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Abstract. The present paper is the [slightly expanded] text of our talk at the Conference
“Advances in Group Theory and Applications” at Porto Cesareo in June 2011. Our main
results assert that [elementary] Chevalley groups very rarely have finite commutator width.
The reason is that they have very few commutators, in fact, commutators have finite width
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methods of proof, relative analogues of these results, some positive results, and possible gen-
eralisations.
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1 Introduction

In the present note we concentrate on the recent results on the commutator
width of Chevalley groups, the width of commutators in elementary generators,
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and the corresponding relative results. In fact, localisation methods used in the
proof of these results have many further applications, both actual and potential:
relative commutator formulas, multiple commutator formulas, nilpotency of K1,
description of subnormal subgroups, description of various classes of overgroups,
connection with excision kernels, etc. We refer to our surveys [36, 31, 32] and
to our papers [29, 35, 7, 40, 37, 38, 41, 76, 39, 33, 34] for these and further
applications and many further related references.

2 Preliminaries

2.1 Length and width

Let G be a group and X be a set of its generators. Usually one considers
symmetric sets, for which X−1 = X.

• The length lX(g) of an element g ∈ G with respect to X is the minimal
k such that g can be expressed as the product g = x1 . . . xk, xi ∈ X.

• The width wX(G) of G with respect to X is the supremum of lX(g) over
all g ∈ G. In the case when wX(G) = ∞, one says that G does not have
bounded word length with respect to X.

The problem of calculating or estimating wX(G) has attracted a lot of at-
tention, especially when G is one of the classical-like groups over skew-fields.
There are hundreds of papers which address this problem in the case when X
is either

• the set of elementary transvections

• the set of all transvections or ESD-transvections,

• the set of all unipotents,

• the set of all reflections or pseudo-reflections,

• other sets of small-dimensional transformations,

• a class of matrices determined by their eigenvalues, such as the set of all
involutions,

• a non-central conjugacy class,

• the set of all commutators,

etc., etc. Many further exotic generating sets have been considered, such as
matrices distinct from the identity matrix in one column, symmetric matrices,
etc., etc., etc. We do not make any attempt to list all such papers, there are
simply far too many, and vast majority of them produce sharp bounds for classes
of rings, which are trivial from our prospective, such as fields, or semi-local rings.
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2.2 Chevalley groups

Let us fix basic notation. This notation is explained in [1, 4, 60, 74, 75, 2,
3, 92, 95, 93], where one can also find many further references.

• Φ is a reduced irreducible root system;

• Fix an order on Φ, let Φ+, Φ− and Π = {α1, . . . , αl} are the sets of
positive, negative and fundamental roots, respectively.

• Let Q(Φ) be the root lattice of Φ, P (Φ) be the weight lattice of Φ and P
be any lattice such that Q(Φ) ≤ P ≤ P (Φ);

• R is a commutative ring with 1;

• G = GP (Φ, R) is the Chevalley group of type (Φ, P ) over R;

• In most cases P does not play essential role and we simply write G =
G(Φ, R) for any Chevalley group of type Φ over R;

• However, when the answer depends on P we usually write Gsc(Φ, R) for
the simply connected group, for which P = P (Φ) and Gad(Φ, R) for the
adjoint group, for which P = Q(Φ);

• T = T (Φ, R) is a split maximal torus of G;

• xα(ξ), where α ∈ Φ, ξ ∈ R, denote root unipotents G elementary with
respect to T ;

• E(Φ, R) is the [absolute] elementary subgroup of G(Φ, R), generated by
all root unipotents xα(ξ), α ∈ Φ, ξ ∈ R;

• EL(Φ, R) is the subset (not a subgroup!) of E(Φ, R), consisting of prod-
ucts of ≤ L root unipotents xα(ξ), α ∈ Φ, ξ ∈ R;

• H = H(Φ, R) = T (Φ, R) ∩ E(Φ, R) is the elementary part of the split
maximal torus;

• U±(Φ, R) is the unipotent radical of the standard Borel subgroup B(Φ, R)
or its opposite B−(Φ, R). By definition

U(Φ, R) =
〈
xα(ξ), α ∈ Φ+, ξ ∈ R

〉
.

U−(Φ, R) =
〈
xα(ξ), α ∈ Φ−, ξ ∈ R

〉
.

2.3 Chevalley groups versus elementary subgroups

Many authors not familiar with algebraic groups or algebraic K-theory do
not distinguish Chevalley groups and their elementary subgroups. Actu-
ally, these groups are defined dually.
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• Chevalley groups G(Φ, R) are [the groups of R-points of] algebraic groups.
In other words, G(Φ, R) is defined as

G(Φ, R) = HomZ(Z[G], R),

where Z[G] is the affine algebra of G. By definition G(Φ, R) consists of
solutions in R of certain algebraic equations.

• As opposed to that, elementary Chevalley groups E(Φ, R) are generated
by elementary generators

E(Φ, R) =
〈
xα(ξ), α ∈ Φ, ξ ∈ R

〉
.

When R = K is a field, one knows relations among these elementary
generators, so that E(Φ, R) can be defined by generators and relations.
However, in general, the elementary generators are described by their
action in certain representations.

By the very construction of these groups E(Φ, R) ≤ G(Φ, R) but, as we
shall see, in general E(Φ, R) can be strictly smaller than G(Φ, R) even for fields.
The following two facts might explain, why some authors confuse E(Φ, R) and
G(Φ, R):

• Let R = K be any field. Then Gsc(Φ,K) = Esc(Φ,K).

• Let R = K be an algebraically closed field. Then Gad(Φ,K) = Ead(Φ,K).

However, for a field K that is not algebraically closed one usually has strict
inclusion Ead(Φ,K) < Gad(Φ,K). Also, as we shall see, even for principal ideal
domains Esc(Φ, R) < Gsc(Φ, R), in general.

2.4 Elementary generators

By the very construction Chevalley groups occur as subgroups of the general
linear group GL(n,R). Let e be the identity matrix and eij , 1 ≤ i, j ≤ n, be
a matrix unit, which has 1 in position (i, j) and zeros elsewhere. Below we list
what the elementary root unipotents, also known as elementary generators, look
like for classical groups.

• In the case Φ = Al one has n = l + 1. Root unipotents of SL(n,R) are
[elementary] transvections

tij(ξ) = e+ ξeij , 1 ≤ i 6= j ≤ n, ξ ∈ R.
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• In the case Φ = Dl one has n = 2l. We number rows and columns of ma-
trices from GL(n,R) as follows: 1, . . . , l,−l, . . . ,−1. Then root unipotents
of SO(2l, R) are [elementary] orthogonal transvections

Tij(ξ) = e+ ξeij − ξe−j,−i, 1 ≤ i, j ≤ −1, i 6= ±j, ξ ∈ R.

• In the case Φ = Cl also n = 2l and we use the same numbering of rows and
columns as in the even orthogonal case. Moreover, we denote εi the sign of
i, which is equal to +1 for i = 1, . . . , l and to −1 for i = −1, . . . ,−1. In Cl

there are two root lengths. Accordingly, root unipotents of Sp(2l, R) come
in two stocks. Long root unipotents are the usual linear transvections
ti,−i(ξ), 1 ≤ i ≤ −1, ξ ∈ R, while short root unipotents are [elementary]
symplectic transvections

Tij(ξ) = e+ ξeij − εiεjξe−j,−i, 1 ≤ i, j ≤ −1, i 6= ±j, ξ ∈ R.

• Finally, for Φ = Bl one has n = 2l+1 and we number rows and columns of
matrices from GL(n,R) as follows: 1, . . . , l, 0,−l, . . . ,−1. Here too there
are two root lengths. The long root elements of the odd orthogonal group
SO(2l+1, R) are precisely the root elements of the even orthogonal groups,
Tij(ξ), i 6= ±j, i, j 6= 0, ξ ∈ R. The short root elements have the form

Ti0(ξ) = e+ ξei0 − 2ξe−i,0 − ξ2ei,−1, i 6= 0, ξ ∈ R.

It would be only marginally more complicated to specify root elements of
spin groups and exceptional groups, in their minimal faithful representations,
see [93, 94].

2.5 Classical cases

Actually, most of our results are already new for classical groups. Recall
identification of Chevalley groups and elementary Chevalley groups for the clas-
sical cases. The second column of the following table lists traditional notation
of classical groups, according to types: Al the special linear group, Bl the odd
orthogonal group, Cl the symplectic group, and Dl the even orthogonal group.
These groups are defined by algebraic equations. Orthogonal groups are not sim-
ply connected, the corresponding simply connected groups are the spin groups.
The last column lists the names of their elementary subgroups, generated by
the elementary generators listed in the preceding subsection.
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Φ G(Φ, R) E(Φ, R)

Al SL(l + 1, R) E(l + 1, R)

Bl Spin(2l + 1, R) Epin(2l + 1, R)

SO(2l + 1, R) EO(2l + 1, R)

Cl Sp(2l, R) Ep(2l, R)

Dl Spin(2l, R) Epin(2l, R)

SO(2l, R) EO(2l, R)

Orthogonal groups [and spin groups] in this table are the split orthogonal
groups. Split means that they preserve a bilinear/quadratic form of maximal
Witt index. In the case of a field the group EO(n,K) was traditionally denoted
by Ω(n,K) and called the kernel of spinor norm. Since the group SO(n,K) is
not simply connected, in general Ω(n,K) is a proper subgroup of SO(n,K).

2.6 Dimension of a ring

Usually, dimension of a ring R is defined as the length d of the longest
strictly ascending chain of ideals I0 < I1 < . . . < Id of a certain class.

• The most widely known one is the Krull dimension dim(R) defined in
terms of chains of prime ideals of R. Dually, it can be defined as the
combinatorial dimension of Spec(R), considered as a topological space
with Zariski topology.

Recall, that the combinatorial dimension dim(X) of a topological space X
is the length of the longest descending chain of its irreducible subspaces X0 >
X1 > . . . > Xd. Thus, by definition,

dim(R) = dim(Spec(R)).

However, we mostly use the following more accurate notions of dimension.

• The Jacobson dimension j-dim(R) of R is defined in terms of j-ideals,
in other words, those prime ideals, which are intersections of maximal
ideals. Clearly, j-dim(R) coincides with the combinatorial dimension of the
maximal spectrum of the ring R, by definition, j-dim(R) = dim(Max(R))
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Define dimension δ(X) of a topological space X as the smallest integer d such
that X can be expressed as a finite union of Noetherian topological spaces of
dimension ≤ d. The trick is that these spaces do not have to be closed subsets
of X.

• The Bass—Serre dimension of a ring R is defined as the dimension of its
maximal spectrum, δ(R) = δ(Max(R)).

Bass—Serre dimension has many nice properties, which make it better adapted
to the study of problems we consider. For instance, a ring is semilocal iff
δ(R) = 0 (recall that a commutative ring R is called semilocal if it has finitely
many maximal ideals).

2.7 Stability conditions

Mostly, stability conditions are defined in terms of stability of rows, or
columns. In this note we only refer to Bass’ stable rank, first defined in [9].
We will denote the [left] R-module of rows of length n by nR, to distinguish it
from the [right] R-module Rn of columns of height n.

A row (a1, . . . , an) ∈ nR is called unimodular, if its components a1, . . . , an
generate R as a right ideal,

a1R+ . . .+ anR = R.

or, what is the same, if there exist such b1, . . . , bn ∈ R that

a1b1 + . . .+ anbn = 1.

The stable rank sr(R) of the ring R is the smallest such n that every uni-
modular row (a1, . . . , an+1) of length n+ 1 is stable. In other words, there exist
elements b1, . . . bn ∈ R such that the row

(a1 + an+1b1, a2 + an+1b2, . . . , an + an+1bn)

of length n is unimodular. If no such n exists, one writes sr(R) =∞.
In fact, stable rank is a more precise notion of dimension of a ring, based

on linear algebra, rather than chains of ideals. It is shifted by 1 with respect
to the classical notions of dimension. The basic estimate of stable rank is Bass’
theorem, asserting that sr(R) ≤ δ(R) + 1.

Especially important in the sequel is the condition sr(R) = 1. A ring R has
stable rank 1 if for any x, y ∈ R such that xR+yR = R there exists a z ∈ R such
that (x+ yz)R = R. In fact, rings of stable rank 1 are weakly finite (one-sided
inverses are automatically two-sided), so that this last condition is equivalent
to invertibility of x+ yz. Rings of stable rank 1 should be considered as a class
of 0-dimensional rings, in particular, all semilocal rings have stable rank 1. See
[87] for many further examples and references.
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2.8 Localisation

Let, as usual, R be a commutative ring with 1, S be a multiplicative system
inR and S−1R be the corresponding localisation. We will mostly use localisation
with respect to the two following types of multiplicative systems.

• Principal localisation: the multiplicative system S is generated by a non-
nilpotent element s ∈ R, viz. S = 〈s〉 = {1, s, s2, . . .}. In this case we
usually write 〈s〉−1R = Rs.

• Maximal localisation: the multiplicative system S equals S = R \ m,
where m ∈ Max(R) is a maximal ideal in R. In this case we usually write
(R \m)−1R = Rm.

We denote by FS : R −→ S−1R the canonical ring homomorphism called
the localisation homomorphism. For the two special cases mentioned above, we
write Fs : R −→ Rs and Fm : R −→ Rm, respectively.

Both G(Φ, ) and E(Φ, ) commute with direct limits. In other words, if
R = lim−→Ri, where {Ri}i∈I is an inductive system of rings, then G(Φ, lim−→Ri) =
lim−→G(Φ, Ri) and the same holds for E(Φ, R). Our proofs crucially depend on
this property, which is mostly used in the two following situations.

• First, let Ri be the inductive system of all finitely generated subrings of
R with respect to inclusion. Then X = lim−→X(Φ, Ri), which reduces most
of the proofs to the case of Noetherian rings.

• Second, let S be a multiplicative system in R and Rs, s ∈ S, the inductive
system with respect to the localisation homomorphisms: Ft : Rs −→ Rst.
Then X(Φ, S−1R) = lim−→X(Φ, Rs), which allows to reduce localisation
with respect to any multiplicative system to principal localisations.

2.9 K1-functor

The starting point of the theory we consider is the following result, first
obtained by Andrei Suslin [80] for SL(n,R), by Vyacheslav Kopeiko [48] for
symplectic groups, by Suslin and Kopeiko [81] for even orthogonal groups and
by Giovanni Taddei [83] in general.

Theorem 1. Let Φ be a reduced irreducible root system such that rk(Φ) ≥ 2.
Then for any commutative ring R one has E(Φ, R) E G(Φ, R).

In particular, the quotient

K1(Φ, R) = Gsc(Φ, R)/Esc(Φ, R)

is not just a pointed set, it is a group. It is called K1-functor.
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The groups G(Φ, R) and E(Φ, R) behave functorially with respect to both R
and Φ. In particular, to an embedding of root systems ∆ ⊆ Φ there corresponds
the map ϕ : G(∆, R) −→ G(Φ, R) of the corresponding [simply connected]
groups, such that ϕ(E(∆, R)) ≤ E(Φ, R). By homomorphism theorem it defines
the stability map ϕ : K1(∆, R) −→ K1(Φ, R).

In the case Φ = Al this K1-functor specialises to the functor

SK1(n,R) = SL(n,R)/E(n,R),

rather than the usual linear K1-functor K1(n,R) = GL(n,R)/E(n,R). In ex-
amples below we also mention the corresponding stable K1-functors, which are
defined as limits of K1(n,R) and SK1(n,R) under stability embeddings, as n
tends to infinity:

SK1(R) = lim−→SK1(n,R), K1(R) = lim−→K1(n,R).

Another basic tool are stability theorems, which assert that under some
assumptions on ∆,Φ and R stability maps are surjective or/and injective. We
do not try to precisely state stability theorems for Chevalley groups, since they
depend on various analogues and higher versions of stable rank, see in particular
[75, 64, 65, 66].

However, to give some feel, we state two classical results pertaining to the
case of SL(n,R). These results, which are due to Bass and Bass—Vaserstein,
respectively, are known as surjective stability of K1 and injective stability of
K1. In many cases they allow to reduce problems about groups of higher ranks,
to similar problems for groups of smaller rank.

Theorem 2. For any n ≥ sr(R) the stability map

K1(n,R) −→ K1(n+ 1, R)

is surjective. In other words,

SL(n+ 1, R) = SL(n,R)E(n+ 1, R).

Theorem 3. For any n ≥ sr(R) + 1 the stability map

K1(n,R) −→ K1(n+ 1, R)

is injective. In other words,

SL(n,R) ∩ E(n+ 1, R) = E(n,R).
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2.10 K1-functor: trivial or non-trivial

Usually, K1-functor is non-trivial. But in some important cases it is trivial.
Let us start with some obvious examples.

• R = K is a field.

• More generally, R is semilocal

• R is Euclidean

• It is much less obvious thatK1 does not have to be trivial even for principal
ideal rings. Let us cite two easy examples discovered by Ischebeck [43] and
by Grayson and Lenstra [26], respectively.

• Let K be a field of algebraic functions of one variable with a perfect field
of constants k. Then the ring R = K ⊗k k(x1, . . . , xm) is a principal ideal
ring. If, moreover, m ≥ 2, and the genus of K is distinct from 0, then
SK1(R) 6= 1.

• Let R = Z[x], and S ⊆ R be the multiplicative subsystem of R generated
by cyclotomic polynomials Φn, n ∈ N. Then S−1R is a principal ideal ring
such that SK1(S

−1R) 6= 1.

This is precisely why over a Euclidean ring it is somewhat easier to find
Smith form of a matrix, than over a principal ideal ring.

However, there are some further examples, when K1 is trivial. Usually, they
are very deep. The first example below is part of the [almost] positive solution
of the congruence subgroup problem by Bass—Milnor—Serre and Matsumoto
[10, 60]. The second one is the solution of K1-analogue of Serre’s problem by
Suslin [80].

• R = OS is a Hasse domain.

• R = K[x1, . . . , xm] is a polynomial ring over a field.

2.11 K1-functor, abelian or non-abelian

Actually,K1(Φ, R) is not only non-trivial. Oftentimes, it is even non-abelian.
The first such examples were constructed by Wilberd van der Kallen [45] and
Anthony Bak [6]. In both cases proofs are of topological nature and use homo-
topy theory.

• Wilberd van der Kallen [45] constructs a number of examples, where
K1(n,R) is non-abelian. For instance,

R = R[x1, x2, y1, y2, y3, y4]/(x
2
1 + x2

2 = y2
1 + y2

2 + y2
3 + y2

4 = 1)
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is a 4-dimensional ring for which [SL(4, R),SL(4, R)] 6≤ E(4, R). In fact,
in this case even

[SL(2, R),SL(4, R)] 6≤ GL(3, R)E(4, R).

• Anthony Bak [6] constructs examples of [finite dimensional] subrings R
in the rings of continuous functions RX and CX on certain topological
spaces X, for which not only K1(n,R), n ≥ 3, is non-abelian, but even its
nilpotency class can be arbitrarily large.

The question arises, as to how non-abelian K1(Φ, R) may be. For finite
dimensional rings this question was answered by Anthony Bak [6] for SL(n,R),
for other even classical groups by the first author [29] and for all Chevalley
groups by the first and the third authors [35].

Theorem 4. Let Φ be a reduced irreducible root system such that rk(Φ) ≥ 2.
Further let R be a commutative ring of Bass—Serre dimension δ(R) = d <∞.
Then K1(Φ, R) is nilpotent of class ≤ d+ 1.

This theorem relies on a version of localisation method which Bak called
localisation-completion [6]. This method turned out to be crucial for the proof
of results we discuss in the present paper, see [36, 31] for more historical back-
ground and an introduction to this method in non-technical terms.

3 Main problems

3.1 Statement of the main problems

In this paper we discuss the following problem.

Problem 1. Estimate the width of E(Φ, R) with respect to the set of ele-
mentary commutators

X =
{
[x, y] = xyx−1y−1, x ∈ G(Φ, R), y ∈ E(Φ, R)

}
.

Observe, that one could not have taken the set

X =
{
[x, y] = xyx−1y−1, x, y ∈ G(Φ, R)

}

here, since K1(Φ, R) maybe non-abelian.
It turns out that this problem is closely related to the following problem.

Problem 2. Estimate the width of E(Φ, R) with respect to the set of ele-
mentary generators

X =
{
xα(ξ), α ∈ Φ, ξ ∈ R

}
.

The answer in general will be highly unexpected, so we start with discussion
of classical situations.
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3.2 The group SL(2, R)

Let us mention one assumption that is essential in what follows.

When R is Euclidean, expressions of matrices in SL(2, R) as products of
elementary transvections correspond to continued fractions. Division chains in
Z can be arbitrarily long, it is classically known that two consecutive Fibonacci
numbers provide such an example. Thus, we get.

Fact 1. SL(2,Z) does not have bounded length with respect to the elementary
generators.

Actually, behavious of the group SL(2, R) is exceptional in more than one
respect. Thus, the groups E(n,R), n ≥ 3 are perfect. The group E(2, R) is
usually not.

Fact 2. [SL(2,Z),SL(2,Z)] has index 12 in SL(2,Z).

• Thus, in the sequel we always assume that rk(Φ) ≥ 2.

• In fact, it is material for most of our results that the group E(Φ, R) is
perfect. It usually is, the only counter-examples in rank ≥ 2 stemming
from the fact that Sp(4,GF 2) and G(G2,GF 2) are not perfect. Thus, in
most cases one should add proviso that E(Φ, R) is actually perfect, which
amounts to saying that R does not have residue field GF2 for Φ = B2,G2.

The reader may take these two points as standing assumptions for the rest of
the note.

3.3 The answers for fields

The following result easily follows from Bruhat decomposition.

Theorem 5. The width of Gsc(Φ,K) with respect to the set of elementary
generators is ≤ 2|Φ+|+ 4 rk(Φ).

Rimhak Ree [67] observed that the commutator width of semisimple alge-
braic groups over an algebraically closed fields equals 1. For fields containing
≥ 8 elements the following theorems were established by Erich Ellers and Nikolai
Gordeev [21] using Gauss decomposition with prescribed semi-simple part [16].
On the other hand, for very small fields these theorems were recently proven by
Martin Liebeck, Eamonn O’Brien, Aner Shalev, and Pham Huu Tiep [51, 52],
using explicit information about maximal subgroups and very delicate character
estimates.

Actually, the first of these theorems in particular completes the answer to
Ore conjecture, whether any element of a [non-abelian] finite simple group is a
single commutator.
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Theorem 6. The width of Ead(Φ,K) with respect to commutators is 1.

Theorem 7. The width of Gsc(Φ,K) with respect to commutators is ≤ 2.

3.4 The answers for semilocal rings

The following results were recently published by Andrei Smolensky, Sury
and the third author [73, 96]. Actually, their proofs are easy combinations
of Bass’ surjective stability [9] and Tavgen’s rank reduction theorem [84]. The
second of these decompositions, the celebrated Gauss decomposition, was known
for semilocal rings, the first one was known for SL(n,R), see [20], but not in
general.

Theorem 8. Let sr(R) = 1. Then the

E(Φ, R) = U+(Φ, R)U−(Φ, R)U+(Φ, R)U−(Φ, R).

Corollary 1. Let sr(R) = 1. Then the width of E(Φ, R) with respect to the
set of elementary generators is at most M = 4|Φ+|.

Theorem 9. Let sr(R) = 1. Then the

E(Φ, R) = U+(Φ, R)U−(Φ, R)H(Φ, R)U(Φ, R).

Corollary 2. Let sr(R) = 1. Then the width of E(Φ, R) with respect to the
set of elementary generators is at most M = 3|Φ+|+ 4 rk(Φ).

In particular, the width of E(Φ, R) over a ring with sr(R) = 1 with respect
to commutators is always bounded, but its explicit calculation is a non-trivial
task. Let us limit ourselves with the following result by Leonid Vaserstein and
Ethel Wheland [90, 91].

Theorem 10. Let sr(R) = 1. Then the width of E(n,R), n ≥ 3, with
respect to commutators is ≤ 2.

There are also similar results by You Hong, Frank Arlinghaus and Leonid
Vaserstein [101, 5] for other classical groups, but they usually assert that the
commutator width is ≤ 3 or ≤ 4, and sometimes impose stronger stability
conditions such as asr(R) = 1, Λ sr(R) = 1, etc.

The works by Nikolai Gordeev and You Hong, where similar results are
established for exceptional groups over local rings [subject to some mild restric-
tions on their residue fields] are still not published.

3.5 Bounded generation

Another nice class of rings, for which one may expect positive answers to
the above problems, are Dedekind rings of arithmetic type.
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Let K be an algebraic number field, i.e. either a finite algebraic extension of
Q, and further let S be a finite set of (non-equivalent) valuations of K, which
contains all Archimedian valuations. For a non-Archimedian valuation p of the
field K we denote by vp the corresponding exponent. As usual, R = OS denotes
the ring, consisting of x ∈ K such that vp(x) ≥ 0 for all valuations p of K, which
do not belong to S. Such a ring OS is known as the Dedekind ring of arithmetic
type, determined by the set of valuations S of the field K. Such rings are also
called Hasse domains, see, for instance, [10]. Sometimes one has to require that
|S| ≥ 2, or, what is the same, that the multiplicative group O∗S of the ring OS
is infinite.

Bounded generation of SL(n,OS), n ≥ 3, was established by David Carter
and Gordon Keller in [11, 12, 13, 14, 15], see also the survey by Dave Witte
Morris [61] for a modern exposition. The general case was solved by Oleg Tavgen
[84, 85]. The result by Oleg Tavgen can be stated in the following form due to
the [almost] positive solution of the congruence subgroup problem [10, 60].

Theorem 11. Let OS be a Dedekind ring of arithmetic type, rk(Φ) ≥ 2.
Then the elementary Chevalley group G(Φ,OS) has bounded length with respect
to the elementary generators.

In Section 6 we discuss what this implies for the commutator width.

See also the recent works by Edward Hinson [42], Loukanidis and Murty
[55, 62], Sury [79], Igor Erovenko and Andrei Rapinchuk [23, 24, 25], for dif-
ferent proofs, generalisations and many further references, concerning bounded
generation.

3.6 van der Kallen’s counter-example

However, all hopes for positive answers in general are completely abolished
by the following remarkable result due to Wilberd van der Kallen [44].

Theorem 12. The group SL(3,C[t]) does not have bounded word length with
respect to the elementary generators.

It is an amazing result, since C[t] is Euclidean. Since sr(C[t]) = 2 we get the
following corollary

Corollary 3. None of the groups SL(n,C[t]), n ≥ 3, has bounded word
length with respect to the elementary generators.

See also [22] for a slightly easier proof of a slightly stronger result. Later
Dennis and Vaserstein [20] improved van der Kallen’s result to the following.

Theorem 13. The group SL(3,C[t]) does not have bounded word length with
respect to the commutators.
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Since for n ≥ 3 every elementary matrix is a commutator, this is indeed
stronger, than the previous theorem.

4 Absolute commutator width

Here we establish an amazing relation between Problems 1 and 2.

4.1 Commutator width in SL(n,R)

The following result by Alexander Sivatsky and the second author [72] was
a major breakthrough.

Theorem 14. Suppose that n ≥ 3 and let R be a Noetherian ring such
that dim Max(R) = d < ∞. Then there exists a natural number N = N(n, d)
depending only on n and d such that each commutator [x, y] of elements x ∈
E(n,R) and y ∈ SL(n,R) is a product of at most N elementary transvections.

Actually, from the proof in [72] one can derive an efficient upper bound on
N , which is a polynomial with the leading term 48n6d.

It is interesting to observe that it is already non-trivial to replace here an
element of SL(n,R) by an element of GL(n,R). Recall, that a ring of geometric
origin is a localisation of an affine algebra over a field.

Theorem 15. Let n ≥ 3 and let R be a ring of geometric origin. Then
there exists a natural number N depending only on n and R such that each
commutator [x, y] of elements x ∈ E(n,R) and y ∈ GL(n,R) is a product of at
most N elementary transvections.

Let us state another interesting variant of the Theorem 14, which may be
considered as its stable version. Its proof crucially depends on the Suslin—
Tulenbaev proof of the Bass—Vaserstein theorem, see [82].

Theorem 16. Let n ≥ sr(R) + 1. Then there exists a natural number
N depending only on n such that each commutator [x, y] of elements x, y ∈
GL(n,R) is a product of at most N elementary transvections.

Actually, [72] contains many further interesting results, such as, for example,
analogues for the Steinberg groups St(n,R), n ≥ 5. However, since this result
depends on the centrality of K2(n,R) at present there is no hope to generalise
it to other groups.

4.2 Decomposition of unipotents

The proof of Theorem 14 in [72] was based on a combination of localisation
and decomposition of unipotents [77]. Essentially, in the simplest form decom-
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position of unipotents gives finite polynomial expressions of the conjugates

gxα(ξ)g−1, α ∈ Φ, ξ ∈ R, g ∈ G(Φ, R),

as products of factors sitting in proper parabolic subgroups, and, in the final
count, as products of elementary generators.

Roughly speaking, decomposition of unipotents allows to plug in explicit
polynomial formulas as the induction base — which is the most difficult part of
all localisation proofs! — instead of messing around with the length estimates
in the conjugation calculus.

To give some feel of what it is all about, let us state an immediate corollary
of the Theme of [77]. Actually, [77] provides explicit polynomial expressions of
the elementary factors, rather than just the length estimate.

Fact 3. Let R be a commutative ring and n ≥ 3. Then any transvection of
the form gtij(ξ)g

−1, 1 ≤ i 6= j ≤ n, ξ ∈ R, g ∈ GL(n,R) is a product of at most
4n(n− 1) elementary transvections.

It is instructive to compare this bound with the bound resulting from Suslin’s
proof of Suslin’s normality theorem [80]. Actually, Suslin’s direct factorisation
method is more general, in that it yields elementary factorisations of a broader
class of transvections. On the other hand, it is less precise, both factorisations
coincide for n = 3, but asymptotically factorisation in Fact 3 is better.

Fact 4. Let R be a commutative ring and n ≥ 3. Assume that u ∈ Rn is a
unimodular column and v ∈ nR be any row such that vu = 0. Then the transvec-
tion e+ uv is a product of at most n(n− 1)(n+ 2) elementary transvections.

Let us state a counterpart of the Theorem 14 that results from the Fact 3
alone, without the use of localisation. This estimate works for arbitrary com-
mutative rings, but depends on the length of the elementary factor. Just wait
until subsection 4.5!

Theorem 17. Let n ≥ 3 and let R be a commutative ring. Then there
exists a natural number N = N(n,M) depending only on n and M such that
each commutator [x, y] of elements x ∈ EM (n,R) and y ∈ SL(n,R) is a product
of at most N elementary transvections.

It suffices to expand a commutator [x1 . . . xM , y], where xi are elementary
transvections, with the help of the commutator identity [xz, y] = x[z, y] · [x, y],
and take the upper bound 4n(n− 1) + 1 for each of the resulting commutators
[xi, y]. One thus gets N ≤M2 + 4n(n− 1)M .

However, such explicit formulas are only available for linear and orthogonal
groups, and for exceptional groups of types E6 and E7. Let us state the estimate
resulting from the proof of [93, Theorems 4 and 5].
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Fact 5. Let R be a commutative ring and Φ = E6,E7. Then any root
element of the form gxα(ξ)g−1, α ∈ Φ, ξ ∈ R, g ∈ G(Φ, R) is a product of at
most 4 · 16 · 27 = 1728 elementary root unipotents in the case of Φ = E6 and of
at most 4 · 27 · 56 = 6048 elementary root unipotents in the case of Φ = E7.

Even for symplectic groups — not to say for exceptional groups of types
E8,F4 and G2! — it is only known that the elementary groups are generated by
root unipotents of certain classes, which afford reduction to smaller ranks, but
no explicit polynomial factorisations are known, and even no polynomial length
estimates.

This is why generalisation of Theorem 14 to Chevalley groups requires a new
idea.

4.3 Commutator width of Chevalley groups

Let us state the main result of [78]. While the main idea of proof comes from
the work by Alexander Sivatsky and the second author [72], most of the actual
calculations are refinements of conjugation calculus and commutator calculus
in Chevalley groups, developed by the first and the third authors in [35].

Theorem 18. Let G = G(Φ, R) be a Chevalley group of rank l ≥ 2 and
let R be a ring such that dim Max(R) = d < ∞. Then there exists a natural
number N depending only on Φ and d such that each commutator [x, y] of
elements x ∈ G(Φ, R) and y ∈ E(Φ, R) is a product of at most N elementary
root unipotents.

Here we cannot use decomposition of unipotents. The idea of the second
author was to use the second localisation instead. As in [72] the proof starts
with the following lemma, where M has the same meaning as in Subsection 3.4.

Lemma 1. Let d = dim(Max(R)) and x ∈ G(Φ, R). Then there exist
t0, . . . , tk ∈ R, where k ≤ d, generating R as an ideal and such that Fti(x) ∈
EM (Φ, Rti) for all i = 0, . . . , k.

Since t0, . . . , tk are unimodular, their powers also are, so that we can rewrite
y as a product of yi, where each yi is congruent to e modulo a high power of ti.
In the notation of the next section this means that yi ∈ E(Φ, R, tmi R).

When the ring R is Noetherian, G(Φ, R, tmi R) injects into G(Φ, Rti) for some
high power tmi . Thus, it suffices to show that Fti([x, yi]) is a product of bounded
number of elementary factors without denominators in E(Φ, Rti). This is the
first localisation.

The second localisation consists in applying the same argument again, this
time in Rti . Applying Lemma 1 once more we can find s0, . . . , sd forming a
unimodular row, such that the images of yi in E(Φ, Rtisj

) are products of
at most M elementary root unipotents with denominators sj . Decomposing
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Fsj
(x) ∈ E(Φ, Rsj

) into a product of root unipotents, and repeatedly apply-
ing commutator identities, we eventually reduce the proof to proving that the
length of each commutator of the form

[
xα

( tli
sj
a
)
, xβ

(snj
ti
b
)]

is bounded.

4.4 Commutator calculus

Conjugation calculus and commutator calculus consists in rewriting conju-
gates (resp. commutators) with denominators as products of elementary gener-
ators without denominators.

Let us state a typical technical result, the base of induction of the commu-
tator calculus.

Lemma 2. Given s, t ∈ R and p, q, k,m ∈ N, there exist l,m ∈ N and
L = L(Φ) such that

[
xα

( tl
sk
a
)
, xβ

( sn
tm
b
)]
∈ EL(Φ, sptqR).

A naive use of the Chevalley commutator formula gives L ≤ 585 for simply
laced systems, L ≤ 61882 for doubly laced systems and L ≤ 797647204 for
Φ = G2. And this is just the first step of the commutator calculus!

Reading the proof sketched in the previous subsection upwards, and repeat-
edly using commutator identities, we can eventually produce bounds for the
length of commutators, ridiculous as they can be.

Recently in [34] the authors succeeded in producing a similar proof for Bak’s
unitary groups, see [28, 47, 8, 36] and references there. The situation here is
in many aspects more complicated than for Chevalley groups. In fact, Bak’s
unitary groups are not always algebraic, and all calculations should be inherently
carried through in terms of form ideals, rather then ideals of the ground ring.
Thus, the results of [34] heavily depend on the unitary conjugation calculus and
commutator calculus, as developed in [29, 37].

4.5 Universal localisation

Now something truly amazing will happen. Some two years ago the second
author noticed that the width of commutators is bounded by a universal con-
stant that depends on the type of the group alone, see [76]. Quite remarkably,
one can obtain a length bound that does not depend either on the dimension of
the ring, or on the length of the elementary factor.
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Theorem 19. Let G = G(Φ, R) be a Chevalley group of rank l ≥ 2. Then
there exists a natural number N = N(Φ) depending on Φ alone, such that each
commutator [x, y] of elements x ∈ G(Φ, R) and y ∈ E(Φ, R) is a product of at
most N elementary root unipotents.

What is remarkable here, is that there is no dependence on R whatsoever.
In fact, this bound applies even to infinite dimensional rings! Morally, it says
that in the groups of points of algebraic groups there are very few commutators.

Here is a very brief explanation of how it works. First of all, Chevalley
groups are representable functors, G(Φ, R) = Hom(Z[G], R), so that there is a
universal element g ∈ G(Φ,Z[G]), corresponding to id : Z[G] −→ Z[G], which
specialises to any element of the Chevalley group G(Φ, R) of the same type over
any ring.

But the elementary subgroup E(Φ, R) is not an algebraic group, so where
can one find universal elements?

The real know-how proposed by the second author consists in construc-
tion of the universal coefficient rings for the principal congruence subgroups
G(Φ, R, sR) (see the next section, for the definition), corresponding to the prin-
cipal ideals. It turns out that this is enough to carry through the same scheme
of the proof, with bounds that do not depend on the ring R.

5 Relative commutator width

In the absolute case the above results on commutator width are mostly
published. In this section we state relative analogues of these results which are
announced here for the first time.

5.1 Congruence subgroups

Usually, one defines congruence subgroups as follows. An ideal A E R de-
termines the reduction homomorphism ρA : R −→ R/A. Since G(Φ, ) is a
functor from rings to groups, this homomorphism induces reduction homomor-
phism ρA : G(Φ, R) −→ G(Φ, R/A).

• The kernel of the reduction homomorphism ρA modulo A is called the
principal congruence subgroup of level A and is denoted by G(Φ, R,A).

• The full pre-image of the centre ofG(Φ, R/A) with respect to the reduction
homomorphism ρA modulo A is called the full congruence subgroup of level
A, and is denoted by C(Φ, R,A).

But in fact, without assumption that 2 ∈ R∗ for doubly laced systems, and
without assumption that 6 ∈ R∗ for Φ = G2, the genuine congruence subgroups
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should be defined in terms of admissible pairs of ideals (A,B), introduced by
Abe, [1, 4, 2, 3], and in terms of form ideals for symplectic groups. One of these
ideals corresponds to short roots and another one corresponds to long roots.

In [30] we introduced a more general notion of congruence subgroups, corre-
sponding to admissible pairs: G(Φ, R,A,B) and C(Φ, R,A,B), Not to overbur-
den the note with technical details, we mostly tacitly assume that 2 ∈ R∗ for
Φ = Bl,Cl,F4 and 6 ∈ R∗ for Φ = G2. Under these simplifying assumption one
has A = B and G(Φ, R,A,B) = G(Φ, R,A) and C(Φ, R,A,B) = C(Φ, R,A).
Of course, using admissible pairs/form ideals one can obtained similar results
without any such assumptions.

5.2 Relative elementary groups

Let A be an additive subgroup of R. Then E(Φ, A) denotes the subgroup of
E generated by all elementary root unipotents xα(ξ) where α ∈ Φ and ξ ∈ A.
Further, let L denote a nonnegative integer and let EL(Φ, A) denote the subset
of E(Φ, A) consisting of all products of L or fewer elementary root unipotents
xα(ξ), where α ∈ Φ and ξ ∈ A. In particular, E1(Φ, A) is the set of all xα(ξ),
α ∈ Φ, ξ ∈ A.

In the sequel we are interested in the case where A = I is an ideal of R. In
this case we denote by

E(Φ, R, I) = E(Φ, I)E(Φ,R)

the relative elementary subgroup of level I. As a normal subgroup of E(Φ, R)
it is generated by xα(ξ), α ∈ Φ, ξ ∈ A. The following theorem [74, 86, 88] lists
its generators as a subgroup.

Theorem 20. As a subgroup E(Φ, R, I) is generated by the elements

zα(ξ, ζ) = x−α(ζ)xα(ξ)x−α(−ζ),
where ξ ∈ I for α ∈ Φ, while ζ ∈ R.

It is natural to regard these generators as the elementary generators of
E(Φ, R, I). For the special linear group SL(n,OS), n ≥ 3, over a Dedekind ring
of arithmetic type Bernhard Liehl [54] has proven bounded generation of the
elementary relative subgroups E(n,OS , I) in the generators zij(ξ, ζ). What is
remarkable in his result, is that the bound does not depend on the ideal I. Also,
he established similar results for SL(2,OS), provided that O∗S is infinite.

5.3 Standard commutator formula

The following result was first proven by Giovanni Taddei [83], Leonid Vaser-
stein [88] and Eiichi Abe [2, 3].
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Theorem 21. Let Φ be a reduced irreducible root system of rank ≥ 2, R
be a commutative ring, I E R be an ideal of R. In the case, where Φ = B2 or
Φ = G2 assume moreover that R has no residue fields F2 of 2 elements. Then
the following standard commutator formula holds

[
G(Φ, R), E(Φ, R, I)

]
=

[
E(Φ, R), C(Φ, R, I)

]
= E(Φ, R, I).

In fact, in [30] we established similar result for relative groups defined in
terms of admissible pairs, rather then single ideals. Of course, in all cases,
except Chevalley groups of type F4, it was known before, [8, 63, 18].

With the use of level calculations the following result was established by You
Hong [100], by analogy with the Alec Mason and Wilson Stothers [59, 56, 57, 58].
Recently the first, third and fourth authors gave another proof, of this result,
in the framework of relative localisation [38], see also [97, 40, 98, 31, 37, 41, 32,
39, 33, 76] for many further analogues and generalisations of such formulas.

Theorem 22. Let Φ be a reduced irreducible root system, rk(Φ) ≥ 2. Fur-
ther, let R be a commutative ring, and A,B E R be two ideals of R. Then

[E(Φ, R,A), G(Φ, R,B)] = [E(Φ, R,A), E(Φ, R,B)].

5.4 Generation of mixed commutator subgroups

It is easy to see that the mixed commutator [E(Φ, R,A), E(Φ, R,B)] is a
subgroup of level AB, in other words, it sits between the relative elementary sub-
group E(Φ, R,AB) and the corresponding congruence subgroup G(Φ, R,AB).

Theorem 23. Let Φ be a reduced irreducible root system, rk(Φ) ≥ 2. Fur-
ther, let R be a commutative ring, and A,B E R be two ideals of R. When
Φ = B2,G2, assume that R does not have residue field of 2 elements, and when
Φ = Cl, l ≥ 2, assume additionally that any a ∈ R is contained in the ideal
a2R+ 2aR. Then

E(Φ, R,AB) ≤ [E(Φ, R,A), E(Φ, R,B)] ≤
[G(Φ, R,A), G(Φ, R,B)] ≤ G(Φ, R,AB).

It is not too difficult to construct examples showing that in general the
mixed commutator subgroup [E(Φ, R,A), E(Φ, R,B)] can be strictly larger than
E(Φ, R,AB). The first such examples were constructed by Alec Mason and
Wilson Stothers [59, 57] in the ring R = Z[i] of Gaussian integers.

In this connection, it is very interesting to explicitly list generators of the
mixed commutator subgroups [E(Φ, R,A), E(Φ, R,B)] as subgroups. From The-
orem 20 we already know most of these generators. These are zα(ξζ, η), where
ξ ∈ A, ζ ∈ B, η, ϑ ∈ R. But what are the remaining ones?
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In fact, using the Chevalley commutator formula it is relatively easy to
show that [E(Φ, R,A), E(Φ, R,B)] is generated by its intersections with the
fundamental SL2’s. Using somewhat more detailed analysis the first and the
fourth author established the following result, initially for the case of GL(n,R),
n ≥ 3, see [41] and then, jointly with the third author, for all other cases, see
[32, 39].

Theorem 24. Let R be a commutative ring with 1 and A, B be two ideals of
R. Then the mixed commutator subgroup

[
E(Φ, R,A), E(Φ, R,B)

]
is generated

as a normal subgroup of E(n,R) by the elements of the form

•
[
xα(ξ), x−α(η)xα(ζ)

]
,

•
[
xα(ξ), x−α(ζ)

]
,

• xα(ξζ),

where α ∈ Φ, ξ ∈ A, ζ ∈ B, η ∈ R.

Another moderate technical effort allows to make it into a natural candidate
for the set of elementary generators of [E(Φ, R,A), E(Φ, R,B)].

Theorem 25. Let R be a commutative ring with 1 and I, J be two ideals of
R. Then the mixed commutator subgroup

[
E(Φ, R,A), E(Φ, R,B)

]
is generated

as a group by the elements of the form

•
[
zα(ξ, η), zα(ζ, ϑ)

]
,

•
[
zα(ξ, η), z−α(ζ, ϑ)

]
,

• zα(ξζ, η),

where α ∈ Φ, ξ ∈ A, ζ ∈ B, η, ϑ ∈ R.

5.5 Relative commutator width

Now we are all set to address relative versions of the main problem. The two
following results were recently obtained by the second author, with his method
of universal localisation [76], but they depend on the construction of generators
in Theorems 20 and 25. Mostly, the preceding results were either published or
prepublished in some form, and announced at various conferences. These two
theorems are stated here for the first time.

Theorem 26. Let R be a commutative ring with 1 and let IER, be an ideal
of R. Then there exists a natural number N = N(Φ) depending on Φ alone,
such that any commutator [x, y], where

x ∈ G(Φ, R, I), y ∈ E(Φ, R) or x ∈ G(Φ, R), y ∈ E(Φ, R, I)
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is a product of not more that N elementary generators zα(ξ, ζ), α ∈ Φ, ξ ∈ I,
ζ ∈ R.

Theorem 27. Let R be a commutative ring with 1 and let A,B E R, be
ideals of R. there exists a natural number N = N(Φ) depending on Φ alone,
such that any commutator

[x, y], x ∈ G(Φ, R,A), y ∈ E(Φ, R,B)

is a product of not more that N elementary generators listed in Theorem 25.

Quite remarkably, the bound N in these theorems does not depend either on
the ring R, or on the choice of the ideals I, A,B. The proof of these theorems is
not particularly long, but it relies on a whole bunch of universal constructions
and will be published in ??. From the proof, it becomes apparent that similar
results hold also in other such situations: for any other functorial generating
set, for multiple relative commutators [41, 39], etc.

6 Loose ends

Let us mention some positive results on commutator width and possible
further generalisations.

6.1 Some positive results

There are some obvious bounds for the commutator width that follow from
unitriangular factorisations. For the SL(n,R) the following result was observed
by van der Kallen, Dennis and Vaserstein. The proof in general was proposed
by Nikolai Gordeev and You Hong in 2005, but is still not published, as far as
we know.

Theorem 28. Let rk(Φ) ≥ 2. Then for any commutative ring R an element
of U(Φ, R) is a product of not more than two commutators in E(Φ, R).

Combining the previous theorem with Theorem 8 we get the following corol-
lary.

Corollary 4. Let rk(Φ) ≥ 2 and let R be a ring such that sr(R) = 1. Then
the any element of E(Φ, R) is a product of ≤ 6 commutators.

This focuses attention on the following problem.

Problem 3. Find the shortest factorisation of E(Φ, R) of the form

E = UU−UU− . . . U±.
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Let us reproduce another result from the paper by Andrei Smolensky, Sury
and the third author [96]. It is proven similarly to Theorem 8, but uses Cooke—
Weinberger [17] as induction base. Observe that it depends on the Generalised
Riemann’s Hypothesis, which is used to prove results in the style of Artin’s con-
jecture on primitive roots in arithmetic progressions. Lately, Maxim Vsemirnov
succeeded in improving bounds and in some cases eliminating dependence on
GRH. In particular, Cooke—Weinberger construct a division chain of length 7
in the non totally imaginary case, the observation that it can be improved to a
division chain of length 5 is due to Vsemirnov [99]. Again, in the form below,
with G(Φ,OS) rather than E(Φ,OS), it relies on the almost positive solution of
the congruence subgroup problem [10, 60].

Theorem 29. Let R = OS be a Dedekind ring of arithmetic type with infi-
nite multiplicative group. Then under the Generalised Riemann Hypothesis the
simply connected Chevalley group Gsc(Φ,OS) admits unitriangular factorisation
of length 9,

Gsc(Φ,OS) = UU−UU−UU−UU−U.

In the case, where OS has a real embedding, it admits unitriangular factorisation
of length 5,

Gsc(Φ,OS) = UU−UU−U.

Corollary 5. Let rk(Φ) ≥ 2 and let OS be a Dedekind ring of arithmetic
type with infinite multiplicative group. Then the any element of Gsc(Φ,OS) is a
product of ≤ 10 commutators. In the case, where OS has a real embedding, this
estimate can be improved to ≤ 6 commutators.

6.2 Conjectures concerning commutator width

We believe that solution of the following two problems is now at hand. In
Section 2 we have already cited the works of Frank Arlinghaus, Leonid Vaser-
stein, Ethel Wheland and You Hong [90, 91, 101, 5], where this is essentially
done for classical groups, over rings subject to sr(R) = 1 or some stronger
stability conditions.

Problem 4. Under assumption sr(R) = 1 prove that any element of ele-
mentary group Ead(Φ, R) is a product of ≤ 2 commutators in Gad(Φ, R).

Problem 5. Under assumption sr(R) = 1 prove that any element of ele-
mentary group E(Φ, R) is a product of ≤ 3 commutators in E(Φ, R).

It may well be that under this assumption the commutator width of E(Φ, R)
is always ≤ 2, but so far we were unable to control details concerning semisimple
factors.
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It seems, that one can apply the same argument to higher stable ranks.
Solution of the following problem would be a generalisation of [19, Theorem 4].

Problem 6. If the stable rank sr(R) of R is finite, and for some m ≥ 2
the elementary linear group E(m,R) has bounded word length with respect to
elementary generators, then for all Φ of sufficiently large rank any element of
E(Φ, R) is a product of ≤ 4 commutators in E(Φ, R).

Problem 7. Let R be a Dedekind ring of arithmetic type with infinite mul-
tiplicative group. Prove that any element of Ead(Φ, R) is a product of ≤ 3
commutators in Gad(Φ, R).

Some of our colleagues expressed belief that any element of SL(n,Z), n ≥ 3,
is a product of ≤ 2 commutators. However, for Dedekind rings with finite multi-
plicative groups, such as Z, at present we do not envisage any obvious possibility
to improve the generic bound ≤ 4 even for large values of n. Expressing ele-
ments of SL(n,Z) as products of 2 commutators, if it can be done at all, should
require a lot of specific case by case analysis.

6.3 The group SL(2, R): improved generators

One could also mention the recent paper by Leonid Vaserstein [89] which
shows that for the group SL(2, R) it is natural to consider bounded generation
not in terms of the elementary generators, but rather in terms of the generators
of the pre-stability kernel Ẽ(2, R). In other words, one should also consider
matrices of the form (e+ xy)(e+ yx)−1.

Theorem 30. The group SL(2,Z) admits polynomial parametrisation of
total degree ≤ 78 with 46 parameters.

The idea is remarkably simple. Namely, Vaserstein observes that SL(2,Z)
coincides with the pre-stability kernel Ẽ(2,Z). All generators of the group
Ẽ(2,Z), not just the elementary ones, admit polynomial parametrisation. The
additional generators require 5 parameters each.

It only remains to verify that each element of SL(2,Z) has a small length,
with respect to this new set of generators. A specific formula in [89] expresses an
element of SL(2,Z) as a product of 26 elementary generators and 4 additional
generators, which gives 26 + 4 · 5 = 46 parameters mentioned in the above
theorem.

6.4 Bounded generation and Kazhdan property

The following result is due to Yehuda Shalom [70], Theorem 8, see also
[71, 46].
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Theorem 31. Let R be an m-generated commutative ring, n ≥ 3. Assume
that E(n,R) has bounded width C in elementary generators. Then E(n,R) has
property T . In an appropriate generating system S the Kazhdan constant is
bounded from below

K(G,S) ≥ 1

C · 22n+1
.

Problem 8. Does the group SL(n,Z[x]), n ≥ 3, has bounded width with
respect to the set of elementary generators?

If this problem has positive solution, then by Suslin’s theorem and Shalom’s
theorem the groups SL(n,Z[x]) have Kazhdan property T . Thus,

Problem 9. Does the group SL(n,Z[x]), n ≥ 3, have Kazhdan property T?

If this is the case, one can give a uniform bound of the Kazhdan constant
of the groups SL(n,O), for the rings if algebraic integers. It is known that
these group have Kazhdan property, but the known estimates depend on the
discriminant of the ring O.

Problem 10. Prove that the group SL(n,Q[x]) does not have bounded width
with respect to the elementary generators.

It is natural to try to generalise results of Bernhard Liehl [54] to other
Chevalley groups. The first of the following problems was stated by Oleg Tavgen
in [84]. As always, we assume that rk(Φ) ≥ 2. Otherwise, Problem 12 is open
for the group SL(2,OS), provided that the multiplicative group O∗S is infinite.

Problem 11. Prove that over a Dedekind ring of arithmetic type the relative
elementary groups E(Φ,OS , I) have bounded width with respect to the elemen-
tary generators zα(ξ, ζ), with a bound that does not depend on I.

Problem 12. Prove that over a Dedekind ring of arithmetic type the mixed
commutator subgroups [E(Φ,OS , A), E(Φ,OS , B)] have bounded width with re-
spect to the elementary generators constructed in Theorem 25, with a bound that
does not depend on A and B.

6.5 Not just commutators

It is very challenging to understand, to which extent such behaviour is typical
for more general classes of group words. There are a lot of recent results showing
that the verbal length of the finite simple groups is strikingly small [68, 69, 49,
50, 53, 27]. In fact, under some natural assumptions for large finite simple
groups this verbal length is 2. We do not expect similar results to hold for rings
other than the zero-dimensional ones, and some arithmetic rings of dimension 1.

Powers are a class of words in a certain sense opposite to commutators.
Alireza Abdollahi suggested that before passing to more general words, we
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should first look at powers.

Problem 13. Establish finite width of powers in elementary generators, or
lack thereof.

An answer – in fact, any answer! – to this problem would be amazing.
However, we would be less surprised if for rings of dimension ≥ 2 the verbal
maps in G(R) would have very small images.

Acknowledgements. The authors thank Francesco Catino, Francesco de
Giovanni and Carlo Scoppola for an invitation to give a talk on commutator
width at the Conference in Porto Cesareo, which helped us to focus thoughts in
this direction. Also, we would like to thank Nikolai Gordeev and You Hong for
inspiring discussions of positive results on commutator width and related prob-
lems, Sury and Maxim Vsemirnov for discussion of arithmetic aspects, Alireza
Abdollahi for suggestion to look at powers, Anastasia Stavrova amd Matthias
Wendt for some very pertinent remarks concerning localisation, and correcting
some misprints in the original version of our lemmas of conjugation calculus and
commutator calculus.

References

[1] E. Abe: Chevalley groups over local rings, Tôhoku Math. J., 21 (1969), n. 3, 474–494.
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[83] G. Taddei, Normalité des groupes élémentaires dans les groupes de Chevalley sur un
anneau, Contemp. Math., 55 (1986), 693–710.

[84] O. I. Tavgen: Bounded generation of Chevalley groups over rings of S-integer algebraic
numbers, Izv. Acad. Sci. USSR 54 (1990), n. 1, 97–122.

[85] O. I. Tavgen: Bounded generation of normal and twisted Chevalley groups over the rings
of S-integers, Contemp. Math., 131 (1992), n. 1, 409–421.
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