Semistable genus 5 general type \mathbb{P}^1 -curves have at least 7 singular fibres

Alexis G. Zamora

Unidad Académica de Matemáticas, University of Zacatecas alexiszamora06@gmail.com

Received: 28.10.2011; accepted: 16.11.2011.

Abstract. We prove that if $f : X \to \mathbb{P}^1$ is a non-isotrivial, semistable, genus 5 fibration defined on a general type surface X then the number s of singular fibres is at least 7.

Keywords: Algebraic surfaces, fibrations

MSC 2000 classification: primary 14D06, secondary 14J26

Introduction

We work on the field of complex numbers. Let $f: X \to \mathbb{P}^1$ be a non-isotrivial semistable genus g fibration defined on the general type surface X (this is the semistable curve alluded to in the title).

A classical issue (since Parshin's paper [5]), is determining a lower bound for the number s of singular fibers of f. The state of the art is as follows:

. If $g \ge 1$ then $s \ge 4$ ([2]),

. If $g \ge 2$ then $s \ge 5$ ([6]),

. If $g \ge 2$ and the Kodaira dimension of X is nonnegative, then $s \ge 6$ ([7] see also [4]),

If X is of general type and $2 \le g \le 4$ then $s \ge 7$ ([7]).

. Some partial results for the case of fibrations on rational surfaces satisfying $s \geq 6$ can be found in [1].

In a preprint previous to the appearance of [7] it was conjectured by Tan and Tu that if X is of general type, then $s \ge 7$. Moreover if X is of general type, s = 6 and g = 5 then the minimal model S of X satisfies:

$$K_S^2 = 1$$
, $p_q(S) = 2$ and $q(S) = 0$.

Moreover, in that case the fibration f is the pull-back of a pencil on S with 5 simple base points.

http://siba-ese.unisalento.it/ © 2012 Università del Salento

Call a pencil Λ transversal if two general elements intersect transversally (in particular a general element is non singular). In section 2 of this short note we shall prove:

Theorem 1. Let S be a minimal surface of general type with $K_S^2 = 1$, $p_g(S) = 2$ and q(S) = 0. Then S does not admit a transversal pencil Λ of genus 5 curves with 5 base points.

Previous remarks imply:

Theorem 2. If $f : X \to \mathbb{P}^1$ is a non-isotrivial semistable fibration of genus 5 curves defined on the general type surface X, then the number s of singular fibers is at least 7.

The proof of Theorem 1 is based on a construction by Horikawa ([3]): numerical restrictions in the hypothesis of Theorem 1 mean that S is on the "Noether's line" and thus after blowing up a point it can be realized as a double cover of \mathbb{F}_2 . The author is indebted to Prof. M. Mendes-Lopes who pointed out this fact and suggested its use for proving Theorem 1, and to Prof. C. Ciliberto for indicating a mistake in the first version of this paper.

1 Proof of Theorem 1

Start with S minimal of general type, $K_S^2 = 1$, q = 0 and $p_g = 2$. Assume that a transversal pencil Λ of smooth genus 5 curves and with general curve F and $F^2 = 5$ exists on S.

After blowing up the base locus of $|K_S|$ consider the ramified double covering:

$$f_2: \bar{S} \to \mathbb{F}_2.$$

The map f_2 is described as follows: the bi-canonical map of S determines a double cover on the quadric cone in \mathbb{P}^3 , f_2 is the induced map on \overline{S} after considering the desingularization \mathbb{F}_2 of the cone. The branch locus of f_2 is a curve B of class $6\Delta_0 + 10\Gamma$, Δ_0 and Γ denoting respectively the class of the (-2)-section and the class of the fiber in \mathbb{F}_2 ([3], Theorem 2.1).

Denote by $|\bar{F}|$ the induced pencil in \bar{S} . Note that $\bar{F}^2 = 4$ or 5 depending on whether the base point of $|K_S|$ is a base point of |F| or not. Let G be the image of \bar{F} under f_2 . Note that if we denote $G = a\Delta_0 + b\Gamma$, then we have:

i) G.B = 6b - 2a,

ii) $G^2 = 2a(b-a),$

iii) $2p_G - 2 = G^2 + G(-2\Delta_0 - 4\Gamma) = 2a(b-a) - 2b$, with p_G denoting the arithmetic genus of G.

We distinguish two cases:

Genus 5 \mathbb{P}^1 -curves have at least 7 singular fibres

Case 1: f_2 restricted to \overline{F} is 2 : 1. Denote by $f_2 : \overline{F} \to G$ the restriction. If $G \equiv a\Delta_0 + b\Gamma$, then

$$2G^2 = (f_2^*G)^2 = \overline{F}^2 = 4 \text{ or } 5.$$

Thus, $G^2 = 2 = 2a(b-a)$. This forces a = 1 and b = 2. By iii):

$$2p_G - 2 = 2 - 2b = -2.$$

Thus, being G irreducible and of arithmetic genus 0 it must be a non-singular rational curve.

Finally, the degree of the ramification divisor of f_2 restricted to \overline{F} can be computed into two different ways, namely, using Riemann-Hurwitz or intersecting G with B. Using Riemann-Hurwitz we obtain:

$$8 = 2g_{\bar{F}} - 2 = 4(g_G - 1) + \mathcal{B},$$

and therefore $\mathcal{B} = 12$. On the other hand, by i):

$$\mathcal{B} = G.B = 6b - 2a = 10.$$

This contradiction proves that Case 1 is impossible.

Case 2: f_2 restricted to F is 1:1.

In this case we use not only the branch locus B but also the ramification divisor R on \overline{S} . Denote by $\pi: \overline{S} \to S$ the blowing up. The divisor R is given by R = 5D + 6E, with E the exceptional divisor and $D \equiv \pi^* K_S - E$, B and R are related by $f_2^* B = 2R$ ([3], page 129).

Let $f_2^*G = \overline{F} + \widetilde{F}$. Note that since the ramifications of f_2 occurring on \overline{F} are given by intersections of \overline{F} and \widetilde{F} , the equality $R.\overline{F} = R.\widetilde{F}$ holds. Thus, we have:

$$2(\bar{F}).2R = (\bar{F} + \tilde{F}).2R = f_2^*G.f_2^*B = 2G.B.$$
(1)

Assume $\bar{F}^2 = 4$. First, we compute the intersection $\bar{F}.R$. Note that $\bar{F}^2 = 4$ means that the center of the blowing up is a base point of |F|. Thus, $\bar{F} \equiv \pi^*F - E$, $\bar{F}.E = 1$ and:

$$\bar{F}.R = (\pi^*F - E).(5\pi^*K_S - 5E + 6E) = 5\pi^*F.\pi^*K_S + 1 = 16,$$

because $g_F = 5$ and $F^2 = 5$ imply $K_S \cdot F = 3$.

Then, by 1 and i):

A. G. Zamora

$$32 = 6b - 2a$$
, i.e. $a = 3b - 16$.

On the other hand,

$$0 \le G^2 = a(b-a) = (3b-16)(-2b+16).$$

It follows that: $b \ge 16/3$ and $b \le 8$. Thus b = 6, 7 or 8 and correspondingly a = 2, 5 or 8. But, being f_2 restricted to \overline{F} a degree 1 map, the arithmetic genus p_G of G must be at least 5 and thus

$$8 \le 2(p_G - 1) = 2a(b - a) - 2b.$$

None of the possible combinations of a and b listed before satisfy this inequality.

The case $\bar{F}^2 = 5$ follows by similar considerations. In this case $\bar{F} = \pi^* F$, $\bar{F}.E = 0$ and $\bar{F}.R = 15$. The computations are quite analogous. This prove the Theorem.

References

- C. R. ALCÁNTARA, A. CASTORENA AND A. G. ZAMORA: On the slope of relatively minimal fibrations on complex rational surfaces, Collect. Math., 62, (2011), 1–15.
- [2] A. BEAUVILLE: Le nombre minimum de fibers singulieres d'un courbe stable sur P¹, Asterisque, 86, (1981), 97–108.
- [3] E. HORIKAWA: Algebraic surfaces of general type with small c₁² II, Inventiones Math., 37, (1976), 121–155.
- S. KITAGAWA AND K. KONNO: Fibred rational surfaces with extremal Mordell-Weil lattices, Math. Zeitschrift, 251, (2005), 179–204.
- [5] A. PARSHIN: Algebraic curves over functions fields, Izvest. Akad. Nauk., 32, (1968), 1145– 1170.
- [6] S-L TAN: The minimal number of singular fibers of a semistable curve over P¹, Journal of Algebraic Geometry, 4, (1995), 591–596.
- [7] S-L TAN, Y. TU AND A. G. ZAMORA: On complex surfaces with 5 or 6 semistable singular fibers over P¹, Math. Zeitschrift, 249, (2005), 427–438.