a_{2}\right)+b_{1}^{2}+b_{2}^{2}
$$

From (21), we obtain

$$
\begin{gathered}
\kappa=\frac{(1-k)(n-k-1)}{k(n-k)(n-2)} \\
a_{2}=\frac{1}{n-2}\left[(n-1) \kappa-\operatorname{tr}(A)-b_{2}^{2}\right] \\
=\frac{1}{n-2}\left[\frac{(1-k)(n-k-1)}{2 k(n-k)}+\frac{1}{2 n}-\frac{(n-1) k}{n^{2}(n-k)}\right] .
\end{gathered}
$$

By direct calculation, we have

$$
\begin{aligned}
R_{2} & =2 a_{2}-b_{2}^{2} \\
& =\frac{2}{n-2}\left[\frac{(1-k)(n-k-1)}{2 k(n-k)}+\frac{1}{2 n}-\frac{(n-1) k}{n^{2}(n-k)}\right]-\frac{(n-1) k}{n^{2}(n-k)} \\
& =\frac{(1-k)(n-1)}{k(n-2)(n-k)} \leq 0
\end{aligned}
$$

Here we get $"="$ if and only if $k=1$. So we complete the proof of the Corollary 1.

References

[1] Derdzinski,A.: On compact Riemannian manifolds with harmonic curvature, Math. Ann., 1982,259:145-152.
[2] Hu Z.J.,Li H.: Classification of hypersurfaces with parallel Möbius second fundamental form in S^{n+1}, Science in China Ser.A, Mathematics, 2004,47:417-430.
[3] Li H.,Wang C.: Surfaces with vanishing Möbius form in S^{n},Acta Math. Sinica, English series, 2003, 19:617-678.
[4] Li T.Z., Sun H.: Hypersurfaces with harmonic Möbius curvature in S^{n+1}, Advances in Mathematics(China), 2008, 37:57-66.
[5] Nie C., Wu C : Space-like hypersurfaces with parallel second fundamental forms in the conformal space, Acta Math. Sinica, 2008, 51:685-692.
[6] Nie C., Li T. : Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space. Sci China Math, 2010,53(4):953-963.

[^0]: ${ }^{\text {i}}$ This work is partially supported by the Science Foundation of Honghe University(10XJY121) of China
 http://siba-ese.unisalento.it/ © 2012 Università del Salento

