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Abstract. This survey article is an expanded version of a series of lectures given at the
conference on Advances in Group Theory and its Applications which was held in Porto Cesareo
in June of 2011. We are concerned with representations of finite group schemes, a class of
objects that generalizes the more familiar finite groups. In the last 30 years, this discipline
has enjoyed considerable attention. One reason is the application of geometric techniques
that originate in Quillen’s fundamental work concerning the spectrum of the cohomology ring
[25, 26]. The subsequent developments pertaining to cohomological support varieties and
representation-theoretic support spaces have resulted in many interesting applications. Here
we will focus on those aspects of the theory that are motivated by the problem of classifying
indecomposable modules. Since the determination of the simple modules is often already
difficult enough, one can in general not hope to solve this problem in a naive sense. However,
the classification problem has resulted in an important subdivision of the category of algebras,
which will be our general theme.

The algebras we shall be interested in are the so-called cocommutative Hopf algebras,
which are natural generalizations of group algebras of finite groups. The module categories of
these algebras are richer than those of arbitrary algebras:

• They afford tensor products which occasionally allow the transfer of information be-
tween various blocks of the algebra.

• Their cohomology rings are finitely generated, making geometric methods amenable to
application.

The purpose of these notes is to illustrate how a combination of these features with methods
from the abstract representation theory of algebras and quivers provides insight into classical
questions.
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1 Motivation and basic examples

1.1 Motivation

We fix the following notation once and for all:

• k denotes an algebraically closed field.
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• Unless mentioned otherwise all k-vector spaces are assumed to be finite-
dimensional.

• Λ denotes an associative k-algebra.

Given d ∈ N, we let moddΛ be the affine variety of d-dimensional Λ-modules.
More precisely, moddΛ is the variety of Λ-module structures on a fixed d-dimensional
k-vector space V . If {x1, . . . , xn } ⊆ Λ is a basis of Λ such that x1 = 1 and
xixj =

∑n
ℓ=1 αijℓxℓ, then a representation of Λ on V is given by an n-tuple

(A1, . . . , An) of (d×d)-matrices such that A1 = Id and AiAj =
∑n

ℓ=1 αijℓAℓ. In

this fashion, moddΛ is a Zariski closed subspace of knd
2

.

The algebraic group GLd(k) acts on moddΛ via conjugation. Thus, the orbits
correspond to the isoclasses of Λ-modules. Note that the set inddΛ of indecom-
posable modules of moddΛ is GLd(k)-invariant. (The set inddΛ is a constructible
subset of moddΛ.)

Definition 1. Given d ∈ N, we let Cd ⊆ moddΛ be a closed subset of minimal
dimension subject to inddΛ ⊆ GLd(k).Cd. The algebra Λ is

(a) representation-finite, provided dimCd = 0 for every d ∈ N,

(b) tame, provided Λ is not representation-finite and dimCd ≤ 1 for all d ∈ N,

(c) wild, otherwise.

Remark 1. (1) An algebra is representation-finite if and only if there are
only finitely many isoclasses of indecomposable Λ-modules. This follows from
the so-called second Brauer-Thrall conjecture for Artin algebras, which is known
to hold in our context.

(2) If an algebra is wild, then its module category is at least as compli-
cated as that of any other algebra. For such algebras the classification of its
indecomposable modules is deemed hopeless [3].

Example 1. (1) Every semi-simple algebra is representation-finite.

(2) The algebra k[X]/(Xn) is representation-finite.

(3) More generally, Nakayama algebras are representation-finite. By defi-
nition, the projective indecomposable and injective indecomposable modules of
such algebras are uniserial.

(4) The Kronecker algebra k[X,Y ]/(X2, Y 2) is tame.

One may ask what this subdivision looks like for certain classes of algebras.
As the representation type of an algebra is an invariant of its Morita equivalence
class, the criteria one is looking for are often given in terms of the associated
basic algebras. Such algebras can be described by finite directed graphs.
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Definition 2. Let Q be a quiver (a directed graph). The path algebra kQ
of Q has an underlying vector space, whose basis consists of all paths. We
multiply paths by concatenation if possible and postulate that their product be
zero otherwise.

The above definition is meant to include paths ei of length 0, labelled by
the vertices of Q. They form a system of primitive orthogonal idempotents of
kQ. If the quiver is finite, then

∑
i ei is the identity element of kQ. We shall

only be concerned with finite quivers (i.e., Q has finitely many vertices and
arrows). In that case, kQ is finite-dimensional if and only if Q does not afford
any oriented cycles. The following basic result concerning Morita equivalence
∼M of k-algebras indicates an interesting connection between representations
of quivers and Lie theory:

Theorem 1. Let Λ be an associative k-algebra.

(1) There exists a finite quiver QΛ and a certain ideal I E kQΛ such that
Λ ∼M kQΛ/I [14].

(2) If Λ is hereditary (i.e., submodules of projectives are projective) and QΛ

is connected, then Λ ∼M kQΛ and

(a) Λ is representation-finite if and only if QΛ is a Dynkin diagram of
type A,D,E [14].

(b) Λ is tame if and only if QΛ is an extended Dynkin diagram of type
Ã, D̃, Ẽ [2, 24].

In either case, the indecomposable modules can be classified via the asso-
ciated root system.

The quiver QΛ is the so-called Ext-quiver of Λ. Its vertices are formed
by a complete set of representatives for the simple Λ-modules. There are
dimk Ext1Λ(S, T ) arrows from S to T . There is no general rule for the com-
putation of the relations generating the non-unique ideal I.

While the above results are very satisfactory from the point of view of ab-
stract representation theory, they do rely on the knowledge of the quiver and
the relations of the given algebra. However, even if an algebra is basic to begin
with (that is, if all simple modules are one-dimensional), the given presentation
may not be suitable for our purposes. Let me illustrate this point by considering
an easy example.

Example 2. Let char(k) = p > 0, and consider the algebra given by

Λ = k〈t, x〉/(tx− xt− x, tp − t, xp).
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This is the natural presentation of the restricted enveloping algebra of the two-
dimensional, non-abelian Lie algebra. The bound quiver presentation we are
looking for is

Λ ∼= kÃp−1/(kÃp−1)≥p,

where the quiver Ãp−1 is the clockwise oriented circle with p vertices and
(kÃp−1)≥p is the subspace with basis the set of all paths of length ≥ p.

The more complicated quiver presentation contains more information. One
readily sees that Λ is a Nakayama algebra, which is not apparent in the natural
presentation.

In these notes we will show how a combination of geometric and repre-
sentation theoretic methods affords the transition to such a more complicated
presentation for certain Hopf algebras of positive characteristic. The classical
examples of Hopf algebras are of course the group algebras of finite groups. Here
we have the following situation:

Theorem 2. Suppose that char(k) = p > 0. Let kG be the group algebra of
a finite group G, P ⊆ G be a Sylow-p-subgroup.

(1) kG is representation-finite ⇔ P is cyclic [16].

(2) kG is tame ⇔ p = 2, and P is dihedral, semidihedral, or generalized
quaternion [1].

Like any algebra, the group algebra kG is the direct sum of indecomposable
two-sided ideals of kG, the so-called blocks of kG. Each block is an algebra in its
own right and the module category of kG is the direct sum of the module cat-
egories of the blocks. (The block decomposition corresponds to the connected
components of the Ext-quiver.) The basic algebras of the representation-finite
and tame blocks of kG are completely understood. The representation-finite
blocks were determined in the late sixties. Almost 20 years later, Karin Erd-
mann classified blocks of tame representation type via the stable Auslander-
Reiten quiver [5].

1.2 Finite algebraic groups and their Hopf algebras

We let Mk and Gr be the categories of not necessarily finite-dimensional
commutative k-algebras and groups, respectively. A representable functor

G : Mk −→ Gr ; R 7→ G(R)

is called an affine group scheme. By definition, there exists a commutative
k-algebra k[G] such that G(R) is the set of algebra homomorphisms k[G] −→
R for every R ∈ Mk. By Yoneda’s Lemma, the group functor structure of
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G corresponds to a Hopf algebra structure of the coordinate ring k[G], which
renders k[G] a commutative Hopf algebra.

We say that G is an algebraic group if the representing object k[G] is finitely
generated. If k[G] is finite-dimensional, then G is referred to as a finite algebraic
group. In this case,

kG := k[G]∗

is a finite-dimensional, cocommutative Hopf algebra, the so-called algebra of
measures on G. In fact, the correspondence

G 7→ kG

provides an equivalence between the categories of finite algebraic groups and
finite-dimensional cocommutative Hopf algebras. In this equivalence, group
algebras of finite groups correspond to reduced finite algebraic groups. An alge-
braic group G is called reduced or smooth, provided its coordinate ring k[G] does
not possess any non-trivial nilpotent elements. If char(k) = 0, then Cartier’s
Theorem asserts that any algebraic group is reduced, thus all cocommutative
Hopf algebras are semisimple in this case. We shall therefore henceforth assume
that char(k) = p > 0.

Definition 3. A finite group scheme G is called infinitesimal, provided
G(k) = { 1 }.

Let G be a finite algebraic group. General theory shows that

kG = Λ∗G

is a skew group algebra, where G = G(k) is the finite group of k-rational points
of G and Λ = kG0 is the Hopf algebra of a certain infinitesimal normal subgroup
G0 of G.

Example 3. Let r ∈ N.

(1) For n ∈ N, let GL(n)r : Mk −→ Gr be given by

GL(n)r(R) := { (ζij) ∈ GL(n)(R) | ζpr

ij = δij }.

By general theory, every infinitesimal group G is a subgroup of a suitable
GL(n)r.

(2) Consider Gm(r) := GL(1)r, that is,

Gm(r)(R) := {x ∈ R× | xpr

= 1 } ⊆ R×.

Then we have
kGm(r)

∼= kp
r

.
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(3) Let Ga(r) : Mk −→ Gr be given by

Ga(r)(R) := {x ∈ R | xpr

= 0 } ⊆ (R,+).

Then we have

kGa(r)
∼= k[X1, . . . , Xr]/(X

p
1 , . . . , X

p
r ).

As an algebra, kGa(r) is the group algebra of an elementary abelian p-
group of rank r. In particular, we have

kGa(r) is representation-finite ⇔ r = 1 ;

kGa(r) is tame ⇔ p = 2 and r = 2.

(4) For m = npr with (n, p) = 1 we consider

Q(m)(R) := {
(
a b
c d

)
∈ SL(2)(R) | am = 1 = dm , bp = 0 = cp }.

Then we have Q(m)(k) = {
(
a 0
0 a−1

)
| an = 1 }. Thus, Q(m) is a finite

algebraic group, which is infinitesimal if and only if n = 1. The infinites-
imal group Q(pr) = SL(2)1Tr is the product of the first Frobenius kernel
of SL(2) with the r-th Frobenius kernel of its standard maximal torus T .

Let G ⊆ GL(n) be an algebraic group, r ∈ N. Then

Gr := G ∩GL(n)r

is the r-th Frobenius kernel of G. Thus, Gr is an infinitesimal group. One
can show that the definition does not depend on the choice of the inclusion
G ⊆ GL(n).

If G is infinitesimal, then there exists r ∈ N with G = Gr and

ht(G) := min{ r | Gr = G }
is called the height of G. The Hopf algebra kG possesses a co-unit ε : kG −→ k.
The unique block B0(G) ⊆ kG with ε(B0(G)) 6= (0) is called the principal block of
kG. Problem. Let G be a finite algebraic group. When is B0(G) representation-
finite or tame?

Roughly speaking, we shall pursue the following strategy. Using geometric
tools we reduce the problem to the consideration of small examples that are
amenable to the methods from abstract representation theory. The latter will
enable us to see which of the examples have the desired representation type and
what their quivers and relations are.

We conclude this section by stating the analogue of Maschke’s Theorem in
the context finite algebraic groups. Since the tensor product of a module with
a projective module is projective, a Hopf algebra kG is semi-simple if and only
if its principal block is simple.
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Theorem 3 (Nagata). Let G be a finite algebraic group. Then kG is semi-
simple if and only if p ∤ ord(G(k)) and G0 ∼=

∏n
i=1 Gm(ri) for some n ∈ N0 and

ri ∈ N.

2 Support varieties and rank varieties of restricted

Lie algebras

2.1 Cohomological support varieties

Let G be a finite group scheme over an algebraically closed field k of char-
acteristic p > 0. We shall study the category modG of finite-dimensional kG-
modules, whose objects will be referred to as G-modules. Our tools will be
geometric in nature; we begin by outlining the main features.

Let M be a G-module. We denote by

Ext∗G(M,M) :=
⊕

n≥0

ExtnG(M,M)

the Yoneda algebra of self-extensions of M . If M = k is the trivial G-module,
then

H•(G, k) :=
⊕

n≥0

Ext2nG (k, k)

is the even cohomology ring of G. This is a commutative k-algebra.
A classical result due to Evens [6] and Venkov [28] asserts that H•(G, k) is

finitely generated whenever G is a finite group. The most general result of this
type is the following:

Theorem 4 ([13]). Let M be a G-module.

(1) The commutative k-algebra H•(G, k) is finitely generated.

(2) The homomorphism

ΦM : H•(G, k) −→ Ext∗G(M,M) ; [f ] 7→ [f⊗idM ]

is finite.

This fundamental result enables us to introduce geometric techniques by
associating varieties to modules. We denote by Maxspec(H•(G, k)) := {M E

H•(G, k) | M maximal ideal } the maximal ideal spectrum of H•(G, k). For an
arbitrary ideal I EH•(G, k), we let Z(I) := {M ∈ Maxspec(H•(G, k)) | I ⊆M }
be the zero locus of I. These sets form the closed sets of the Zariski topology
of the affine variety Maxspec(H•(G, k)).
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Definition 4. Let M be a G-module. The affine variety

VG(M) := Z(ker ΦM ) ⊆ Maxspec(H•(G, k))

is called the cohomological support variety of M .

Before looking at an example, let us see how varieties provide information
about the representation type of the algebra kG.

Theorem 5. Let B ⊆ kG be a block, M ∈ modB.

(1) If B is representation-finite, then dimVG(M) ≤ 1 [15].

(2) If B is tame, then dimVG(M) ≤ 2 [8].

Example 4. Let kG = k(Z/(p))r be the group algebra of a p-elementary
abelian group of rank r. Then

H∗(G, k) := k[X1, . . . , Xr]⊗kΛ(Y1, . . . , Yr) deg(Xi) = 2, deg(Yi) = 1,

is the tensor product of a polynomial ring and an exterior algebra. We thus
obtain:

• VG(k) = Maxspec(H•(G, k)) ∼= Ar.

• kG is representation-finite ⇒ r = 1.

• kG is tame ⇒ r = 2.

In view of Theorem 2 this tells us that homological methods alone can in general
not be expected to give complete answers to the problem of finding blocks of a
given representation type.

2.2 Lie algebras

We have seen that finite algebraic groups consist of two building blocks,
reduced groups and infinitesimal groups. In this section we focus on infinitesimal
groups of height 1. It turns out that this is equivalent to studying restricted
Lie algebras. Given a finite group scheme G, we let ∆ : kG −→ kG⊗kkG denote
the comultiplication of kG. Then

Lie(G) := {x ∈ kG | ∆(x) = x⊗ 1 + 1⊗ x }

is called the Lie algebra of G. Writing [x, y] = xy − yx, we have

(a) [x, y] ∈ Lie(G) for every x, y ∈ Lie(G), and
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(b) xp ∈ Lie(G) for every x ∈ Lie(G).
A subspace g ⊆ Λ of an associative k-algebra Λ satisfying (a) and (b) is called
a restricted Lie algebra. These algebras may also be defined axiomatically: A
restricted Lie algebra is a pair (g, [p]) consisting of an abstract Lie algebra g

and an operator g −→ g ; x 7→ x[p] that satisfies the formal properties of an
associative p-th power.

Given such a restricted Lie algebra (g, [p]) with universal enveloping algebra
U(g), one defines the restricted enveloping algebra via

U0(g) := U(g)/({xp − x[p] | x ∈ g }).

The algebra U0(g) inherits the Hopf algebra structure from U(g) and we have

g = {x ∈ U0(g) | ∆(x) = x⊗ 1 + 1⊗ x }.

The connection with infinitesimal groups of height 1 is given by:

Proposition 1. Let G be an infinitesimal group of height 1. Then there
exists an isomorphism

kG ∼= U0(Lie(G))
of Hopf algebras.

Many of our results to follow will depend on the following basic examples
pertaining to solvable and simple restricted Lie algebras.

Example 5. (1) Let V be a k-vector space, t : V −→ V be a non-zero
linear transformation satisfying tp = t. Then g(t, V ) := kt ⊕ V obtains the
structure of a restricted Lie algebra via

[(αt, v), (βt, w)] := (0, αt(w)− βt(v)) ; (αt, v)[p] = (αpt, αp−1tp−1(v)).

For the corresponding restricted enveloping algebra one can compute the Ext-
quiver and the relations. Abstract representation theory then shows:

• U0(g(t, V )) is representation-finite ⇔ dimk V ≤ 1.

• U0(g(t, V )) is tame ⇔ dimk V = 2 and p = 2.

(2) Let g := sl(2) be the restricted Lie algebra of trace zero (2×2)-matrices.
The restricted enveloping algebra U0(sl(2)) possesses exactly p simple modules
L(0), . . . , L(p−1) with dimk L(i) = i+1. In the early 1980’s Fischer [11], Drozd
[4] and Rudakov [27] independently computed the quiver and the relations of
U0(sl(2)). For p ≥ 3, the algebra U0(sl(2)) has blocks B0, . . . ,B p−3

2

, each Bi
possessing two simple modules L(i) and L(p−2− i). There is one additional
simple block Bp−1 belonging to the Steinberg module L(p−1). The non-simple
blocks have bound quiver presentation given by the quiver ∆1:
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and relations defining the ideal J E k∆1 generated by

{βi+1αi − αi+1βi, αi+1αi, βi+1βi | i ∈ Z/(2) }.

These examples will turn out to be of major importance for our determination
of the tame infinitesimal groups of odd characteristic. The first example is
essentially the reason for the validity of the following result:

Proposition 2 ([9]). Suppose that p ≥ 3, and let G be a solvable infinitesi-
mal group. Then B0(G) is either representation-finite or wild.

Turning to the second example, we observe that the algebra k[∆1]/J is tame.
In fact, our algebra belongs to an important class of tame algebras, the so-called
special biserial algebras. The uniformity of the presentation of these blocks is not
accidental; it is a consequence of the so-called translation principle [18], which
affords the passage between certain blocks. Roughly speaking, one proceeds as
follows: Given two blocks B, C of U0(g) and a simple module S, one considers
the functor

TrS : modB −→ mod C ; M 7→ eC · (S ⊗kM).

Here eC ∈ U0(g) is the central idempotent defining the block C. Under cer-
tain compatibility conditions on B, C and S, this functor is in fact a Morita
equivalence. The easiest instance of the translation principle is given by one-
dimensional modules. In particular, all blocks of basic cocommutative Hopf
algebras (i.e., those corresponding to group schemes of upper triangular matri-
ces) are isomorphic.

2.3 Rank varieties

Although being of theoretical importance, support varieties are inherently
intractable. Quillen’s early work on the spectrum of the cohomology ring of
a finite group and Chouinard’s result on projective modules suggested that
elementary abelian groups could play an important rôle. Dade noticed a further
reduction to cyclic shifted subgroups. These observations led Jon Carlson to
his representation-theoretic notion of a rank variety. A few years later a similar
theory for restricted Lie algebras was developed by Friedlander-Parshall and
Jantzen.
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About 7 years ago, Eric Friedlander and Julia Pevtsova introduced a the-
ory of representation-theoretic support spaces that applies to all finite group
schemes. Since this approach is a bit technical, we confine our attention to
restricted Lie algebras.

Definition 5. Let (g, [p]) be a restricted Lie algebra. The conical variety

V (g) := {x ∈ g | x[p] = 0 }

is called the nullcone of g. Let M be a U0(g)-module. Then

V (g)M := {x ∈ V (g) |M |k[x] is not free } ∪ { 0 }

is referred to as the rank variety of M .

The name derives from the following alternative description of V (g)M : Given
x ∈ V (g), we denote by xM : M −→M ; m 7→ x.m the left multiplication by x
on M . Then we have x ∈ V (g)M if and only if rk(xM ) < p−1

p dimkM .

Example 6. Let g = sl(2).

• Note that V (sl(2)) is the set of nilpotent (2× 2)-matrices, so that

V (sl(2)) = {
(
a b
c −a

)
| a2 + bc = 0 }.

Thus, V (sl(2)) is a two-dimensional, irreducible variety.

• Recall that there are exactly p simple U0(sl(2))-modules L(i) 0 ≤ i ≤ p−1
with dimk L(i) = i+1. If x ∈ V (sl(2))rV (sl(2))L(i), then L(i) is a free
module for the p-dimensional algebra k[x]. Thus, p|dimk L(i) and i = p−1.
Hence L(i) = L(p−1) is the Steinberg module, which is projective. We
therefore have (see also Corollary 2 below)

V (sl(2))L(i) =

{
V (sl(2)) i 6= p−1

{0} i = p−1.

• The rank varieties of the baby Verma modules Z(i) := U0(sl(2))⊗U0(b)

ki are of dimension 0 or 1. Here b ⊆ sl(2) is the Borel subalgebra of
upper triangular matrices of trace zero, and ki denotes the one-dimensional
U0(b)-module with weight i ∈ { 0, . . . , p−1 }.

Theorem 6 ([17, 12]). Let (g, [p]) be a restricted Lie algebra. Then there
exists a homeomorphism

Ψ : Vg(k) −→ V (g)

such that Ψ(Vg(M)) = V (g)M for every M ∈ modU0(g).
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This result tells us that for our intents and purposes rank varieties are as
good a cohomological support varieties. Theorem 5 now implies:

Corollary 1. Let G be a finite algebraic group with Lie algebra g.

(1) If B0(G) is representation-finite, then dimV (g) ≤ 1.

(2) If B0(G) is tame, then dimV (g) ≤ 2.

So why did we introduce support varieties to begin with? Let us look at the
following result:

Corollary 2. Let (g, [p]) be a restricted Lie algebra, M be a U0(g)-module.
Then the following statements are equivalent:

(1) M is projective.

(2) V (g)M = { 0 }.

Proof. (1) ⇒ (2). Let x ∈ V (g). By the PBW-Theorem, U0(g) is a free k[x]-
module. Hence M |k[x] is projective, so that x = 0.

(2) ⇒ (1). If V (g)M = { 0 }, then Vg(M) is finite. Recall that

ΦM : H•(g, k) −→ Ext∗U0(g)
(M,M)

is a finite morphism. Since the Krull dimension dim H•(g, k)/ ker ΦM = dimVg(M)
= 0, the algebra Ext∗(M,M) is finite-dimensional. It follows that there exists
n0 ∈ N such that ExtnU0(g)(M,−) = 0 for all n ≥ n0. Hence M has finite pro-

jective dimension. But U0(g) is a Hopf algebra and hence self-injective. This
implies that M is projective. QED

The foregoing result suggests that dimV (g)M has a representation-theoretic
interpretation. Indeed,

dimV (g)M = cxU0(g)(M)

is the complexity of M , that is, the polynomial rate of growth of a minimal
projective resolution of M .

3 Binary polyhedral groups, McKay quivers, and tame

blocks

Throughout, G denotes a finite group scheme over an algebraically closed
field k of characteristic char(k) = p > 0. We want to know when the prin-
cipal block B0(G) has tame representation type. If G is a finite group, this
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happens precisely, when p = 2, and the Sylow-2-subgroups of G are dihedral,
semidihedral, or generalized quaternion.

Recall that

kG = Λ∗G

is a skew group algebra, where G = G(k) is the finite group of k-rational points
of G, and Λ = kG0 is the Hopf algebra of an infinitesimal group scheme.

3.1 A basic reduction

In the sequel, we write g := Lie(G) and assume that p ≥ 3.

Definition 6. The group scheme G is linearly reductive if the associative
algebra kG is semi-simple.

Recall that Nagata’s Theorem 3 describes the structure of the linearly re-
ductive groups. Using rank varieties, we obtain the following result:

Theorem 7 ([7, 9]). If B0(G) is tame, then

(a) p ∤ |G(k)|, and

(b) g/C(g) ∼= sl(2), where C(g) denotes the center of g.

In particular, g is a central extension of sl(2). Since the Chevalley-Eilenberg
cohomology group H2(sl(2), k) vanishes, such an extension splits, when con-
sidered as one of ordinary Lie algebras. General theory then shows that the
structure of g = sl(2)⊕ V is given as follows:

[(x, v), (y, w)] := ([x, y], 0) and (x, v)[p] = (x[p], ψ(x)+v[p]),

where ψ : sl(2) −→ V is p-semilinear. One can say when exactly U0(g) is tame.
Instead of going into the technical details, let us look at one particular example,
that reveals fundamental differences between finite groups and restricted Lie
algebras.

Example 7. Let { e, h, f } be the standard basis of sl(2) and suppose that
V = kv is one-dimensional. We define the Lie algebra sl(2)s := sl(2)⊕ kv via

e[p] = 0 = f [p] ; h[p] = h+ v ; v[p] = 0.

(This amounts to choosing the p-semilinear map ψs : sl(2) −→ kv ; ψs(
(
a b
c −a

)
) =

apv.) The algebra U0(sl(2)s) turns out to be tame. However, the subalgebra
U0(ke ⊕ kv) ∼= k(Z/(p)×Z/(p)) is wild. By contrast, Brauer’s Third Main
Theorem implies that subgroups of tame finite groups are always tame.
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We are going to simplify matters a little and assume from now on that
C(g) = (0). In the context of finite groups this amounts to assuming that the
Sylow-2-subgroup is a Klein four group. We are thus studying a Hopf algebra

Λ = U0(sl(2))∗G,

where G is a linearly reductive finite group that acts on U0(sl(2)) via auto-
morphisms of Hopf algebras. Hence G acts on sl(2) via automorphisms. If N
denotes the kernel of this action, then the principal block of Λ is isomorphic to
that of U0(sl(2))∗(G/N). Since Aut(sl(2)) ∼= PSL(2)(k), we may thus assume
G ⊆ PSL(2)(k). Passage to the double cover does not change the principal
block and thus yields G ⊆ SL(2)(k). In other words, G is a binary polyhedral
group. These groups were classified by Klein around 1884.

3.2 Extended Dynkin diagrams and finite groups

Extended Dynkin diagrams are perhaps best known from Lie theory, where
they appear in the structure theory of affine Kac-Moody algebras. We have
seen in Section 1 another occurrence in the representation theory of hereditary
algebras. In this case, these diagrams describe the Ext-quivers of hereditary
algebras of tame representation type.

Extended Dynkin diagrams also appear in the representation theory of finite
groups. In his seminal work, J. McKay [22, 23] associated to a finite group G
and a complex G-module V a quiver ΨV (G) that has since played a rôle in a
number of contexts. Let’s generalize this a little to cover our setting.

• LetH = kG be the Hopf algebra of a linearly reductive finite group scheme.

• {S1, . . . , Sn } denotes a complete set of representatives for the isoclasses
of the simple H-modules.

• Fix an H-module V . Then V defines an (n×n)-matrix (aij) ∈ Matn(Z)
such that

V ⊗kSj ∼=
n⊕

i=1

aijSi 1 ≤ j ≤ n.

In other words, the integral (n×n)-matrix (aij) describes the left multiplication
by V in the Grothendieck ring K0(H) of H relative to its standard basis of
simple modules.

Definition 7. Let G be a linearly reductive finite group scheme, V be a G-
module. The McKay quiver ΨV (G) of G relative to V is given by the following
data:
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• Vertices: { 1, . . . , n }

• Arrows: i
aij−→ j.

Example 8. (1) Let G be an abelian group with p ∤ord(G). If V is a faithful
G-module with simple constituents kλ1

, . . . , kλr
, then the character group X(G)

is generated by S := {λ1, . . . , λr } and the McKay quiver of G relative to V is
the Cayley graph of X(G) relative to S.

(2) Let G be a finite group with p ∤ ord(G), V be a faithful G-module.
By Burnside’s classical theorem, every simple G-module is a direct summand
of some tensor power V ⊗n. This implies that the quiver ΨV (G) is connected.
There is a version of Burnside’s result for finite group schemes.

Let us return to our simplified context. We thus have

Λ = U0(sl(2))∗G,

with G ⊆ SL(2)(k) acting on sl(2) via automorphisms, and p not dividing the
order of G. This implies that the McKay quiver ΨL(1)(G) of G relative to the
two-dimensional standard representation L(1) = k2 is connected.

It turns out that a binary polyhedral group is uniquely determined by its
McKay graph ΨL(1)(G). Here is the list of groups up to conjugation in SL(2)(k):

G ΨL(1)(G)

Z/(n) Ãn−1

Qn D̃n+2

T Ẽ6

O Ẽ7

I Ẽ8.

The left-hand column gives the isomorphism types of the finite groups. Here
Qn denotes the quaternion group of order 4n, and T , O, and I refer to the
binary tetrahedral group (of order 24), the binary octahedral group (of order
48) and the binary icosahedral group (of order 120), respectively. The quivers
corresponding to the graphs in the right-hand column are obtained by replacing
each bond by •⇆ •.

The above list will be sufficient for our simplified context. In general, one
needs to deal with linearly reductive group schemes G ⊆ SL(2).

Thus, modulo our simplifications, we know the groups that can occur, i.e., we
understand the Hopf algebra structure. Moreover, the affine quivers describing
the tame hereditary algebras also appear. How can we get the Ext-quiver of Λ?
The first step consists of finding the simple modules.
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Lemma 1. Let N E G be a normal subgroup. Suppose that L1, . . . , Ln are
simple G-modules such that {L1|N , . . . , Ln|N } is a complete set of representa-
tives for the simple N -modules.

(1) Every simple G-module S is of the form

S ∼= Li⊗kM

for a unique i ∈ { 1, . . . , n } and a unique simple G/N -module M .

(2) Suppose that Ext1N (V, V ) = (0) for every simple N -module V . If M , N
are simple G/N -modules, then

Ext1G(Li⊗kM,Lj⊗kN) ∼=
{

(0) i = j

HomG/N (M,Ext1N (Li, Lj)⊗kN) i 6= j.

If G/N is linearly reductive, then the dimension of our Ext-group describes
the multiplicity of M in the G/N -module Ext1N (Li, Lj)⊗kN . We thus obtain a
connection between the Ext-quiver of kG and the McKay quiver of G/N relative
to Ext1N (Li, Lj).

The technical conditions of the Lemma may seem somewhat contrived, but
they do hold in classical contexts such as ours: There exist simple Λ-modules
L(0), . . . , L(p− 1), whose restrictions to U0(sl(2)) give all simple U0(sl(2))-
modules. Moreover, there are isomorphisms of G-modules

Ext1sl(2)(L(i), L(j)) ∼=
{

(0) i+j 6= p−2

L(1) otherwise.

The Lemma now shows that the Ext-graph of Λ consists of the extended Dynkin
diagrams that appear in the classification of the tame hereditary algebras.

Group algebras, or Hopf algebras in general, are self-injective and thus are
hereditary only in case they are semi-simple (no arrows). The passage from
hereditary algebras to self-injective algebras is given by the notion of trivial
extension.

Given an algebra Λ, the trivial extension of Λ is the semidirect product
T (Λ) := Λ ⋉ Λ∗ of Λ with its bimodule Λ∗:

(a, f) · (b, g) := (ab, a.g + f.b) ∀ a, b ∈ Λ, f, g ∈ Λ∗.

The algebra T (Λ) is symmetric, and one can often compute the quiver and the
relations of T (Λ). For instance, if ∆n = Ã2n−1 is the quiver without paths of
length 2, then T (k∆n) = kQ/I, where Q is given by
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and I ⊆ kQ is the ideal generated by

{βi+1αi − αi−1βi, αi+1αi, βiβi+1 | i ∈ Z/(2n) }.

Thus, the effect of passing to the trivial extension is the familiar doubling pro-
cess. For n = 1 we obtain the algebra of Example 5(2).

It turns out that the tame principal blocks of finite group schemes are alge-
bras of this type:

Theorem 8 ([7]). Let G be a finite group scheme of characteristic p ≥ 3
such that B0(G) tame.

(1) There exists a linearly reductive group scheme G̃ ⊆ SL(2) such that the
Ext-quiver of B0(G) is isomorphic to the McKay quiver ΨL(1)(G̃).

(2) The block B0(G) is Morita equivalent to a generalized trivial extension of
a tame hereditary algebra.

Let us return to our example and consider G = T(2n), the cyclic group
of order 2n contained in the standard maximal torus T ⊆ SL(2) of diagonal
matrices. In that case, G̃ is the reduced group with G̃(k) = T(2n), and our
Theorem says that

B0(Λ) ∼M T (kÃ2n−1)

is Morita equivalent to the trivial extension, which we have considered above.
The other binary polyhedral groups give rise to the trivial extensions of the
corresponding affine quivers.

4 Small quantum groups

Let g be a finite-dimensional complex semi-simple Lie algebra. Given a
complex number ζ ∈ Cr{0}, Drinfeld and Jimbo defined the quantum group
Uζ(g) of g. Roughly speaking, this Hopf algebra is a deformation of the ordinary
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enveloping algebra U(g). Technically, it is defined via a Chevalley basis of
g and the so-called quantum Serre relations. If ζ is not a root of unity, all
finite-dimensional Uζ(g)-modules are completely reducible. Alternatively, its
representation theory resembles that of Lie algebras in positive characteristic.
Lusztig defined a finite-dimensional Hopf subalgebra uζ(g) of Uζ(g), which can
be thought of as an analogue of the restricted enveloping algebra of a restricted
Lie algebra. If ζ is a primitive ℓ-th root of unity, then dimk uζ(g) = ℓdimk g. To
cut down on subtle technicalities, we shall henceforth assume that 6 ∤ℓ.

In order to develop a theory of supports for uζ(g), one needs an analogue of
the Friedlander-Suslin Theorem. Since there are other cases of Hopf algebras,
where such a result is available, it is expedient to formulate the relevant prop-
erties in broader context. A rather detailed summary of the current state of the
art can be found in [19].

We consider a (finite-dimensional) Hopf algebra Λ over a algebraically closed
field k (of arbitrary characteristic). It is well-known that the cohomology ring
H∗(Λ, k) is graded commutative, so that the even cohomology ring H•(Λ, k) is
a commutative k-algebra.

Definition 8. Let Λ be a Hopf algebra. We say that Λ is an fg-Hopf algebra,
provided

(a) the algebra H•(Λ, k) is finitely generated, and

(b) for every M ∈ mod Λ, the algebra homomorphism ΦM : H•(Λ, k) −→
Ext∗Λ(M,M) is finite.

In this case, Maxspec(H•(Λ, k)) carries the structure of an affine variety and
one defines the support variety

VΛ(M) := Z(ker ΦM )

for every M ∈ modΛ. One can show that M 7→ VΛ(M) enjoys properties
analogous to those known for finite group schemes. In particular, Feldvoss and
Witherspoon [10] have generalized Theorem 5 to the present context. Using
these techniques one obtains the following result:

Theorem 9 ([20]). Let g be simple and suppose that ℓ is good for the root
system of g. If B ⊆ uζ(g) is a block, then the following statements hold:

(1) B is representation-finite if and only and if B is the simple block belonging
to the Steinberg module.

(2) If B has tame representation type, then g ∼= sl(2) and B is Morita equiva-
lent to T (k(•⇉ •)).
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The representation theory of the trivial extension of the Kronecker quiver
•⇉ • is completely understood.

Support spaces and Dynkin diagrams also appear in the context of Auslander-
Reiten theory. Given a self-injective Λ, one defines a quiver Γs(Λ), which is an
important invariant of its Morita equivalence class. The vertices of the so-called
stable Auslander-Reiten quiver are the isoclasses of the non-projective inde-
composable Λ-modules. Arrows are given by irreducible morphisms. Roughly,
speaking such a non-isomorphism does not factor non-trivially through any in-
decomposable Λ-module. A third ingredient is the Auslander-Reiten translation
τ : Γs(Λ) −→ Γs(Λ), which reflects homological properties. A fundamental re-
sult by Riedtmann states that the isomorphism class of a connected component
Θ ⊆ Γs(Λ) is essentially determined by an undirected tree TΘ, the tree class of
Θ. For fg-Hopf algebras, the possible tree classes are finite Dynkin diagrams,
Euclidean diagrams or infinite Dynkin diagrams of type A∞, D∞, A∞∞. In con-
crete cases, support varieties can be used to decide, which tree class a given
component has.

Recall that uζ(g) ⊆ Uζ(g) is a Hopf subalgebra. We let h denote the Coxeter
number of g.

Theorem 10 ([21]). Let ℓ ≥ h. Suppose that Θ ⊆ Γs(uζ(g)) is a component
containing the restriction of a Uζ(g)-module. If g 6= sl(2) is simple, then TΘ =
A∞.

Proof. Given M,N ∈ Θ one can show that Vuζ(g)(M) = Vuζ(g)(N), so that we
have the support variety Vuζ(g)(Θ). This variety corresponds to a Zariski closed
subspace XΘ of the nilpotent cone N ⊆ g. Since Θ contains the restriction of a
Uζ(g)-module, XΘ is invariant under the adjoint action of the algebraic group G
of g. As g 6= sl(2), a little more structure theory implies that dimVuζ(g)(Θ) ≥ 3.
Such components are known to have tree class A∞. QED

Using this result, one can for instance locate the simple uζ(g)-modules within
the AR-quiver and show that they have precisely one predecessor. This in turn
yields information concerning the structure of certain subfactors of principal
indecomposable uζ(g)-modules.
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