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∗-group identities on units of group rings
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Abstract. Analogous to ∗-polynomial identities in rings, we introduce the concept of ∗-
group identities in groups. When F is an infinite field of characteristic different from 2, we
classify the torsion groups with involution G so that the unit group of FG satisfies a ∗-group
identity. The history and motivations will be given for such an investigation.
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1 Introduction and motivations

The motivation for the study of this topic is from two sides:

(a) Hartley’s conjecture on group identities of units of group rings,

(b) Amitsur’s Theorem on ∗-polynomial identities in rings.

Let F be a field and G a group. Write U(FG) for the unit group of the group
algebra FG. We say that a subset S of U(FG) satisfies a group identity if there
exists a non-trivial word w(x1, . . . , xn) in the free group on a countable set of
generators 〈x1, x2, . . .〉 such that w(u1, . . . , un) = 1 for all u1, . . . , un ∈ S.

Brian Hartley in the 80s conjectured that when F is infinite and G is torsion,
if U(FG) satisfies a group identity then FG satisfies a polynomial identity. We
recall that a subset H of an F -algebra A satisfies a polynomial identity if there
exists a non-zero polynomial f(x1, . . . , xn) in the free associative algebra on non-
commuting variables x1, x2, . . . over F , F{x1, x2, . . .}, such that f(a1, . . . , an) =
0 for all a1, . . . , an ∈ H (in this case we shall write also that H is PI).

Hartley’s conjecture was solved affirmatively by Giambruno, Jespers and
Valenti [3] in the semiprime case (hence, in particular, for fields of characteristic
zero) and by Giambruno, Sehgal and Valenti [7] in the general case. Its solution
was at the basis of the work of Passman [18] who characterized group algebras
whose units satisfy a group identity. Recall that, for any prime p, a group G
is said to be p-abelian if its commutator subgroup G′ is a finite p-group, and
0-abelian means abelian.
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Theorem 1. Let F be an infinite field of characteristic p > 0 and G a
torsion group. The following statements are equivalent:

(i) U(FG) satisfies a group identity;

(ii) U(FG) satisfies the group identity (x, y)p
r

= 1, for some r ≥ 0;

(iii) G has a normal p-abelian subgroup of finite index and G′ is a p-group of
bounded exponent.

In the characteristic zero case, when G is torsion, U(FG) satisfies a group
identity if, and only if, G is abelian. In particular, the fact that G contains
a normal p-abelian subgroup of finite index (condition (iii) of the theorem) is
equivalent to saying that FG must satisfy a polynomial identity, as was estab-
lished earlier by Isaacs and Passman (see Corollaries 5.3.8 and 5.3.20 of [17]).
More recently, the above results have been extended to the more general context
of finite fields in [15] and [16] and arbitrary groups in [9].

Along this line, a natural question of interest is to ask whether group iden-
tities satisfied by some special subset of the unit group of FG can be lifted to
U(FG) or force FG to satisfy a polynomial identity. In this framework, the
symmetric units have been the subject of a good deal of attention.

Assume that F has characteristic different from 2. The linear extension to
FG of the map ∗ on G such that g∗ = g−1 for all g ∈ G is an involution of FG,
namely an antiautomorphism of order 2 of FG, called the classical involution.
An element α ∈ FG is said to be symmetric with respect to ∗ if α∗ = α. We
write FG+ for the set of symmetric elements, which are easily seen to be the
linear combinations of the terms g + g−1, g ∈ G. Let U+(FG) denote the set
of symmetric units. Giambruno, Sehgal and Valenti [8] confirmed a stronger
version of Hartley’s Conjecture by proving

Theorem 2. Let FG be the group algebra of a torsion group G over an
infinite field F of characteristic different from 2 endowed with the classical in-
volution. If U+(FG) satisfies a group identity, then FG satisfies a polynomial
identity.

Under the same restrictions as in the above theorem, they also obtained
necessary and sufficient conditions for U+(FG) to satisfy a group identity. Ob-
viously, group identities on U+(FG) do not force group identities on U(FG).
To see this it is sufficient to observe that if Q8 is the quaternion group of order
8, for any infinite field F of characteristic p > 2 FQ+

8 is commutative, hence
U+(FQ8) satisfies a group identity but, according to Theorem 1, U(FQ8) does
not satisfy a group identity. For a complete overview of these and related results
we refer to the monograph [13].
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Recently, there has been a considerable amount of work on involutions of
FG obtained as F -linear extensions of arbitrary group involutions on G (namely
antiautomorphisms of order 2 of G) other than the classical one. The final
outcome has been the complete classification of the torsion groups G such that
the units of FG which are symmetric under the given involution satisfy a group
identity (see [5]).

Here we discuss a more general problem, that of ∗-group identities on U(FG).
We can define an involution on the free group 〈x1, x2, . . .〉 via x∗2i−1 := x2i

for all i ≥ 1. Renumbering, we obtain the free group with involution F :=
〈x1, x

∗
1, x2, x

∗
2, . . .〉. We say the unit group U(FG) satisfies a ∗-group identity if

there exists a non-trivial word w(x1, x
∗
1, . . . , xn, x

∗
n) ∈ F such that

w(u1, u
∗
1, . . . , un, u

∗
n) = 1

for all u1, . . . , un ∈ U(FG). Obviously, if U+(FG) satisfies the group identity
v(x1, . . . , xr), then U(FG) satisfies the ∗-group identity v(x1x

∗
1, . . . , xrx

∗
r). It

seems of interest to understand the behaviour of the symmetric units when
the group of units satisfies a ∗-group identity. The main motivation for this
investigation dates back to the classical result of Amitsur on ∗-polynomial iden-
tities satisfied by an algebra with involution. Let A be an F -algebra having
an involution ∗. We can define an involution on the free algebra F{x1, x2, . . .}
via x∗2i−1 := x2i for all i ≥ 1. As in the free group case, renumbering we
obtain the free algebra with involution F{x1, x

∗
1, x2, x

∗
2, . . .}. We say that A

satisfies a ∗-polynomial identity (or A is ∗-PI) if there exists a non-zero element
f(x1, x

∗
1, . . . , xn, x

∗
n) ∈ F{x1, x

∗
1, x2, x

∗
2, . . .} such that f(a1, a

∗
1, . . . , an, a

∗
n) = 0

for all a1, . . . , an ∈ A. It is obvious that if the symmetric elements of A satisfy
the polynomial identity g(x1, . . . , xr) then A satisfies the ∗-polynomial identity
g(x1+x∗1, . . . , xr+x

∗
r). It is more difficult to see that if A satisfies a ∗-polynomial

identity, then A+ satisfies a polynomial identity. The deep result of Amitsur [2]
shows that this is the case, by proving that if A satisfies a ∗-polynomial identity,
then A satisfies a polynomial identity.

The surprising result we obtain is just a group-theoretical analogue of Amit-
sur’s theorem for the unit groups of torsion group rings endowed with the linear
extension of an arbitrary group involution. The original results were estab-
lished in [6]. Recently a long and detailed survey on the subject by Lee [14] has
appeared.
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2 ∗-group identities on units of torsion group alge-

bras

Let 〈X〉 be the free group of countable rank on a set X := {x1, x2, . . .}. We
can regard it as a group with involution by setting, for every i ≥ 1, x∗2i−1 = x2i

and extending ∗ to an involution of 〈X〉 in the obvious way. Write X1 :=
{x2i−1 | i ≥ 1} and X2 := {x2i | i ≥ 1}. The group above, we call F , has the
following universal property: ifH is a group with involution, any mapX1 −→ H
can be uniquely extended to a group homomorphism f : F −→ H commuting
with the involution.

Let 1 6= w(x1, x
∗
1, . . . , xn, x

∗
n) ∈ F and let H be a group with involution ∗.

The word w is said to be a ∗-group identity (or ∗-GI) of H if w is equal to 1
for any evaluation ϕ(xi) = ui ∈ H, ϕ(x∗i ) = u∗i ∈ H with 1 ≤ i ≤ n. Clearly
a group identity is a ∗-GI. Moreover, since for any x ∈ X xx∗ is symmetric, a
group identity on symmetric elements of H yields a ∗-group identity of H. We
focus our attention on the converse problem, namely the possibility of a ∗-group
identity of H to force a group identity on the symmetric elements of H itself
when H is the unit group of a group algebra.

One of the key ingredients is the following result dealing with finite-dimensional
semisimple algebras with involution over an infinite field.

Lemma 1. Let A be a finite-dimensional semisimple algebra with involution
over an infinite field of characteristic different from 2. If its unit group U(A)
satisfies a ∗-GI, then A is a direct sum of finitely many simple algebras of
dimension at most 4 over their centre. Moreover A+ is central in A.

Proof. See Lemma 5 of [6]. QED

The conclusions of the above lemma are not a novelty in the setting of alge-
bras with involution. For instance the same happens when one considers finite-
dimensional semisimple algebras with involution whose symmetric elements are
Lie nilpotent (see [4]).

In the framework of group algebras, this gives crucial information on the
structure of the basis group. In fact, assume that F is an infinite field of
characteristic p > 2 and G a finite group with an involution ∗ and let FG have
the induced involution. Write P := {x |x ∈ G, x is a p-element}. Suppose
that U(FG) satisfies a ∗-group identity w. The Jacobson radical J of the group
algebra FG is nilpotent and ∗-invariant. This is sufficient to conclude that
U(FG/J) also satisfies w. But FG/J is finite-dimensional and semisimple. By
applying Lemma 1, the simple components of its Wedderburn decomposition are
all of dimension at most 4 over their centres. But Lemma 2.6 of [4] or Lemma 3
of [12] show that this forces P to be a (normal and ∗-invariant) subgroup of G.
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We can summarize all these deductions in the following

Lemma 2. Let F be an infinite field of characteristic p > 2 and G a finite
group with involution and let FG have the induced involution. If U(FG) satisfies
a ∗-group identity, then the p-elements of G form a subgroup.

It is trivial to see that the conclusion holds for locally finite groups G as
well.

Now, let F and G be as in the lemma. We know that if U(FG) satisfies a
∗-GI, then P is a subgroup, F (G/P ) has an induced involution and U(F (G/P ))
still satisfies a ∗-GI. By Lemma 1 F (G/P )+ is central in F (G/P ). In particular,
F (G/P )+ must be commutative. Therefore it is of interest to classify group
algebras with linear extensions of arbitrary group involutions whose symmetric
elements commute. In order to state this, a definition is required.

We recall that a group G is said to be an LC-group (that is, it has the “lack
of commutativity” property) if it is not abelian, but if g, h ∈ G, and gh = hg,
then at least one of g, h and gh must be central. These groups were introduced
by Goodaire. By Proposition III.3.6 of [10], a group G is an LC-group with a
unique non-identity commutator (which must, obviously, have order 2) if and
only if G/ζ(G) ∼= C2 × C2. Here, ζ(G) denotes the centre of G.

Definition 1. A group G endowed with an involution ∗ is said to be a
special LC-group, or SLC-group, if it is an LC-group, it has a unique non-
identity commutator z, and for all g ∈ G, we have g∗ = g if g ∈ ζ(G), and
otherwise, g∗ = zg.

The SLC-groups arise naturally in the following result proved by Jespers
and Ruiz Marin [11] for an arbitrary involution on G.

Theorem 3. Let R be a commutative ring of characteristic different from
2, G a non-abelian group with an involution ∗ which is extended linearly to RG.
The following statements are equivalent:

(i) RG+ is commutative;

(ii) RG+ is the centre of RG;

(iii) G is an SLC-group.

We recall that in [1] Amitsur proved that if R is a ring with involution and
R+ is PI, then R is PI. Later the same arguments were used by him to prove
that if R is ∗-PI, then R is PI. In particular, if R is ∗-PI then R+ is PI. The
developments for us were similar. In fact, by using exactly the same arguments
as in [5] (Section 3 for the semiprime case and Sections 4 and 5 for the general
case) we provide the following result which is the core of [6].
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Theorem 4. Let F be an infinite field of characteristic p 6= 2, G a torsion
group with an involution ∗ which is extended linearly to FG. The following
statements are equivalent:

(i) the symmetric units of FG satisfy a group identity;

(ii) the units of FG satisfy a ∗-group identity;

(iii) one of the following conditions holds:

(a) FG is semiprime and G is abelian or an SLC-group;

(b) FG is not semiprime, the p-elements of G form a (normal) subgroup
P , G has a p-abelian normal subgroup of finite index, and either

(1) G′ is a p-group of bounded exponent, or

(2) G/P is an SLC-group and G contains a normal ∗-invariant p-
subgroup B of bounded exponent, such that P/B is central in
G/B and the induced involution acts as the identity on P/B.
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