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Abstract. If in a centrally symmetric oval all the inscribed convex quadrilaterals of maximal
area and/or perimeter have the property that for any point on the oval there is exactly one
such quadrilateral having that point as a vertex, does the oval have to be an ellipse? In this
paper we will give an answer ranging from partial to complete to this multiple question.

Keywords: Oval, ellipse, quadrilateral, area, perimeter

MSC 2000 classification: primary 52A40 52A38, secondary 52A10

Introduction

It is well-known [2, 3, 5] that the inscribed convex n-gons which best ap-
proximate the area/perimeter of an ellipse exhibit the following invariance prop-
erty: For any point on the ellipse, among all the inscribed n-gons having that
point as a vertex there is only one of largest area/perimeter (unique pointwise
maximality), and all these pointwise maximal n-gons have actually the same
area/perimeter (global invariance). The area problem [5] is relatively simple
compared to the perimeter one [3], a fact that parallels the area vs. perimeter
difficulty contest for the ellipse itself. It is also worth noting that the same max-
imal n-gons answer both the area and the perimeter problems only when the
ellipse is a circle.

In this paper, inspired by [2], we explore the converse situation: If a centrally
symmetric smooth strictly convex closed plane curve (oval with a center) and
its inscribed convex n-gons obey the invariant maximal area/perimeter prop-
erty described above, does it have to be an ellipse? Actually, we tackle the
simplest of cases, that of inscribed quadrilaterals (n = 4), that already unveils
the complexity of the problem. The general case, n arbitrary, will be pursued
elsewhere.
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Roughly, the answer to our question is no, if posed to the area or perimeter
cases separately, and yes, when posed jointly. We will show that in both separate
cases one quarter of any oval-solution can be prescribed relatively arbitrarily,
after which the invariant maximal property locks in a neighboring quarter based
on a concrete (area/perimeter dependent) recipe applied to the initial selection,
and then the symmetry completes the oval. It turns out that the area problem
admits a solution for any quarter-oval initial selection, if the product of the
radii of curvature at the end-points of the quarter-oval equals the product of
quarter-oval semi-axes. This is a transmission restriction which guarantees the
global smoothness of the oval. The perimeter problem requires a more severe
global curvature-growth restriction on the quarter-oval selection, in addition to
a transmission restriction at the end-points. In fact, what we show is that the
solutions in the perimeter case are exactly those ovals whose orthoptic curves are
circles (For a similar result when quadrilaterals are replaced by parallelograms,
see [1, 4]).

The joint case, when an oval simultaneously satisfies the invariant maxi-
mal area property and the invariant maximal perimeter property, leads to a
differential-equation-look-alike for the initial quarter oval, whose solution most
probably must be unique, therefore the ellipse. We are able to show this for an
analytic quarter oval and conjecture it in general.

Throughout, we will try to use geometric arguments whenever feasible. When
relying on analytic findings we will also strive to provide geometric interpreta-
tion.

1 The area problem

Let C be a smooth (class C2) oval with center of symmetry O. Fixing a point
A on C, consider the area functional associated to all possible convex quadrilat-
erals ABCD inscribed in C and sharing the vertex A. The points A,B,C, and
D, will always be positioned clockwise around C. By the continuity of the area
functional there is then at least one such quadrilateral of maximal area. It will
be assumed that this pointwise maximal area quadrilateral is unique and also
that the associated area is a constant, independent of A (The invariant maximal
area assumption).

Proposition 1. Let C be a smooth oval with center of symmetry O, satis-
fying the invariant maximal area assumption. Then for any point A on C the
unique quadrilateral ABCD of largest area is in fact a parallelogram. The vertex
C is the symmetric with respect to O of the vertex A, and the vertices B and D

are the unique points on C such that the two lines through them parallel to
←→
AC

are tangent to C. Moreover, the vertices B and D are also opposite each other
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with respect to O and the two lines through A and C parallel to
←→
BD are tangent

to C. (Figure 1).

Therefore, for a quadrilateral ABCD of largest area the tangent line to the
oval at any one of its vertices is parallel to the diagonal of the quadrilateral not
sharing that vertex (The Euler-Lagrange condition for area maximality).

A

B

C

D

O

C

Figure 1. Maximal area inscribed quadrilateral based at A, a parallelogram

Proof. If ABCD is a quadrilateral inscribed in C then Area(ABCD) =
1

2
AC ·d,

where d is the distance between the two lines through B and D parallel to
←→
AC.

Area(ABCD) can be increased if AC is not the longest chord in C parallel
to itself, or the lines through B and D mentioned above are not tangent to C
(Figure 2).

If now vertex A is fixed and Area(ABCD) is maximal, then the invariant
maximal area assumption guarantees that its area cannot be increased by either
one of the two ways described above. By the strict convexity of C, the longest
chord of C in any fixed direction passes through the center O. This proves the
first part of the Proposition. The second part follows from the the first part and
the invariant maximal area assumption since a maximal quadrilateral ABCD
based at A will also be maximal (and unique) when viewed as based at B. We
point out that without the invariant maximal area assumption the conclusion
of Proposition 1 might not hold in its entirety. It might then be possible for a
maximal quadrilateral based at A that the endpoints of the diagonal AC not be

opposite each other or the line through A parallel to
←→
BD not be tangent to C.

In such a case even the pointwise uniqueness of a maximal quadrilateral might
be compromised. QED

A chord passing through the center of a centrally symmetric oval will be
called principal if the tangent lines to the oval at the end-points of the chord
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Figure 2. Area(A∗B∗C∗D∗) > Area(ABCD)

are perpendicular to the chord. Clearly, a diameter (longest chord) or a shortest
chord among those passing through the center of the oval are principal chords.
We will be interested in ovals admitting pairs of perpendicular principal chords.
In such case a suitable coordinate system can be imposed on the oval, the
coordinate axes precisely being supported by the principal chords. It is then
natural to call quarter-oval the portion of the oval contained in any one of the
four quadrants of such a coordinate system. Also, the semi-axes of the oval will
be the distances from the center to the oval along the coordinate axes. While not
every centrally symmetric oval admits pairs of perpendicular principal chords
it is clear from Proposition 1 that if the invariant maximal area assumption is
met by an oval then any chord perpendicular on a principal chord at the center
of the oval is also principal. It is also obvious in such a case that principal
perpendicular chords must be diagonals of inscribed parallelograms of maximal
area which are rhombi.

We are now in a position to state the main result of this section.

Theorem 1 (Classification of Centrally Symmetric Ovals Satisfying the
Quadrilateral Invariant Maximal Area Property). The following two statements
are equivalent:

a) C, a centrally symmetric smooth (class C2) oval with center O satisfies
the quadrilateral invariant maximal area property, that is for any point of C,
among all the quadrilaterals inscribed in C and having that point as a vertex
there is only one of maximal area, and all these maximal quadrilaterals have the
same area, independent of the point chosen.

b) A centrally symmetric smooth (class C2) oval C with center O is com-
pletely determined by its top left quarter, in the sense that starting with a smooth
(class C2) concave down arc W̆N in the third quadrant of a coordinate system

XOY , W ∈ ←→OX, N ∈ ←→OY , such that the half-tangents to the arc at the end-



Ovals with Invariant Maximal Quadrilaterals 39

points W and N are parallel to the coordinate axes, and such that the product
of the radii of curvature of the arc at W and N equals OW ·ON , the mapping
A→ T (A), A ∈ W̆N , described below is a bijective, clockwise increasing trans-
formation from the top left quarter of a centrally symmetric (center O) smooth
oval C to the top right quarter of C.

To the end of describing the transformation A 7−→ T (A), let A be an arbi-

trary point on the arc W̆N and let P be the intersection point of the tangent

line to the arc at A and
←→
ON . Let now the parallel line through N to

←→
PE, where

E denotes the symmetric point of W with respect to O, intersect
←−→
OW at a point

F . Then T (A) is the intersection point of the perpendicular line to
←−→
OW at F

and the parallel line to
←→
AP through O (Figure 3). Alternatively, T (A) can be

A

W

Y
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N

F

T (A)

E X

C

O

Figure 3. First construction of T (A)

constructed in the following way: Let M be the foot of the perpendicular dropped

from A to
←−→
OW and let Q be the intersection point of

←→
ON and the parallel line to←−→

MN through W . Then T (A) is the intersection point of the parallel line to
←→
AP

through O and the parallel line to
←→
OA through Q (Figure 4). In this description

of T (A) the line
←−−−→
QT (A) is the tangent line to C at the point T (A).

When the oval C satisfies the two equivalent characterizations above, T (A)
is the second vertex, vertex B, of the maximal area quadrilateral ABCD based
at A. In fact, by Proposition 1 this quadrilateral is a parallelogram, so the vertex
C is the symmetric with respect to O of the vertex A and the vertex D is the
symmetric with respect to O of T (A). Moreover, the maximal area value of
inscribed quadrilaterals in C equals twice the product of the semi-axes of C.

Proof. a) =⇒ b) Assume that the centrally symmetric oval C satisfies the in-
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Figure 4. Second construction of T (A)

variant maximal area property. As noted before the oval admits then a pair of
perpendicular principal axes which support a coordinate system XOY , O being
the center of the oval. With respect to this coordinate system there is a defining
function for the top half of the oval, say f : [−a, a] → [0, b], a > 0, b > 0, of
class C2 on (−a, a), such that

f(−a) = f(a) = 0, f(0) = b,

f ′(x) > 0 on (−a, 0), f ′(0) = 0, f ′(x) < 0 on (0, a),

lim
x→−a+

f ′(x) = +∞, lim
x→a−

f ′(x) = −∞,

f ′′(x) < 0 on (−a, a)

All these properties of f follow simply from the strict convexity of the C2-
class oval and the particular choice of the coordinate system. Actually, the
above equations do not capture the C2-smoothness and strict convexity of the
oval at its two points along the X-axis, W (−a, 0) and E(a, 0), due to the non-
existence of the derivatives of f at ±a. This can be easily redressed by inverting
f near x = −a+ or x = a−. For instance, denoting by f−1 the inverse of
f : [−a, 0] → [0, b], the one-sided C2-smoothness and strict convexity of the
oval at W implies the C2-smoothness and strict convexity of f−1 at y = 0+, or
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equivalently

0 < (f−1)′′(0) = lim
y→0+

(f−1)′(y)

y
= lim

x→−a+

1

f ′(x)f(x)

= lim
y→0+

(f−1)′′(y) = − lim
x→−a+

f ′′(x)

(f ′(x))3

(1)

The arc W̆N mentioned in b) is simply the graph of f(x) for x ∈ [−a, 0], so W
and N have coordinates (−a, 0) and (0, b), respectively. Therefore, a and b are
the semi-axes of the oval.

Now, if the vertex A of a maximal area parallelogram ABCD is chosen to
have arbitrary coordinates (x, f(x)), x ∈ [−a, 0], by Proposition 1 there is an
unique increasing function α : [−a, 0]→ [0, a], of class C2 on (−a, 0), such that
the coordinates of B are (α(x), f(α(x)), the coordinates of C are (−x,−f(x)),
and those of D are (−α(x),−f(α(x)). In terms of the α function the conclusions
of Proposition 1 simply become equivalent to

f ′(α(x)) =
f(x)

x
, f ′(x) =

f(α(x))

α(x)
, x ∈ (−a, 0) (2)

Since by Equation (2), f(α(x)) = α(x)f ′(x), x ∈ (−a, 0], after differentiation
we get

f ′(α(x))α′(x) = α′(x)f ′(x) + α(x)f ′′(x) (3)

However, by the first part of Equation (2) we may substitute
f(x)

x
for f ′(α(x))

in Equation (3) to get

(f(x)− xf ′(x))α′(x) = xf ′′(x)α(x) (4)

Equation (4) is now a first order differential equation in α(x), with initial con-

dition α(0) = a. Its solution on (−a, 0] clearly is α(x) =
ab

f(x)− xf ′(x) . From

the second part of Equation (2) we conclude that f(α(x)) =
abf ′(x)

f(x)− xf ′(x) ,
x ∈ (−a, 0].

Notice now that the curvatures of the quarter-oval W̆N at the end-points

W and N are (f−1)′′(0) = lim
x→−a+

1

f ′(x)f(x)
and −f ′′(0), respectively. However,

f ′(α(x)) =
f(x)

x
, x ∈ (−a, 0), implies

f ′(α(x))

α(x)
=
f(x)(f(x)− xf ′(x))

xab
and so,

by Equation (1)

f ′′(0) = lim
x→−a+

f ′(α(x))

α(x)
= lim

x→−a+

f(x)(f(x)− xf ′(x))
xab

= − 1

ab(f−1)′′(0)
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Therefore, the product of the radii of curvature at W and N , − 1

f ′′(0)(f−1)′′(0)
,

equals ab, which is OW ·ON , or equivalently the product of the semi-axes of C.
We want to show now that the point T (A) obtained by the first construction

recipe given in b) is exactly vertex B of the maximal quadrilateral/parallelogram

ABCD, and so has coordinates

Ç
ab

f(x)− xf ′(x) ,
abf ′(x)

f(x)− xf ′(x)

å
. By the first

construction of T (A), (Figure 3), △OFN ∼ △OEP . Therefore, OF
OE

=
ON

OP
.

Now, OE = a, ON = b, and OP = f(x) − xf ′(x). To see that OP = f(x) −
xf ′(x), simply write down the equation of the tangent line to the oval at

A and intersect it with the Y -axis. Thus, OT (A) =
ab

f(x)− xf ′(x) , and then

FT (A) =
abf ′(x)

f(x)− xf ′(x) , as needed.
For the alternative construction of T (A) ≡ B, (Figure 4), notice that since

△OMN ∼ △OWQ,
OM

OW
=
ON

OQ
, and so OQ = −ab

x
. Since the parallel line to

←→
AP through O has slope f ′(x) and the parallel line to

←→
OA through Q has slope

f(x)

x
, the result follows by writing down the equations of these two lines, and

then solving for their intersection point, which as expected has the coordinates
(α(x), f(α(x)) of B.

Finally, in coordinates the area of a maximal parallelogram based at A(x,
f(x)), for some x ∈ [−a, 0], equals

∣∣∣∣∣det
ñ
α(x)− x f(α(x))− f(x)
−α(x)− x −f(α(x))− f(x)

ô∣∣∣∣∣
= 2(α(x)f(x)− xf(α(x))) = 2ab = OW ·ON.

b) =⇒ a) Assume now that the smooth quarter oval W̆N is given in the
third quadrant of a coordinate system XOY and that its end-points W and N
satisfy the curvature condition given in b). W̆N can be viewed as the graph of a
function f : [−a, 0]→ [0, b], f(−a) = 0, i.e.,W has coordinates (−a, 0), f(0) = b,
i.e., N has coordinates (0, b), f is differentiable on (−a, 0] and lim

x→−a+
f ′(x) =∞,

f ′(x) > 0 for x ∈ (−a, 0), f ′(0) = 0, and f admits a continuous second derivative
such that f ′′(x) < 0 for x ∈ (−a, 0]. Now, the curvature condition on W and N
is equivalent to

− limx→−a+ f(x)f
′(x)

f ′′(0)
= ab (5)

The task is to extend the quarter oval W̆N (or equivalently f) to the first
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quadrant and then to conclude that symmetry with respect to O completes
the oval in such a way that the invariant maximal area property is satisfied. If
A(x, f(x)), x ∈ [−a, 0], is an arbitrary point on W̆N then T (A) as constructed

in b) will have coordinates

Ç
ab

f(x)− xf ′(x) ,
abf ′(x)

f(x)− xf ′(x)

å
(same proof as in

a)=⇒ b)). This allows us to double the domain and extend f from [−a, 0] to
[−a, a]. Noticing that α : [−a, 0] → [0, a], α(x) :=

ab

f(x)− xf ′(x) , is a smooth,

increasing function, f can simply be extended to [0, a] by f

Ç
ab

f(x)− xf ′(x)

å
=

abf ′(x)

f(x)− xf ′(x) . Indeed, α
′(x) =

abxf ′′(x)

(f(x)− xf ′(x))2
> 0, for x ∈ (−a, 0), shows

that α is strictly increasing. Also, since f(α(x)) = α(x)f ′(x),

f ′(α(x)) =
α′(x)f ′(x) + α(x)f ′′(x)

α′(x)
=
f(x)

x
< 0, x ∈ (−a, 0),

proves that f is strictly decreasing on [0, a].

Then, f ′(α(x)) =
f(x)

x
yields

f ′′(α(x)) =
xf ′(x)− f(x)

x2α′(x)
= −(f(x)− xf ′(x))3

abx3f ′′(x)
< 0, x ∈ (−a, 0) (6)

and so f has class C2 on (0, a) and is concave down there.
Now Equations (6), (5), and (1) easily give limx→−a+ f

′′(α(x)) = f ′′(0), and
this completes the proof of the C2-smoothness and strict convexity of the upper-
half of the oval, including the transitional point N . Symmetry with respect to
O completes the oval, and it is a routine exercise, similar to what was done so
far, to check the full C2-smoothness and strict convexity of the whole oval at
W and E. QED

2 The perimeter problem

Consider now the perimeter functional associated to all convex quadrilater-
als ABCD inscribed in C and sharing the vertex A. We will make the invariant
maximal perimeter assumption, namely there is only one quadrilateral of max-
imal perimeter based at A, and all these maximal quadrilaterals have the same
perimeter, irrespective of A. It is reasonable to expect that in any centrally
symmetric oval an inscribed quadrilateral of maximal perimeter must be a par-
allelogram. This is not entirely obvious though, much more so given that the
Euler-Lagrange condition required for perimeter maximality, namely that the



44 Anghel

trajectory ABCD be a billiard of period 4 for the ‘mirror’ C, may be satis-
fied by quadrilaterals other than parallelograms (e. g., trapezoids) for certain
ovals. However, this will be the case if the oval satisfies the invariant maximal
perimeter assumption, as the following proposition shows.

A

B

C

D

O

C

Figure 5. Maximal perimeter inscribed quadrilateral based at A, a parallelogram

Proposition 2. Let C be a smooth oval with center of symmetry O, satisfy-
ing the invariant maximal perimeter assumption. Then for any point A on C the
unique quadrilateral ABCD of largest perimeter is in fact a parallelogram. The
vertex C is the symmetric with respect to O of the vertex A, and the vertices
B and D are the unique points on C where the largest ellipse, in the family of
confocal ellipses with foci A and C and intersecting C, intersects C. Moreover,
A and C admit a similar ellipse characterization with respect to the family of
confocal ellipses with foci B and D, which are symmetric points with respect to
O (Figure 5).

It also follows that the trajectory ABCD of any quadrilateral of largest
perimeter is a billiard of period 4, that is any two consecutive sides of the quadri-
lateral form congruent angles with the tangent line to the oval at the point they
share (The Euler-Lagrange condition for perimeter maximality).

Proof. If ABCD is a quadrilateral inscribed in C consider the family of confo-
cal ellipses E with foci A and C and intersecting C. There is an unique such
ellipse containing B, say EB, and also one containing D, ED, and then the
perimeter Perim(ABCD) = (AB + BC) + (AD + DC) = MajorAxis(EB) +
MajorAxis(ED). Perim(ABCD) can be increased if EB, ED are not the largest

intersecting the arc ȦBC, respectively the arc ȦDC, of the oval (Figure 6).
Considering now the family of inscribed quadrilaterals of largest perimeter it is
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A
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D∗
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ED
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Figure 6. Perim(AB∗CD∗) > Perim(ABCD)

clear that the strict convexity and smoothness of C and the invariant maximal
perimeter hypothesis of Proposition 2 imply that the second vertex B (with re-
spect to the clockwise orientation of C), the third vertex C, and the forth vertex
D all vary smoothly with respect to the first vertex A. Also, as A progresses
increasingly clockwise, so will B, C, and D, in this order, or else the uniqueness
part of the hypothesis will be contradicted, given that the lengths of all sides of
quadrilaterals of largest perimeter must be bounded below by a strictly positive
constant. In other words, fixing an inscribed quadrilateral of largest perimeter,
A0B0C0D0, as A increases steadily from A0 to B0, B increases from B0 to C0,
C increases from C0 to D0, and D increases from D0 to A0.

Now, if some maximal perimeter quadrilateral were not a parallelogram and
the center O of the oval were, say, inside the angle ∠B0O0C0, where O0 were the
intersecting point of the diagonals of A0B0C0D0, then the quadrilateral CDAB,
the symmetric of A0B0C0D0 with respect to O, which evidently had also maxi-
mal perimeter, would contradict the above discussion since consecutive vertices
D and A could not both belong to the arc Ḃ0C0 (Figure 7). To conclude the
proof, if ABCD is a quadrilateral, in fact a parallelogram, of largest perimeter,
then the confocal ellipse argument presented earlier cannot increase its perime-
ter, so the respective ellipses must completely contain the oval and be tangent
to it at the appropriate vertices (Figure 5). Then the familiar reflective prop-
erty of an ellipse also proves the billiard property of ABCD with respect to C.

QED

In order to state the main result of this section we need a certain global
curvature-growth condition on a quarter-oval, dubbed below as The k-condition.
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Figure 7. Inscribed quadrilateral of largest perimeter, A0B0C0D0, must be par-
allelogram

To this end, consider a coordinate system XOY and in its third quadrant a
smooth (class C2), concave down arc W̆N with defining function f : [−a, 0] −→
[0, b], just as in the proof of the main result of the previous section. Then

for every angle
π

2
≤ t ≤ π we define the support function p(t) of W̆N [4] as

the distance OT from O to the unique tangent line to a suitable point of

W̆N perpendicular to the ray
−→
OZ making a (directed) angle t with

−−→
OX (Fig-

ure 8). Clearly, the support function p(t) is smooth (class C2) and elemen-

W

A(t) p(t)

T
Z

Y

N

X
O

Figure 8. The support function p(t)

tary calculations show that the coordinates of the point of tangency A(t) are
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(p(t) cos t− p′(t) sin t, p(t) sin t+ p′(t) cos t). Consequently, for every
π

2
≤ t ≤ π,

f(p(t) cos t− p′(t) sin t) = p(t) sin t+ p′(t) cos t. (7)

Conversely, if (x, f(x)), x ∈ [−a, 0], is an arbitrary point of W̆N then the

unique angle
π

2
≤ t ≤ π such that A(t) has coordinates (x, f(x)) satisfies

tan t = − 1

f ′(x)
and p(t) =

f(x)− xf ′(x)»
f ′(x)2 + 1

, (8)

a consequence of the fact that the point T has coordinates

Ç−f ′(x) (f(x)− xf ′(x))
f ′(x)2 + 1

,
f(x)− xf ′(x)
f ′(x)2 + 1

å
.

When the arc W̆N is parametrized via its support function p(t) the radius of
curvature at the point A(t) equals [4]

RA(t) = p(t) + p′′(t), (9)

and so the identification t ≡ x, A(t) ≡ (x, f(x)), yields

p(t) + p′′(t) = −
(
f ′(x)2 + 1

)3/2

f ′′(x)
(10)

Definition 1 (The k-condition). It states that the function p̃(t) given for
π

2
≤ t ≤ π by the formula p̃(t) :=

»
a2 + b2 − p(t)2 is well-defined and also sat-

isfies
p̃(t) + p̃′′(t) > 0,

π

2
≤ t ≤ π. (11)

The geometric meaning of Equation (11), to be fully revealed below, is that

by defining for 0 ≤ t ≤ π

2
, p(t) := p̃

Å
t+

π

2

ã
, we obtain in p(t), 0 ≤ t ≤ π, the

support function of a concave down half-oval �̊WNE, an extension of W̆N to
the first quadrant of the coordinate system XOY .

We mention here for later use that under the identification t ≡ x Equation
(11) is equivalent to the fact that the transformation

[−a, 0] ∋ x 7−→ π(x) :=
a2 + b2 − f(x)2 + xf(x)f ′(x)»

(a2 + b2)(f ′(x)2 + 1)− (f(x)− xf ′(x))2
∈ [0, a]

(12)
is well-defined and strictly increasing (π′(x) > 0, for −a < x ≤ 0).
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Theorem 2 (Classification of Centrally Symmetric Ovals Satisfying the
Quadrilateral Invariant Maximal Perimeter Property). The following two state-
ments are equivalent:

a) C, a centrally symmetric smooth (class C2) oval with center O satisfies
the quadrilateral invariant maximal perimeter assumption, that is for any point
of C, among all the convex quadrilaterals inscribed in C and having that point as
a vertex there is only one of maximal perimeter, and all these maximal quadri-
laterals have the same perimeter, independent of the point selected.

b) A centrally symmetric smooth (class C2) oval C with center O is com-
pletely determined by its top left quarter, in the sense that starting with a smooth
(class C2) concave down arc W̆N in the third quadrant of a coordinate sys-

tem XOY , W ∈ ←→OX, N ∈ ←→OY , such that the half-tangents to the arc at the
end-points W and N are parallel to the coordinate axes, such that the radii of
curvature of the arc at W and N , RW and RN , satisfy the relation

OW ·RW +ON ·RN = OW 2 +ON2, (13)

and such that the support function p(t) of the arc with respect to the point
O satisfies The k-condition (11), where a = OW and b = ON , the mapping

A → S(A), A ∈ W̆N , described below is a bijective, increasing transformation
from the top left quarter of a centrally symmetric (center O) smooth oval C to
the top right quarter of C.

In order to describe the transformation A 7−→ S(A), let A be an arbitrary

point on the arc W̆N and let U be the intersection point of the ascending half-
tangent to the arc at A and the circle with center at O and radius

√
OW 2 +ON2.

Further, let V be the symmetric point with respect to the line λ, the perpendicular

line to
−→
AU through the point U , of the point C opposite to A with respect to O.

Then S(A) is the intersection point of the line segment AV and the line λ

(Figure 9). Moreover, the line λ =
←−−−→
US(A) is tangent to C at the point S(A).

When the oval C satisfies the two equivalent characterizations above, S(A)
is the second vertex, vertex B, of the maximal perimeter quadrilateral ABCD
based at A. In fact, by Proposition 2 this quadrilateral is a parallelogram, so the
vertex C is the symmetric with respect to O of the vertex A and the vertex D
is the symmetric with respect to O of S(A). Moreover, the maximal perimeter
value of inscribed quadrilaterals in C equals 4

√
OW 2 +ON2.

Proof. If the invariant maximal perimeter assumption is restricted to the class
of inscribed parallelograms rather than general quadrilaterals then the Theorem
holds, compare it with the Corollary in [1]. In fact, the main result of [1] shows
that a centrally symmetric oval C satisfies the parallelogram invariant maximal
perimeter assumption if and only if its orthoptic curve is a circle, or equivalently
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C

W

A

Y

N

U

V
XEO

λ

S(A)

Figure 9. Construction of S(A)

[4], with respect to a coordinate system centered at the origin O of the oval the
support function p(t), t ∈ R, of C satisfies the property

p2(t) + p2
Å
t+

π

2

ã
= positive constant, t ∈ R (14)

Recall that the orthoptic curve of an oval is the locus of all the points from
where the oval can be seen at a right angle.

It is now a routine exercise to see that the characterization b) in our Theorem
is a precise analytic transcription of the comment following the Corollary in [1].

For instance, referring to the points W and N of b) we see that p

Å
π

2

ã
= b

and p(π) = a, so the constant in Equation (14) is a2 + b2. Moreover, if A(t)
is a point on the oval which is also an end-point to a principal chord in C,
then p′(t) = 0. Differentiating then twice Equation (14) with respect to t and

making suitable use of Equation (9) for t =
π

2
and t = π, we get the transmission

condition (13) at the end-points W and N of the arc W̆N .

Also, if the point A on the arc W̆N has coordinates (x, f(x)) then the point
S(A) described in b) has coordinates

Ñ
a2 + b2 − f(x)2 + xf(x)f ′(x)»

E(f)(x)
,
(a2 + b2 − x2)f ′(x) + xf(x)»

E(f)(x)

é
, (15)
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where E(f)(x) := (a2+b2)(f ′(x)2+1)−(f(x)−xf ′(x))2. Then The k-condition
(11) is equivalent, via Equations (12) and (15), to the fact that the function

[−a, 0] ∋ abscissa of A 7−→ abscissa of S(A) ∈ [0, a]

is strictly increasing.

So all it remains to be shown is that the invariant maximal perimeter as-
sumptions for quadrilaterals and parallelograms coincide. On one hand, Proposi-
tion 2 shows that the quadrilateral invariant maximal perimeter assumption im-
plies the parallelogram invariant maximal perimeter assumption. On the other
hand, assuming the parallelogram invariant maximal perimeter condition, or
equivalently [1] assuming that the orthoptic curve of the oval is a circle, it suf-
fices to show that no other inscribed quadrilaterals besides parallelograms can
attain a maximal perimeter. By Proposition 2, it further suffices to show that
no point A of the oval can be vertex to a billiard trajectory of period 4, ABCD,
which is not a parallelogram.

By contradiction, assume that ABCD is a non-parallelogram billiard trajec-
tory of period 4 in C. To the point A we associate the unique maximal perimeter
inscribed parallelogram A0B0C0D0, where A0 = A, which we know to be a bil-
liard trajectory. Without loss of generality we can assume that the point B is
located inside the oval arc Ȧ0B0, traversed clockwise. Then the tangent lines
to C at the points A0, B0, C0, and D0, meet at the points P0, Q0, R0, and S0,
situated on the orthoptic circle Γ of C (Figure 10). By symmetry, P0Q0R0S0 is
a rectangle. To the point B we can also associate the unique maximal perimeter
inscribed parallelogram B1C1D1A1, where B1 = B, with orthoptic rectangle
Q1R1S1P1. Due to the assumption B ∈ int(Ȧ0B0) a simple slope argument
shows that the distinct points D0, A1, A0 = A,B1 = B,B0, C1, and C0 are
situated clockwise exactly in this order around C. Consequently, the interior
of the arc Ȧ1B1 is completely contained inside the right triangle △A1P1B,
and so meas(∠ABP1) < meas(∠A1BP1) = meas(∠C1BQ1). However, since
ABCD is a billiard trajectory, meas(∠CBQ1) = meas(∠ABP1). It follows that
meas(∠CBQ1) < meas(∠C1BQ1), which implies that the point C belongs to

the interior of the arc ȦBC0. At last, if follows that the point C belongs to the
interior of the arc ȦBC0.

Similar arguments, applied to the point D instead of the point B, which

must clearly belong to the interior of the arc �̧D0A1A, show that the vertex C

must also belong to the interior of the arc �̊C0DA (Figure 10). However, this

is a contradiction since the interior of the arcs ȦBC0 and �̊C0DA are disjoint.
QED
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Γ

C

C
C1

D

C

Figure 10. In oval with orthoptic curve a circle there are no non-parallelogram
billiard trajectories ABCD of period 4.

3 The mixed area-perimeter problem

We saw in the previous two sections that imposing on a centrally symmetric
smooth oval either the inscribed quadrilateral invariant maximal area assump-
tion or the maximal perimeter assumption still leaves one quarter of it pretty
flexible. But what about imposing the area and perimeter assumptions simul-
taneously? Will the end-result be just the ellipse?

Proposition 3. If a centrally symmetric smooth oval C with center O obeys
both the inscribed quadrilateral invariant maximal area assumption and the in-
scribed quadrilateral invariant maximal perimeter assumption then for any pair
of perpendicular principal chords if in the associated coordinate system the oval
has semi-axes a and b, support function p(t) and radial distance function ρ(t),
t ∈ R, then

ρ(t) =
ab»

a2 + b2 − p2(t)
, t ∈ R. (16)

Furthermore, in terms of the defining function f : [−a, 0] −→ [0, b] of the top
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left quarter of the oval C we have for any x ∈ (−a, 0],

f

Ñ
− abf ′(x)»

E(f)(x)

é
=

ab»
E(f)(x)

, (17)

where E(f)(x) = (a2 + b2)(f ′(x)2 + 1)− (f(x)− xf ′(x))2.

Proof. The proof is a simple consequence of the main results of the previous
two sections. Indeed, from Section 2 in a coordinate system adapted to a pair of
perpendicular principal chords in which the oval has semi-axes a and b we know
that the support function p(t) satisfies Equation (14) for the constant a2 + b2.
At the same time, for fixed t ∈ R the parallelogram of largest area based at the
point with coordinates (ρ(t) cos t, ρ(t) sin t) has area, by Proposition 1 in Section

1, equal to 2ρ(t)p

Å
t+

π

2

ã
, which also equals 2ab by maximal area invariance.

Now, the two equations

p(t)2 + p

Å
t+

π

2

ã2
= a2 + b2 and ρ(t)p

Å
t+

π

2

ã
= ab

yield the conclusion of Equation (16). Also, Equation (17) follows from the

fact that for
π

2
≤ t ≤ π, f(ρ(t) cos t) = ρ(t) sin t, via Equations (16) and (8).

QED

The geometric condition (16) or the analytic condition (17) appear to be
strong enough to force an oval C as in Proposition 3 to be the ellipse centered at
O and with semi-axes a and b. It is not entirely obvious though how to show, for
instance, that the differential-equation-look-alike (17) has the unique solution

f(x) =
b

a

√
a2 − x2, −a ≤ x ≤ 0. However, under the stronger hypothesis that

the oval C be analytic this is indeed the case.

Theorem 3 (Classification of Centrally Symmetric Analytic Ovals Simul-
taneously Satisfying the Quadrilateral Invariant Maximal Area and Perimeter
Properties). If a centrally symmetric analytic oval C with center O obeys both
the inscribed quadrilateral invariant maximal area assumption and the inscribed
quadrilateral invariant maximal perimeter assumption then for any pair of per-
pendicular principal chords if in the associated coordinate system the oval has
semi-axes a and b it must be the ellipse with center O and semi-axes a and b.

Proof. By invoking Proposition 3 if suffices to show that an analytic function f :
(−a, 0] −→ (0, b], f(0) = b, lim

x→−a+
f(x) = 0, f ′(0) = 0, f ′(x) > 0, x ∈ (−a, 0),
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f ′′(x) < 0, x ∈ (−a, 0] and satisfying Equation (17) must be the quarter-ellipse

f(x) =
b

a

√
a2 − x2, −a < x ≤ 0.

Without loss of generality we can assume a ≥ b. It is now a routine exercise

to show that f(x) :=
b

a

√
a2 − x2, −a < x ≤ 0 is a solution of (17), as expected,

but also that for x negative and sufficiently close to 0, f(x) :=
√
b2 − x2 is

again solution of Equation (17), near x = 0. This is surprising, given that (17)
involves a, which does not appear in the second solution f(x). Notice that the
two solutions are distinct if a > b and that in this case the second solution
cannot represent a valid analytic quarter-oval as it does not extend through
analyticity past x = −b.

It then suffices, in the case a > b, to prove that there are only two solutions
of Equation (17) which are analytic at x = 0. In fact, what we will show is that
for an analytic solution of (17) the derivatives f (n)(0), n ≥ 3, can be recurrently
expressed in terms of the lower order derivatives, and that f ′′(0) can take only

one of two values, − b

a2
or −1

b
, which indeed correspond to the second order

derivatives for the solutions exhibited in the previous paragraph.

If f(x) is an analytic solution of Equation (17) on the interval (−a, 0], denote
by u(x), v(x), and γ(x) the associated functions

u(x) := (a2 + b2 − x2)f ′(x) + xf(x)

v(x) := a2 + b2 − f(x)2 + xf(x)f ′(x)

γ(x) := − abf ′(x)»
E(f)(x)

= − abf ′(x)»
u(x)f ′(x) + v(x)

(18)

Clearly, Equation (17) is equivalent to

f ′(x)f(γ(x)) + γ(x) = 0, x ∈ (−a, 0]. (19)

Differentiating once with respect to x the last equation in (18), and (19), yields

γ′(x) = − abf ′′(x)v(x)

(u(x)f ′(x) + v(x))3/2

f ′(γ(x)) =
u(x)

v(x)

(20)

Further,

f ′′(γ(x))γ′(x) =
u′(x)v(x)− u(x)v′(x)

v2(x)
,
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which upon setting x = 0 becomes

−bf ′′(0) = (a2 + b2)f ′′(0) + b

a2
. (21)

Equation (21) gives f ′′(0) = − b

a2
or f ′′(0) = −1

b
, as inferred earlier. Let us

mention that the two curvature transmission conditions at the end-points of the
arc W̆N in the main theorems of the previous two sections give precisely the
same values for f ′′(0) as Equation (21) does.

In order to conclude that the higher order derivatives f (n)(0), n ≥ 3, depend
recursively on f(0), f ′(0), f ′′(0), . . ., f (n−1)(0), we make use now of two classical
formulas giving the nth-order derivatives of products of functions and composi-
tion of functions, the Leibniz product formula and the Faà di Bruno composition
formula [6]: If g(x) and h(x) are two C∞ functions on some interval and their
composite g(h(x)) is well-defined, then

(gh)(n)(x) =
n∑

p=0

Ç
n

p

å
g(n−p)(x)h(p)(x)

(g(h))(n)(x) =
∑ n!

k1!k2! . . . kn!
g(k)(h(x))

(
h′(x)

)k1 (h′′(x)
)k2 . . .

Ä
h(n)(x)

äkn
,

(22)
where in the second sum k = k1 + k2 + · · · + kn, and the sum is taken over all
the non-negative integers k1, k2, . . ., kn such that k1 + 2k2 + · · · + nkn = n.
Using now Equation (18) it is straightforward to conclude that for n ≥ 1 and
x ∈ (−a, 0],

u(n)(x) = (a2 + b2 − x2)f (n+1)(x) + (1− 2n)xf (n)(x) + n(2− n)f (n−1)(x)

v(n)(x) =
n∑

p=0

Ç
n

p

åÄ
xf (p+1)(x) + (p− 1)f (p)(x)

ä
f (n−p)(x)

which, when specialized to x = 0, yield

u(n)(0) = (a2 + b2)f (n+1)(0) + n(2− n)f (n−1)(0)

v(n)(0) =
n∑

p=0

Ç
n

p

å
(p− 1)f (p)(0)f (n−p)(0)

(23)

We claim now that for n ≥ 1,

γ(n)(0) = −bf (n+1)(0) + En

Ä
a, f(0), f ′(0), . . . , f (n)(0)

ä
, (24)
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where En is an expression depending only on a and the derivatives f (i)(0),
0 ≤ i ≤ n. This follows by induction on n, taking into account that since

»
u(x)f ′(x) + v(x)γ(x) = −abf ′(x),

the Leibniz product formula gives for any k,

k∑

p=0

Ç
k

p

åÄ√
uf ′ + v

ä(k−p)
(0)γ(p)(0) = −abf (k+1)(0),

and also that by the Faà di Bruno composition formula, the Leibniz product

formula, and Equation (23),
Ä√

uf ′ + v
ä(i)

(0) depends only on a, f(0), f ′(0),

. . ., f (i)(0), and f (i+1)(0).
Similarly, starting with the formula given by the second equation (20), the

Faà di Bruno composition formula yields, for n ≥ 2,

Å
u

v

ã(n)
(0) =f (n+1)(γ(0))

(
γ′(0)

)n
+ f ′′(γ(0))γ(n)(0)+

Fn

Ä
γ′(0), . . . , γ(n−1)(0), f ′′(0), . . . f (n)(0)

ä
,

(25)

where Fn depends on the quantities specified. Equations (25) and (24) give then

Å
u

v

ã(n)
(0) = f (n+1)(0)

(−bf ′′(0))n

+ f ′′(0)
Ä
−bf (n+1)(0)

ä
+ F̃n

Ä
a, f(0), f ′(0), . . . f (n)(0)

ä
. (26)

Finally, the Leibniz product formula applied to the quotient
u

v
gives

Å
u

v

ã(n)
(0) =

a2 + b2

a2
f (n+1)(0) +Gn

Ä
a, f(0), f ′(0), . . . f (n)(0)

ä
. (27)

Putting together Equations (26) and (27) we conclude that for n ≥ 2

Ç
(−1)n+1 (f ′′(0)

)n
bn + bf ′′(0) +

a2 + b2

a2

å
f (n+1)(0)

= Hn

Ä
a, f(0), f ′(0), . . . f (n)(0)

ä
. (28)

Equation (28) shows now that for n ≥ 2, f (n+1)(0) can be expressed recursively
in terms of lower order derivatives if and only if the coefficient

(−1)n+1 (f ′′(0)
)n
bn + bf ′′(0) +

a2 + b2

a2
(29)
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does not vanish. This is indeed the case for the two admissible values of f ′′(0),
if a > b.

The case a = b when the ellipse becomes a circle cannot be settled by exactly
the same argument as above since the coefficient (29) vanishes now. However, it

can be seen that f ′′(0) admits only one value, − b

a2
= −1

b
, so an argument along

similar lines as above can be pursued. The proof of the theorem is complete.
QED
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