Semistable genus 5 general type \mathbb{P}^{1}-curves have at least 7 singular fibres

Alexis G. Zamora
Unidad Académica de Matemáticas, University of Zacatecas
alexiszamora06@gmail.com

Received: 28.10.2011; accepted: 16.11.2011.

Abstract

We prove that if $f: X \rightarrow \mathbb{P}^{1}$ is a non-isotrivial, semistable, genus 5 fibration defined on a general type surface X then the number s of singular fibres is at least 7 .

Keywords: Algebraic surfaces, fibrations
MSC 2000 classification: primary 14D06, secondary 14J26

Introduction

We work on the field of complex numbers. Let $f: X \rightarrow \mathbb{P}^{1}$ be a non-isotrivial semistable genus g fibration defined on the general type surface X (this is the semistable curve alluded to in the title).

A classical issue (since Parshin's paper [5]), is determining a lower bound for the number s of singular fibers of f. The state of the art is as follows:
.If $g \geq 1$ then $s \geq 4$ ([2]),
.If $g \geq 2$ then $s \geq 5$ ([6]),
.If $g \geq 2$ and the Kodaira dimension of X is nonnegative, then $s \geq 6$ ([7] see also [4]),
.If X is of general type and $2 \leq g \leq 4$ then $s \geq 7$ ([7]).
.Some partial results for the case of fibrations on rational surfaces satisfying $s \geq 6$ can be found in [1].

In a preprint previous to the appearance of [7] it was conjectured by Tan and Tu that if X is of general type, then $s \geq 7$. Moreover if X is of general type, $s=6$ and $g=5$ then the minimal model S of X satisfies:

$$
K_{S}^{2}=1, \quad p_{g}(S)=2 \text { and } q(S)=0
$$

Moreover, in that case the fibration f is the pull-back of a pencil on S with 5 simple base points.

Call a pencil Λ transversal if two general elements intersect transversally (in particular a general element is non singular). In section 2 of this short note we shall prove:

Theorem 1. Let S be a minimal surface of general type with $K_{S}^{2}=1$, $p_{g}(S)=2$ and $q(S)=0$. Then S does not admit a transversal pencil Λ of genus 5 curves with 5 base points.

Previous remarks imply:
Theorem 2. If $f: X \rightarrow \mathbb{P}^{1}$ is a non-isotrivial semistable fibration of genus 5 curves defined on the general type surface X, then the number s of singular fibers is at least 7.

The proof of Theorem 1 is based on a construction by Horikawa ([3]): numerical restrictions in the hypothesis of Theorem 1 mean that S is on the "Noether's line" and thus after blowing up a point it can be realized as a double cover of \mathbb{F}_{2}. The author is indebted to Prof. M. Mendes-Lopes who pointed out this fact and suggested its use for proving Theorem 1, and to Prof. C. Ciliberto for indicating a mistake in the first version of this paper.

1 Proof of Theorem 1

Start with S minimal of general type, $K_{S}^{2}=1, q=0$ and $p_{g}=2$. Assume that a transversal pencil Λ of smooth genus 5 curves and with general curve F and $F^{2}=5$ exists on S.

After blowing up the base locus of $\left|K_{S}\right|$ consider the ramified double covering:

$$
f_{2}: \bar{S} \rightarrow \mathbb{F}_{2}
$$

The map f_{2} is described as follows: the bi-canonical map of S determines a double cover on the quadric cone in \mathbb{P}^{3}, f_{2} is the induced map on \bar{S} after considering the desingularization \mathbb{F}_{2} of the cone. The branch locus of f_{2} is a curve B of class $6 \Delta_{0}+10 \Gamma, \Delta_{0}$ and Γ denoting respectively the class of the (-2)-section and the class of the fiber in $\mathbb{F}_{2}([3]$, Theorem 2.1).

Denote by $|\bar{F}|$ the induced pencil in \bar{S}. Note that $\bar{F}^{2}=4$ or 5 depending on whether the base point of $\left|K_{S}\right|$ is a base point of $|F|$ or not. Let G be the image of \bar{F} under f_{2}. Note that if we denote $G=a \Delta_{0}+b \Gamma$, then we have:
i) $G \cdot B=6 b-2 a$,
ii) $G^{2}=2 a(b-a)$,
iii) $2 p_{G}-2=G^{2}+G \cdot\left(-2 \Delta_{0}-4 \Gamma\right)=2 a(b-a)-2 b$, with p_{G} denoting the arithmetic genus of G.

We distinguish two cases:

Case 1: f_{2} restricted to \bar{F} is $2: 1$.
Denote by $f_{2}: \bar{F} \rightarrow G$ the restriction. If $G \equiv a \Delta_{0}+b \Gamma$, then

$$
2 G^{2}=\left(f_{2}^{*} G\right)^{2}=\bar{F}^{2}=4 \text { or } 5 .
$$

Thus, $G^{2}=2=2 a(b-a)$. This forces $a=1$ and $b=2$.
By iii):

$$
2 p_{G}-2=2-2 b=-2 .
$$

Thus, being G irreducible and of arithmetic genus 0 it must be a non-singular rational curve.

Finally, the degree of the ramification divisor of f_{2} restricted to \bar{F} can be computed into two different ways, namely, using Riemann-Hurwitz or intersecting G with B. Using Riemann-Hurwitz we obtain:

$$
8=2 g_{\bar{F}}-2=4\left(g_{G}-1\right)+\mathcal{B},
$$

and therefore $\mathcal{B}=12$. On the other hand, by i):

$$
\mathcal{B}=G \cdot B=6 b-2 a=10 .
$$

This contradiction proves that Case 1 is impossible.
Case 2: f_{2} restricted to F is $1: 1$.
In this case we use not only the branch locus B but also the ramification divisor R on \bar{S}. Denote by $\pi: \bar{S} \rightarrow S$ the blowing up. The divisor R is given by $R=5 D+6 E$, with E the exceptional divisor and $D \equiv \pi^{*} K_{S}-E, B$ and R are related by $f_{2}^{*} B=2 R([3]$, page 129$)$.

Let $f_{2}^{*} G=\bar{F}+\tilde{F}$. Note that since the ramifications of f_{2} occurring on \bar{F} are given by intersections of \bar{F} and \tilde{F}, the equality $R \cdot \bar{F}=R . \tilde{F}$ holds. Thus, we have:

$$
\begin{equation*}
2(\bar{F}) \cdot 2 R=(\bar{F}+\tilde{F}) \cdot 2 R=f_{2}^{*} G \cdot f_{2}^{*} B=2 G \cdot B . \tag{1}
\end{equation*}
$$

Assume $\bar{F}^{2}=4$. First, we compute the intersection $\bar{F} . R$. Note that $\bar{F}^{2}=4$ means that the center of the blowing up is a base point of $|F|$. Thus, $\bar{F} \equiv$ $\pi^{*} F-E, \bar{F} \cdot E=1$ and:

$$
\bar{F} \cdot R=\left(\pi^{*} F-E\right) \cdot\left(5 \pi^{*} K_{S}-5 E+6 E\right)=5 \pi^{*} F \cdot \pi^{*} K_{S}+1=16,
$$

because $g_{F}=5$ and $F^{2}=5$ imply $K_{S} \cdot F=3$.
Then, by 1 and i) :

$$
32=6 b-2 a, \text { i.e. } a=3 b-16 .
$$

On the other hand,

$$
0 \leq G^{2}=a(b-a)=(3 b-16)(-2 b+16) .
$$

It follows that: $b \geq 16 / 3$ and $b \leq 8$. Thus $b=6,7$ or 8 and correspondingly $a=2,5$ or 8 . But, being f_{2} restricted to \bar{F} a degree 1 map, the arithmetic genus p_{G} of G must be at least 5 and thus

$$
8 \leq 2\left(p_{G}-1\right)=2 a(b-a)-2 b .
$$

None of the possible combinations of a and b listed before satisfy this inequality.
The case $\bar{F}^{2}=5$ follows by similar considerations. In this case $\bar{F}=\pi^{*} F$, $\bar{F} . E=0$ and $\bar{F} . R=15$. The computations are quite analogous. This prove the Theorem.

References

[1] C. R. Alcántara, A. Castorena and A. G. Zamora: On the slope of relatively minimal fibrations on complex rational surfaces, Collect. Math., 62, (2011), 1-15.
[2] A. Beauville: Le nombre minimum de fibers singulieres d'un courbe stable sur \mathbb{P}^{1}, Asterisque, 86, (1981), 97-108.
[3] E. Horikawa: Algebraic surfaces of general type with small c_{1}^{2} II, Inventiones Math., 37, (1976), 121-155.
[4] S. Kitagawa and K. Konno: Fibred rational surfaces with extremal Mordell-Weil lattices, Math. Zeitschrift, 251, (2005), 179-204.
[5] A. Parshin: Algebraic curves over functions fields, Izvest. Akad. Nauk., 32, (1968), 11451170.
[6] S-L TAN: The minimal number of singular fibers of a semistable curve over \mathbb{P}^{1}, Journal of Algebraic Geometry, 4, (1995), 591-596.
[7] S-L Tan, Y. Tu and A. G. Zamora: On complex surfaces with 5 or 6 semistable singular fibers over \mathbb{P}^{1}, Math. Zeitschrift, 249, (2005), 427-438.

