*-group identities on units of group rings

Sudarshan K. Sehgal
University of Alberta - Canada

Abstract

Analogous to $*$-polynomial identities in rings, we introduce the concept of $*-$ group identities in groups. When F is an infinite field of characteristic different from 2, we classify the torsion groups with involution G so that the unit group of $F G$ satisfies a $*$-group identity. The history and motivations will be given for such an investigation.

Keywords: Group Identities, Involutions, Group algebras.
MSC 2000 classification: 16U60, 16W10, 16S34.

1 Introduction and motivations

The motivation for the study of this topic is from two sides:
(a) Hartley's conjecture on group identities of units of group rings,
(b) Amitsur's Theorem on *-polynomial identities in rings.

Let F be a field and G a group. Write $\mathcal{U}(F G)$ for the unit group of the group algebra $F G$. We say that a subset S of $\mathcal{U}(F G)$ satisfies a group identity if there exists a non-trivial word $w\left(x_{1}, \ldots, x_{n}\right)$ in the free group on a countable set of generators $\left\langle x_{1}, x_{2}, \ldots\right\rangle$ such that $w\left(u_{1}, \ldots, u_{n}\right)=1$ for all $u_{1}, \ldots, u_{n} \in S$.

Brian Hartley in the 80s conjectured that when F is infinite and G is torsion, if $\mathcal{U}(F G)$ satisfies a group identity then $F G$ satisfies a polynomial identity. We recall that a subset H of an F-algebra A satisfies a polynomial identity if there exists a non-zero polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ in the free associative algebra on noncommuting variables x_{1}, x_{2}, \ldots over $F, F\left\{x_{1}, x_{2}, \ldots\right\}$, such that $f\left(a_{1}, \ldots, a_{n}\right)=$ 0 for all $a_{1}, \ldots, a_{n} \in H$ (in this case we shall write also that H is PI).

Hartley's conjecture was solved affirmatively by Giambruno, Jespers and Valenti [3] in the semiprime case (hence, in particular, for fields of characteristic zero) and by Giambruno, Sehgal and Valenti [7] in the general case. Its solution was at the basis of the work of Passman [18] who characterized group algebras whose units satisfy a group identity. Recall that, for any prime p, a group G is said to be p-abelian if its commutator subgroup G^{\prime} is a finite p-group, and 0 -abelian means abelian.

[^0]Theorem 1. Let F be an infinite field of characteristic $p>0$ and $G a$ torsion group. The following statements are equivalent:
(i) $\mathcal{U}(F G)$ satisfies a group identity;
(ii) $\mathcal{U}(F G)$ satisfies the group identity $(x, y)^{p^{r}}=1$, for some $r \geq 0$;
(iii) G has a normal p-abelian subgroup of finite index and G^{\prime} is a p-group of bounded exponent.

In the characteristic zero case, when G is torsion, $\mathcal{U}(F G)$ satisfies a group identity if, and only if, G is abelian. In particular, the fact that G contains a normal p-abelian subgroup of finite index (condition (iii) of the theorem) is equivalent to saying that $F G$ must satisfy a polynomial identity, as was established earlier by Isaacs and Passman (see Corollaries 5.3.8 and 5.3.20 of [17]). More recently, the above results have been extended to the more general context of finite fields in [15] and [16] and arbitrary groups in [9].

Along this line, a natural question of interest is to ask whether group identities satisfied by some special subset of the unit group of $F G$ can be lifted to $\mathcal{U}(F G)$ or force $F G$ to satisfy a polynomial identity. In this framework, the symmetric units have been the subject of a good deal of attention.

Assume that F has characteristic different from 2. The linear extension to $F G$ of the map $*$ on G such that $g^{*}=g^{-1}$ for all $g \in G$ is an involution of $F G$, namely an antiautomorphism of order 2 of $F G$, called the classical involution. An element $\alpha \in F G$ is said to be symmetric with respect to $*$ if $\alpha^{*}=\alpha$. We write $F G^{+}$for the set of symmetric elements, which are easily seen to be the linear combinations of the terms $g+g^{-1}, g \in G$. Let $\mathcal{U}^{+}(F G)$ denote the set of symmetric units. Giambruno, Sehgal and Valenti [8] confirmed a stronger version of Hartley's Conjecture by proving

Theorem 2. Let $F G$ be the group algebra of a torsion group G over an infinite field F of characteristic different from 2 endowed with the classical involution. If $\mathcal{U}^{+}(F G)$ satisfies a group identity, then $F G$ satisfies a polynomial identity.

Under the same restrictions as in the above theorem, they also obtained necessary and sufficient conditions for $\mathcal{U}^{+}(F G)$ to satisfy a group identity. Obviously, group identities on $\mathcal{U}^{+}(F G)$ do not force group identities on $\mathcal{U}(F G)$. To see this it is sufficient to observe that if Q_{8} is the quaternion group of order 8, for any infinite field F of characteristic $p>2 F Q_{8}^{+}$is commutative, hence $\mathcal{U}^{+}\left(F Q_{8}\right)$ satisfies a group identity but, according to Theorem $1, \mathcal{U}\left(F Q_{8}\right)$ does not satisfy a group identity. For a complete overview of these and related results we refer to the monograph [13].

Recently, there has been a considerable amount of work on involutions of $F G$ obtained as F-linear extensions of arbitrary group involutions on G (namely antiautomorphisms of order 2 of G) other than the classical one. The final outcome has been the complete classification of the torsion groups G such that the units of $F G$ which are symmetric under the given involution satisfy a group identity (see [5]).

Here we discuss a more general problem, that of $*$-group identities on $\mathcal{U}(F G)$. We can define an involution on the free group $\left\langle x_{1}, x_{2}, \ldots\right\rangle$ via $x_{2 i-1}^{*}:=x_{2 i}$ for all $i \geq 1$. Renumbering, we obtain the free group with involution $\mathcal{F}:=$ $\left\langle x_{1}, x_{1}^{*}, x_{2}, x_{2}^{*}, \ldots\right\rangle$. We say the unit group $\mathcal{U}(F G)$ satisfies a $*$-group identity if there exists a non-trivial word $w\left(x_{1}, x_{1}^{*}, \ldots, x_{n}, x_{n}^{*}\right) \in \mathcal{F}$ such that

$$
w\left(u_{1}, u_{1}^{*}, \ldots, u_{n}, u_{n}^{*}\right)=1
$$

for all $u_{1}, \ldots, u_{n} \in \mathcal{U}(F G)$. Obviously, if $\mathcal{U}^{+}(F G)$ satisfies the group identity $v\left(x_{1}, \ldots, x_{r}\right)$, then $\mathcal{U}(F G)$ satisfies the $*$-group identity $v\left(x_{1} x_{1}^{*}, \ldots, x_{r} x_{r}^{*}\right)$. It seems of interest to understand the behaviour of the symmetric units when the group of units satisfies a *-group identity. The main motivation for this investigation dates back to the classical result of Amitsur on $*$-polynomial identities satisfied by an algebra with involution. Let A be an F-algebra having an involution $*$. We can define an involution on the free algebra $F\left\{x_{1}, x_{2}, \ldots\right\}$ via $x_{2 i-1}^{*}:=x_{2 i}$ for all $i \geq 1$. As in the free group case, renumbering we obtain the free algebra with involution $F\left\{x_{1}, x_{1}^{*}, x_{2}, x_{2}^{*}, \ldots\right\}$. We say that A satisfies a $*$-polynomial identity (or A is $*-\mathrm{PI}$) if there exists a non-zero element $f\left(x_{1}, x_{1}^{*}, \ldots, x_{n}, x_{n}^{*}\right) \in F\left\{x_{1}, x_{1}^{*}, x_{2}, x_{2}^{*}, \ldots\right\}$ such that $f\left(a_{1}, a_{1}^{*}, \ldots, a_{n}, a_{n}^{*}\right)=0$ for all $a_{1}, \ldots, a_{n} \in A$. It is obvious that if the symmetric elements of A satisfy the polynomial identity $g\left(x_{1}, \ldots, x_{r}\right)$ then A satisfies the $*$-polynomial identity $g\left(x_{1}+x_{1}^{*}, \ldots, x_{r}+x_{r}^{*}\right)$. It is more difficult to see that if A satisfies a $*$-polynomial identity, then A^{+}satisfies a polynomial identity. The deep result of Amitsur [2] shows that this is the case, by proving that if A satisfies a $*$-polynomial identity, then A satisfies a polynomial identity.

The surprising result we obtain is just a group-theoretical analogue of Amitsur's theorem for the unit groups of torsion group rings endowed with the linear extension of an arbitrary group involution. The original results were established in [6]. Recently a long and detailed survey on the subject by Lee [14] has appeared.

2 *-group identities on units of torsion group algebras

Let $\langle X\rangle$ be the free group of countable rank on a set $X:=\left\{x_{1}, x_{2}, \ldots\right\}$. We can regard it as a group with involution by setting, for every $i \geq 1, x_{2 i-1}^{*}=x_{2 i}$ and extending $*$ to an involution of $\langle X\rangle$ in the obvious way. Write $X_{1}:=$ $\left\{x_{2 i-1} \mid i \geq 1\right\}$ and $X_{2}:=\left\{x_{2 i} \mid i \geq 1\right\}$. The group above, we call \mathcal{F}, has the following universal property: if H is a group with involution, any map $X_{1} \longrightarrow H$ can be uniquely extended to a group homomorphism $f: \mathcal{F} \longrightarrow H$ commuting with the involution.

Let $1 \neq w\left(x_{1}, x_{1}^{*}, \ldots, x_{n}, x_{n}^{*}\right) \in \mathcal{F}$ and let H be a group with involution $*$. The word w is said to be a $*$-group identity (or $*$-GI) of H if w is equal to 1 for any evaluation $\varphi\left(x_{i}\right)=u_{i} \in H, \varphi\left(x_{i}^{*}\right)=u_{i}^{*} \in H$ with $1 \leq i \leq n$. Clearly a group identity is a $*$-GI. Moreover, since for any $x \in X x x^{*}$ is symmetric, a group identity on symmetric elements of H yields a *-group identity of H. We focus our attention on the converse problem, namely the possibility of a $*$-group identity of H to force a group identity on the symmetric elements of H itself when H is the unit group of a group algebra.

One of the key ingredients is the following result dealing with finite-dimensional semisimple algebras with involution over an infinite field.

Lemma 1. Let A be a finite-dimensional semisimple algebra with involution over an infinite field of characteristic different from 2. If its unit group $\mathcal{U}(A)$ satisfies $a *-G I$, then A is a direct sum of finitely many simple algebras of dimension at most 4 over their centre. Moreover A^{+}is central in A.
Proof. See Lemma 5 of [6].
The conclusions of the above lemma are not a novelty in the setting of algebras with involution. For instance the same happens when one considers finitedimensional semisimple algebras with involution whose symmetric elements are Lie nilpotent (see [4]).

In the framework of group algebras, this gives crucial information on the structure of the basis group. In fact, assume that F is an infinite field of characteristic $p>2$ and G a finite group with an involution $*$ and let $F G$ have the induced involution. Write $P:=\{x \mid x \in G, x$ is a p-element $\}$. Suppose that $\mathcal{U}(F G)$ satisfies a $*$-group identity w. The Jacobson radical J of the group algebra $F G$ is nilpotent and $*$-invariant. This is sufficient to conclude that $\mathcal{U}(F G / J)$ also satisfies w. But $F G / J$ is finite-dimensional and semisimple. By applying Lemma 1, the simple components of its Wedderburn decomposition are all of dimension at most 4 over their centres. But Lemma 2.6 of [4] or Lemma 3 of [12] show that this forces P to be a (normal and $*$-invariant) subgroup of G.

We can summarize all these deductions in the following
Lemma 2. Let F be an infinite field of characteristic $p>2$ and G a finite group with involution and let $F G$ have the induced involution. If $\mathcal{U}(F G)$ satisfies $a *$-group identity, then the p-elements of G form a subgroup.

It is trivial to see that the conclusion holds for locally finite groups G as well.

Now, let F and G be as in the lemma. We know that if $\mathcal{U}(F G)$ satisfies a *-GI, then P is a subgroup, $F(G / P)$ has an induced involution and $\mathcal{U}(F(G / P))$ still satisfies a *-GI. By Lemma $1 F(G / P)^{+}$is central in $F(G / P)$. In particular, $F(G / P)^{+}$must be commutative. Therefore it is of interest to classify group algebras with linear extensions of arbitrary group involutions whose symmetric elements commute. In order to state this, a definition is required.

We recall that a group G is said to be an LC-group (that is, it has the "lack of commutativity" property) if it is not abelian, but if $g, h \in G$, and $g h=h g$, then at least one of g, h and $g h$ must be central. These groups were introduced by Goodaire. By Proposition III.3.6 of [10], a group G is an LC-group with a unique non-identity commutator (which must, obviously, have order 2) if and only if $G / \zeta(G) \cong C_{2} \times C_{2}$. Here, $\zeta(G)$ denotes the centre of G.

Definition 1. A group G endowed with an involution * is said to be a special LC-group, or SLC-group, if it is an LC-group, it has a unique nonidentity commutator z, and for all $g \in G$, we have $g^{*}=g$ if $g \in \zeta(G)$, and otherwise, $g^{*}=z g$.

The SLC-groups arise naturally in the following result proved by Jespers and Ruiz Marin [11] for an arbitrary involution on G.

Theorem 3. Let R be a commutative ring of characteristic different from $2, G$ a non-abelian group with an involution $*$ which is extended linearly to $R G$. The following statements are equivalent:
(i) $R G^{+}$is commutative;
(ii) $R G^{+}$is the centre of $R G$;
(iii) G is an SLC-group.

We recall that in [1] Amitsur proved that if R is a ring with involution and R^{+}is PI, then R is PI. Later the same arguments were used by him to prove that if R is $*-P I$, then R is PI. In particular, if R is $*-\mathrm{PI}$ then R^{+}is PI. The developments for us were similar. In fact, by using exactly the same arguments as in [5] (Section 3 for the semiprime case and Sections 4 and 5 for the general case) we provide the following result which is the core of [6].

Theorem 4. Let F be an infinite field of characteristic $p \neq 2, G$ a torsion group with an involution * which is extended linearly to $F G$. The following statements are equivalent:
(i) the symmetric units of $F G$ satisfy a group identity;
(ii) the units of FG satisfy a *-group identity;
(iii) one of the following conditions holds:
(a) $F G$ is semiprime and G is abelian or an SLC-group;
(b) $F G$ is not semiprime, the p-elements of G form a (normal) subgroup P, G has a p-abelian normal subgroup of finite index, and either
(1) G^{\prime} is a p-group of bounded exponent, or
(2) G / P is an $S L C$-group and G contains a normal $*$-invariant p subgroup B of bounded exponent, such that P / B is central in G / B and the induced involution acts as the identity on P / B.

References

[1] S.A. Amitsur, Rings with involution, Israel J. Math. 6 (1968), 99-106.
[2] S.A. Amitsur, Identities in rings with involution, Israel J. Math. 7 (1969), 63-68.
[3] A. Giambruno, E. Jespers, A. Valenti, Group identities on units of rings, Arch. Math. 63 (1994), 291-296.
[4] A. Giambruno, C. Polcino Milies, S.K. Sehgal, Lie properties of symmetric elements in group rings, J. Algebra 321 (2009), 890-902.
[5] A. Giambruno, C. Polcino Milies, S.K. Sehgal, Group identities on symmetric units, J. Algebra 322 (2009), 2801-2815.
[6] A. Giambruno, C. Polcino Milies, S.K. Sehgal, Star-group identities and group of units, Arch. Math. 95 (2010), 501-508.
[7] A. Giambruno, S.K. Sehgal, A. Valenti, Group algebras whose units satisfy a group identity, Proc. Amer. Math. Soc. 125 (1997), 629-634.
[8] A. Giambruno, S.K. Sehgal, A. Valenti, Symmetric units and group identities, Manuscripta Math. 96 (1998), 443-461.
[9] A. Giambruno, S.K. Sehgal, A. Valenti, Group identities on units of group algebras, J. Algebra 226 (2000), 488-504.
[10] E.G. Goodaire, E. Jespers, C. Polcino Milies, Alternative loop rings, North-Holland, Amsterdam, 1996.
[11] E. Jespers, M. Ruiz Marin, On symmetric elements and symmetric units in group rings, Comm. Algebra 34 (2006), 727-736.
[12] G.T. Lee, Groups whose irriducible representations have degree at most 2, J. Pure Appl. Algebra 199 (2005), 183-195.
[13] G.T. Lee, Group identities on units and symmetric units of group rings, Springer, London, 2010.
[14] G.T. Lee, A survey on *-group identities on units of group rings, Comm. Algebra 40 (2012), 4540-4567.
[15] C.H. Liu, Group algebras with units satisfying a group identity, Proc. Amer. Math. Soc. 127 (1999), 327-336.
[16] C.H. Liu, D.S. Passman Group algebras with units satisfying a group identity II, Proc. Amer. Math. Soc. 127 (1999), 337-341.
[17] D.S. Passman, The algebraic structure of group rings, Wiley, New York, 1977.
[18] D.S. Passman, Group algebras whose units satisfy a group identity II, Proc. Amer. Math. Soc. 125 (1997), 657-662.

[^0]: ${ }^{i}$ The author was supported by NSERC Canada.
 http://siba-ese.unisalento.it/ © 2013 Università del Salento

