Generalisations of T-groups

Arnold Feldman

Franklin & Marshall College (National U. Ireland Galway 2010-2011) afeldman@fandm.edu

Abstract. This paper discusses work with Adolfo Ballester-Bolinches, James Beidleman, M.C. Pedraza-Aguilera, and M. F. Ragland. Let f be a subgroup embedding functor such that for every finite group G, f(G) contains the set of normal subgroups of G and is contained in the set of Sylow-permutable subgroups of G. We say H f G if H is an element of f(G). Given such an f, let fT denote the class of finite groups in which H f G if and only if H is subnormal in G; because Sylow-permutable subgroups are subnormal, this is the class in which f is a transitive relation. Thus if f(G) is, respectively, the set of normal subgroups, permutable subgroups, or Sylow-permutable subgroups of G, then fT is, respectively, the class of T-groups, PT-groups, or PST-groups. Let \mathcal{F} be a formation of finite groups. A subgroup M of a finite group G is said to be \mathcal{F} -normal in G if $G/Core_G(M)$ belongs to \mathcal{F} . A subgroup U of a finite group G is called a K-F-subnormal subgroup of G if either U = G or there exist subgroups $U = U_0 \leq U_1 \leq \cdots \leq U_n = G$ such that U_{i-1} is either normal or \mathcal{F} -normal in U_i , for $i = 1, 2, \ldots, n$. We call a finite group G an $fT_{\mathcal{F}}$ -group if every K- \mathcal{F} -subnormal subgroup of G is in f(G). When \mathcal{F} is the class of all finite nilpotent groups, the $fT_{\mathcal{F}}$ -groups are precisely the fT-groups. We analyse the structure of $fT_{\mathcal{F}}$ -groups for certain classes of formations, particularly where the fT-groups are the T-, PT-, and PST-groups.

Keywords: *T*-groups, formations

MSC 2000 classification: 20D99

This paper includes work done with A. Ballester-Bolinches, M.C. Pedraza-Aguilera, M. Ragland, and J. Beidleman. See [1] for results on the situation in which f(G) is the set of normal subgroups of G and [2] for results about T-, PT-, and PST-groups.

All groups treated are finite.

Definitions

A subgroup H is subnormal in G if H = G or there exists a chain of subgroups $H = H_0 < H_1 < H_2 < ... < H_k = G$ such that H_{i-1} is normal in H_i for $1 \le i \le k$. Clearly subnormality is transitive: If H is subnormal in J and J is subnormal in G, then H is subnormal in G.

A subgroup embedding functor is a function f that associates a set of subgroups f(G) to each group G such that if ι is an isomorphism from G onto G', then $H \in f(G)$ if and only if $\iota(H) \in f(G')$.

If f is a subgroup embedding functor and H is a subgroup of G, we say H f G if $H \in f(G)$.

http://siba-ese.unisalento.it/ © 2013 Università del Salento

We assume f contains n, where n(G) is the set of normal subgroups of G, and is contained in pS, where pS(G) is the set of Sylow permutable subgroups of G – these are the subgroups H of G such that HP = PH for every Sylow subgroup P of G.

Let p(G) be the set of permutable subgroups of G, i.e. those subgroups H such that HK = KH for all subgroups K of G.

We define fW to be the class of groups such that $H \leq G$ implies H f G, and fT to be the class of groups such that H sn G implies H f G. Thus fTcontains fW.

If f = n, then nW is the class of Dedekind groups, i.e. the groups such that all subgroups are normal, while nT is the class of T-groups, the groups in which every subnormal subgroup is normal. Hence the (n)T-groups are those in which normality is transitive.

If f = p, then pW is the class of Iwasawa groups, i.e. the groups such that all subgroups are permutable, while pT is the class of PT-groups, the groups in which every subnormal subgroup is permutable. Because normal implies permutable implies subnormal, the PT-groups are those in which permutability is transitive.

If f = pS, then pSW is the class of nilpotent groups, while pST is the class of PST-groups, the groups in which every subnormal subgroup is Sylow permutable. Because normal implies Sylow permutable implies subnormal, the PST-groups are those in which Sylow permutability is transitive.

The *nilpotent residual* of a group G is the unique smallest normal subgroup X of G such that the quotient group G/X is nilpotent. This nilpotent residual is denoted $G^{\mathfrak{N}}$; here \mathfrak{N} denotes the class of finite nilpotent groups. (This residual exists because if X and Y are normal subgroups of G such that G/X and G/Y are nilpotent, then $G/X \cap Y$ is nilpotent, also.)

Theorem 1. (Gaschütz, Zacher, Agrawal) [2] If f = n, p, or pS, then G is a finite soluble fT-group if and only if $G^{\mathfrak{N}}$ is abelian of odd order; $G^{\mathfrak{N}}$ and $G/G^{\mathfrak{N}}$ are of relatively prime order; $G/G^{\mathfrak{N}} \in fW$; and every subgroup of $G^{\mathfrak{N}}$ is normal in G.

H is pronormal in G if for each $g \in G$, H and its conjugate H^g are conjugate in the join $\langle H, H^g \rangle$, i.e $H^g = H^x$, where $x \in \langle H, H^g \rangle$.

It is also possible to show that H is pronormal in G if and only if for each $g \in G$, H and H^g are conjugate via an element of $\langle H, H^g \rangle^{\mathfrak{N}}$.

Examples:

Sylow *p*-subgroups are pronormal; so are maximal subgroups.

A subgroup that is both subnormal and pronormal is normal.

A formation \mathfrak{F} is a class of groups such that:

(1) If $G \in \mathfrak{F}$ and X is a normal subgroup of G, then $G/X \in \mathfrak{F}$.

(2) If G/X, $G/Y \in \mathfrak{F}$ for X and Y normal subgroups in G, then $G/X \cap Y \in \mathfrak{F}$.

Here (2) is the property of \mathfrak{N} guaranteeing the existence of the \mathfrak{N} -residual $G^{\mathfrak{N}}$. We can define $G^{\mathfrak{F}}$ similarly.

Let \mathfrak{F} be a formation of finite groups containing all nilpotent groups such that any normal subgroup of any fT-group in \mathfrak{F} and any subgroup of any soluble fT-group in \mathfrak{F} belongs to \mathfrak{F} . We say such an \mathfrak{F} has *Property* f^* .

A subgroup M of a finite group G is said to be \mathfrak{F} -normal in G if $G/Core_G(M)$ belongs to \mathfrak{F} . A subgroup U of a finite group G is called a K- \mathfrak{F} -subnormal subgroup of G if either U = G or there exist subgroups $U = U_0 \leq U_1 \leq \cdots \leq U_n = G$ such that U_{i-1} is either normal or \mathfrak{F} -normal in U_i , for $i = 1, 2, \ldots, n$.

We call a finite group G an $fT_{\mathfrak{F}}$ -group if every K- \mathfrak{F} -subnormal subgroup of G is in f(G). When $\mathfrak{F} = \mathfrak{N}$, the $fT_{\mathfrak{N}}$ -groups are precisely the fT-groups. (This is because an \mathfrak{N} -normal subgroup is subnormal, so K- \mathfrak{N} -subnormal is the same as subnormal.)

H is \mathfrak{F} -pronormal in *G* if for each $g \in G$, *H* and H^g are conjugate via an element of $\langle H, H^g \rangle^{\mathfrak{F}}$.

Just as K- \mathfrak{N} -subnormality is the same as subnormality, \mathfrak{N} -pronormality is the same as pronormality.

Results

Theorem 2. [3] If \mathfrak{F} is a subgroup-closed saturated formation containing \mathfrak{N} , a soluble group is in \mathfrak{F} if and only if each of its subgroups is \mathfrak{F} -subnormal. (This generalises the well known fact for \mathfrak{N} .)

If $\mathfrak{F}_1 \supseteq \mathfrak{F}_2$, every K- \mathfrak{F}_2 -subnormal subgroup is K- \mathfrak{F}_1 -subnormal, and every \mathfrak{F}_1 -pronormal subgroup is \mathfrak{F}_2 -pronormal.

Thus all our $fT_{\mathfrak{F}}$ -groups are fT-groups, because K- \mathfrak{N} -subnormal subgroups are K- \mathfrak{F} -subnormal.

Theorem 3. [3] If \mathfrak{F} is a subgroup-closed saturated formation containing \mathfrak{N} , then a soluble group is a $T_{\mathfrak{F}}$ -group if and only if each of its subgroups is \mathfrak{F} -pronormal.

If \mathfrak{F} contains \mathfrak{N} , then $G \in \mathfrak{F}$ is a $T_{\mathfrak{F}}$ -group if and only if G is Dedekind.

Theorem 4. If \mathfrak{F} contains \mathfrak{U} , the formation of supersoluble groups, then the soluble $T_{\mathfrak{F}}$ -groups are just the Dedekind groups.

Proof. Each soluble $T_{\mathfrak{F}}$ -group, being a soluble T-group, is in \mathfrak{U} , which is contained in \mathfrak{F} . Thus by Theorem 3, such a group is Dedekind.

Let \mathfrak{O} be the set of ordered pairs (p,q) where p and q are prime numbers such that q divides p-1, and for (p,q) in \mathfrak{O} , denote by $X_{(p,q)}$ a non-abelian group of order pq. Let \mathfrak{X} be the class consisting of every group that is isomorphic to $X_{(p,q)}$ for some $(p,q) \in \mathfrak{O}$ and denote by $\mathfrak{X}_{\mathfrak{F}}$ the class $\mathfrak{X} \cap \mathfrak{F}$.

Let \mathfrak{Y} be the class of non-abelian simple groups, and let $\mathfrak{Y}_{\mathfrak{F}}$ be the class $\mathfrak{Y} \cap \mathfrak{F}$, and denote by \mathfrak{S} the class of finite soluble groups.

Definition.

A group G is said to be an $fR_{\mathfrak{F}}$ -group if G is an fT-group and

[i] No section of $G/G^{\mathfrak{S}}$ is isomorphic to an element of $\mathfrak{X}_{\mathfrak{F}}$.

[ii] No chief factor of $G^{\mathfrak{S}}$ is isomorphic to an element of $\mathfrak{Y}_{\mathfrak{F}}$.

Theorem 5. If G is a group and \mathfrak{F} has Property f^* , then $G \in fT_{\mathfrak{F}}$ if and only if $G \in fR_{\mathfrak{F}}$.

Theorem 6. Let G be a group and \mathfrak{F} be a formation containing \mathfrak{N} . If G is a soluble $fT_{\mathfrak{F}}$ -group then Conditions (i), (ii), and (iii) below hold, and if (i), (ii) and (iii) hold and $\mathfrak{S} \cap \mathfrak{F}$ has Property f^* where f = n, p, or pS, then G is a soluble $fT_{\mathfrak{F}}$ -group.

 $[i] G^{\mathfrak{F}}$ is a normal abelian Hall subgroup of G with odd order;

 $|ii| X/X^{\mathfrak{F}}$ is an fW-group for every X sn G;

[iii] Every subgroup of $G^{\mathfrak{F}}$ is normal in G.

Definition. he(G) is the set of hypercentrally embedded subgroups of G, i.e. the set of subgroups H such that $H/H_G \leq Z_{\infty}(G/H_G)$, the hypercentre of G/H_G .

Lemma 1. For all G, p(G) is contained in he(G), which is contained in pS(G). However, these subgroup embedding functors are all distinct.

Theorem 7. If \mathfrak{F} is a formation, then $\mathfrak{S} \cap \mathfrak{F}$ satisfies pS^* if and only if it satisfies he*. If G is a soluble group and $\mathfrak{S} \cap \mathfrak{F}$ possesses this property, then $G \in pST_{\mathfrak{F}}$ if and only if $G \in heT_{\mathfrak{F}}$.

Thus it is possible for distinct functors f and g to yield the same generalisations $fT_{\mathfrak{F}}$ and $gT_{\mathfrak{F}}$, leading to the following:

Question. What other possibilities for f lead to new fT and fW and therefore potentially new $fT_{\mathfrak{F}}$?

References

- A. BALLESTER-BOLINCHES, A.D. FELDMAN, M.C. PEDRAZA-AGUILERA, AND M. F. RAGLAND: A class of generalised finite T-groups, J. Algebra, 333, n. 1, 128–138, 2011.
- [2] A. BALLESTER-BOLINCHES, R. ESTEBAN-ROMERO, AND M. ASAAD: Products of finite groups, de Gruyter Expositions in Mathematics, 53, Berlin 2010.
- [3] A. D. FELDMAN: t-groups and their generalizations, Group theory (Granville, OH, 1992), World Scientific, 128–133, 1993.