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Abstract. After a brief survey of the theory of group extensions and, in particular, of auto-
morphisms of group extensions, we describe some recent reduction theorems for the inducibility
problem for pairs of automorphisms.
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1 Background from Extension Theory

A group extension e of N by Q is a short exact sequence of groups and
homomorphisms

e : N
µ
 G

ε
։ Q,

so that N ≃ Im µ = Ker ε, G/Ker ε ≃ Q. Usually one writes N additively, G
and Q multiplicatively.

A morphism of extensions is a triple (α, β, γ) of homomorphisms such that
the diagram

e1 : N1
λ1−−−−→ G1

µ1−−−−→ Q1yα
yβ

yγ

e2 : N2
λ2−−−−→ G2

µ2−−−−→ Q2

commutes. If α and γ – and hence β – are isomorphisms, then (α, β, γ) is an
isomorphism of extensions. If α, γ are identity maps, it is called an equivalence.
Let

[e]

denote the equivalence class of e and write

E(Q,N) = {[e] | e an extension of N by Q}

for the category of equivalence classes and morphisms of extensions of N by Q.
The main object of extension theory is to describe the set E(Q,N).

Automorphisms
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An isomorphism (α, β, γ) from e to e is called an automorphism of e,

N
µ−−−−→ G

ε−−−−→ Q
yα

yβ
yγ

N
µ−−−−→ G

ε−−−−→ Q

The pair (α, γ) ∈ Aut(N) × Aut(Q) is then said to be induced by β in e. The
automorphisms of e clearly form a group Aut(e) and

Aut(e) ≃ NAut(G)(Im µ) ≤ Aut(G).

We would like to understand the group Aut(e) and, in particular, to determine
which pairs (α, γ) are inducible in e.

Couplings and factor sets

Given an extension e : N
µ
G

ε
։Q, choose a transversal function

τ : Q→ G,

i.e., a map such that τε = the identity map on Q. Conjugation in Im µ by
xτ , (x ∈ Q), induces an automorphism xξ in N ,

(ax
ξ

)µ = (xτ )−1aµxτ , (a ∈ N),

so we have a function
ξ : Q→ Aut(N).

Note that xξ depends on the choice of τ , but xξ(Inn(N)) does not. Define
xχ = xξ(Inn(N)) ∈ Out(N). Then

χ : Q→ Out(N)

is a homomorphism which is independent of τ . This is the coupling of the
extension e. Equivalent extensions have the same coupling, so we can form

Eχ(Q,N),

the subcategory of extensions of N by Q with coupling χ.
The function τ is usually not a homomorphism, but

xτyτ = (xy)τ (ϕ(x, y))µ

where ϕ(x, y) ∈ N . The associative law (xτyτ )zτ = xτ (yτzτ ) implies that

ϕ(x, yz) + ϕ(y, z) = ϕ(xy, z) + ϕ(x, y) · zξ (∗)
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for x, y, z ∈ Q. Such a function ϕ : Q×Q→ N is called a factor set . We may
assume that 1τQ = 1G, in which case ϕ(1, x) = 0 = ϕ(x, 1) for all x ∈ Q, and ϕ
is called a normalized factor set.

From xτyτ = (xy)τϕ(x, y)µ we deduce that

xξyξ = (xy)ξϕ(x, y), (x, y ∈ Q) (∗∗)
where a denotes conjugation by a in N . Call ξ and ϕ associated functions for
the extension e.

Constructing extensions

Suppose we are given groups N,Q and functions ξ : Q → Aut(N) and
ϕ : Q × Q → N (normalized), satisfying (∗) and (∗∗). Then we can construct
an extension

e(ξ, ϕ) : N
µ
G(ξ, ϕ)

ε
։Q,

where G(ξ, ϕ) = Q×N , with group operation

(x, a)(y, b) = (xy, ϕ(x, y) + ayξ + b), (x, y ∈ Q, a, b ∈ N).

Also aµ = (1, a) and (x, a)ε = x. Then the transversal function x 7→ (x, 0) yields
associated functions ξ, ϕ for e(ξ, ϕ).

If N is abelian, it is a Q-module via the coupling ξ = χ : Q → Out(N) =
Aut(N) and ϕ ∈ Z2(Q,N) is a 2-cocycle, while there is a bijection

Eχ(Q,N)←→ H2(Q,N).

2 The Automorphism Group of an Extension

Consider an extension
e : N

µ
G

ε
։Q

with coupling χ. Assume µ : N →֒ G is inclusion and ε : G→ Q = G/N is the
canonical map. If α ∈ Aut(e), then α induces automorphisms α|N in N , α|Q in
Q, while α 7→ (α|N , α|Q) is a homomorphism,

Ψ : Aut(e)→ Aut(N)×Aut(Q).

If α ∈ Ker Ψ, then α is trivial on N and G/N , so [G,α] ≤ A = Z(N), while the
map gN 7→ g−1gα, (g ∈ G), is a derivation or 1-cocycle from Q to Z(N) = A.
In fact Ker Ψ ≃ Z1(Q,A) and there is an exact sequence

0→ Z1(Q,A)→ Aut(e)
Ψ→Aut(N)×Aut(Q).

It is more difficult to identify Im Ψ. This is where the Wells sequence comes
into play.
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Theorem 1. (C. Wells [12]) Let e : N  G ։ Q be an extension with
coupling χ : Q→ Out(N) and let A = Z(N). Then there is an exact sequence

0→ Z1(Q,A)→ Aut(e)
Ψ→ Comp(χ)

Λ→ H2(Q,A)

where Comp(χ) is the subgroup of χ-compatible pairs (ϑ, ϕ) ∈ Aut(N)×Aut(Q),
i.e., pairs satisfying ϕχ = χϑ, with ϑ conjugation by ϑ in Out(N).

To see where the compatibility condition comes from, let α ∈ Aut(e) induce
(ϑ, ϕ), so that (α)Ψ = (ϑ, ϕ). From

(ax
τ

)α = (aα)(x
τ )α

, (a ∈ N, x ∈ Q),

we get xξϑ ≡ ϑ(xϕ)ξ mod Inn(N). Thus ϑ−1xχϑ = (xϕ)χ in Out(N), i.e.
χϑ = ϕχ.

The Wells map Λ
Let (ϑ, ϕ) ∈ Comp(Λ). In order to understand where (ϑ, ϕ)Λ ∈ H2(Q,A)

comes from, we take note of two actions on the set Eχ(Q,N).

(i) H2(Q,A) acts regularly on Eχ(Q,N) by adding a fixed 2-cocycle to each
factor set.

(ii) Aut(N)×Aut(Q) acts in the natural way on Eχ(Q,N).
Hence, given (ϑ, ϕ) ∈ Comp(χ) and [e] ∈ Eχ(Q,N), by regularity there is a
unique h ∈ H2(Q,A) such that [e] = ([e] · (ϑ, ϕ)) · h. Define

(ϑ, ϕ)Λ = h,

so that
[e] = ([e] · (ϑ, ϕ)) · (ϑ, ϕ)Λ.
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Properties of the Wells map

(i) Im Ψ = Ker Λ. (This is a routine calculation.)
For a long time it was believed that Λ, which is clearly not a homomor-

phism, was merely a set map. Then in 2010 Jin and Liu [4] discovered two very
interesting facts about Λ.
(ii) Λ : Comp(χ)→ H2(Q,A) is a derivation, so that Λ ∈ Z1(Comp(χ), H2(Q,A))
and

(UV )Λ = (U)Λ · V + (V )Λ, (U, V ∈ Comp(χ)).

(iii) The cohomology class

[Λ] ∈ H1(Comp(χ), H2(Q,A))

depends on [e] only through its coupling χ, i.e., extensions with the same coupling
have cohomologous Wells maps Λ.

Applications of the Wells Sequence

For a given extension e : N  G ։ Q with coupling χ, the inducibility
problem is to determine when a given pair (ϑ, ϕ) ∈ Aut(N)×Aut(Q) is induced
by some automorphism of e. This happens if and only if (ϑ, ϕ) ∈ Comp(χ) and
(ϑ, ϕ)Λ = 0.

We will describe theorems which reduce the inducibility problem to certain
subgroups of Q.

Reduction to Sylow subgroups

Consider an extension e : N  G ։ Q = G/N with coupling χ where Q is
finite. Let π(Q) = {p1, . . . , pk} and choose Pi ∈ Sylpi

(Q), say Pi = Ri/N . Then
we have subextensions

ei : N  Ri ։ Pi

with couplings χi = χ|Pi
. Let (ϑ, ϕ) ∈ Aut(N)×Aut(Q). Then Pϕi ∈ Sylpi

(Q),

so Pϕi = P
g−1

i

i for some gi ∈ G. Then Pϕgi

i = Pi, so ϕgi|Pi
∈ Aut(Pi).

Theorem 2. With the above notation, the pair (ϑ, ϕ) is inducible in e if
and only if (ϑgi, ϕgi|Pi

) is inducible in ei for i = 1, 2, . . . , k.

Proof. Necessity is routine. Assume the condition holds, i.e. (ϑgi, ϕgi|Pi
) is

inducible for i = 1, 2, . . . , k. Let A = Z(N).

(i) (ϑ, ϕ) is χ-compatible. This is a straightforward calculation.

(ii) (ϑ, ϕ) is inducible in e. To see this, form a subsequence of the Wells sequence
for e by restricting to automorphisms that leave Ri invariant.

0→ Z1(Q,A)→ NAut(e)(Ri)→ Ci → H2(Q,A)
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where Ci = {(λ, µ) ∈ Comp(χ) | Pµi = Pi}. Now apply the restriction map for
Pi to get the commutative diagram

Ci
Λ−−−−→ H2(Q,A)

yresPi

yresPi

Comp(χi)
Λi−−−−→ H2(Pi, A)

Since (ϑ, ϕ) and (gi, gi) are χ-compatible, (ϑgi, ϕgi) ∈ Comp(χ). Also

(ϑgi, ϕgi)resPi
◦ Λi = (ϑgi, ϕgi|Pi

)Λi = 0,

and Λ ◦ resPi
maps (ϑgi, ϕgi) to 0. Since Λ is a derivation,

(ϑgi, ϕgi)Λ = ((ϑ, ϕ)(gi, gi))Λ = (ϑ, ϕ)Λ · (gi, gi) + (gi, gi)Λ = (ϑ, ϕ)Λ.

This is because (gi, gi) is obviously inducible and it acts trivially on H2(Q,A).
Thus ((ϑ, ϕ)Λ)resPi

= 0 for i = 1, . . . , k.

Apply the corestriction map for Pi, noting that (resPi
) ◦ (corPi

) is multipli-
cation by |Q : Pi|. Also |Q| · |H2(Q,A)| = 0 and (ϑ, ϕ)Λ has order a p′i-number
for all i. Hence (ϑ, ϕ)Λ = 0, and (ϑ, ϕ) is inducible in e. QED

Special cases of Theorem 1 have appeared in [3] and [8].

Reduction to finite subgroups

Next consider an extension e : N  G ։ Q with coupling χ where Q is a
locally finite group. Choose a local system of finite subgroups in Q

{Qi}i∈I ,

i.e., every finite subset of Q is contained in some Qi. Let I be ordered by
inclusion, i.e., i ≤ j if and only if Qi ≤ Qj . Then {Qi} is a direct system and
Q = lim

−→
{Qi}. By restricting to Qi, we form the corresponding subextension

ei : N  Gi ։ Qi = Gi/N, (i ∈ I),

with coupling χi = χ|Qi
.

Suppose that (ϑ, ϕ) ∈ Aut(N)× Aut(Q) is given such that Qϕi = Qi for all
i. (If ϕ has finite order, such a system {Qi} will always exist). Assume that
(ϑ, ϕ|Qi

) is inducible in ei for all i ∈ I.

Question: does this imply that (ϑ, ϕ) is inducible in e ?

126



By restriction form the commutative diagram

Comp(χ)
Λ−−−−→ H2(Q,A)

yresQi

yresQi

Comp(χi)
Λi−−−−→ H2(Qi, A)

where A = Z(N). Since (ϑ, ϕ|Qi
)Λi = 0, we have (ϑ, ϕ)Λ ∈ Ker(resQi

) for all
i ∈ I, and (ϑ, ϕ)Λ belongs to

K = Ker(H2(Q,A)→ lim
←−

H2(Qi, A)) :

note here that
{
H2(Qi, A)

}
is an inverse system of abelian groups with restric-

tion maps.

A spectral sequence for Hn(lim
−→

,−)

In general cohomology does not interact well with direct limits. However,
there is a spectral sequence converging to Hn(lim

−→
{Qi} , A) = Hn(Q,A), namely

Epq2
p+q=n
=⇒ Hn(Q,A)

where
Epq2 = lim

←

(p) {Hq(Qi, A)}

and lim
←

(p) is the pth derived functor of lim
←

. (This may be deduced from the

Grothendieck spectral sequence – see [6], [9]). Hence when n = 2 we obtain a
series

0 = L0 ≤ L1 ≤ L2 ≤ L3 = H2(Q,A)

where L1 ≃ E20
∞ , L2/L1 ≃ E11

∞ and L3/L2 ≃ E02
∞ . Thus L2 = K and in our

situation (ϑ, ϕ)Λ ∈ L2. To prove that (ϑ, ϕ)Λ = 0 it suffices to show that

E11
2 = 0 = E20

2 .

For this to be true additional conditions must be imposed: for example,
∑

p

rp(A) < ∞,

the sum being for p = 0 or a prime, i.e., A has finite total rank . In fact this
condition implies that

lim
←

(1)
{
H1(N,A)

}
= 0 = lim

←

(2)
{
AN

}
,

(see [2]). Hence (ϑ, ϕ)Λ = 0 and (ϑ, ϕ) is inducible in e.
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Theorem 3. With the above notation, assume that Z(N) has finite total
rank. Then (ϑ, ϕ) is inducible in e if and only if (ϑ, ϕ|Qi

) is inducible in ei for
all i ∈ I.

By combining Theorems 1 and 2 we reduce the inducibility problem for Q
locally finite to the case of a finite p-group.

Counterexamples

Theorem 3 does not hold without some conditions on A = Z(N). Consider
a non-split extension

e : N  G ։ Q

where G is locally finite, π(N) ∩ π(Q) = ∅, 2 6∈ π(N) and N is abelian. In fact
there are many such extensions – see for example [5], [11]. Let Qi ≤ Q be finite.
Then Hn(Qi, N) = 0 for all n ≥ 1 by Schur’s theorem, so that
ei : N  Gi ։ Qi = Gi/N splits. Let ϑ ∈ Aut(N) be the inversion automor-
phism. Then (ϑ, 1) is inducible in ei for every i since ei is a split extension.
However, (ϑ, 1) is not inducible in e: for if it were, the cohomology class ∆ of e
would satisfy ∆ = ∆ϑ∗ = −∆ and hence ∆ = 0 since H2(Q,N) has no elements
of order 2. This is a contradiction.

Remark. Full details of the proofs may be found in [10].
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