On a canonical immersion of the A-jet manifolds into a Grassmann bundle

Ricardo J. Alonso-Blanco^{*}

Departamento de Matemáticas, Universidad de Salamanca Plaza de la Merced 1-4, 37008 Salamanca, Spain ricardo@gugu.usal.es

Received: 19 March 2001; accepted: 19 March 2001.

Abstract. For a given smooth manifold M we will consider the ideals I of $\mathcal{C}^{\infty}(M)$ such that \mathcal{C}^{∞}/I is a Weil algebra of order k; the set of these ideals is the disjoint union of several A-jets manifolds; by fixing dim \mathcal{C}^{∞}/I we will immerse the above mentioned set into a Grassmann bundle of the k-th cotangent bundle of M, explicitly showing the equations of such an immersion. Finally, in a particular case, we will see how the aforesaid A-jets manifolds are placed.

Keywords: Jet, contact element, Weil bundle, Grassmann bundle.

MSC 2000 classification: 58A20

Introduction

The theory of Weil bundles [5], describes in an elegant and powerful way an ample class of objects of the global analysis and differential geometry, comprised such ones as the bundles of (m, r)-velocities and iterated tangent bundles (see [3, 4]); moreover, that notion recovers the old and useful idea of S. Lie of considering not only the points of a manifold themselves but also infinitesimal manifolds or 'valued points'.

On the other hand, given a Weil bundle M^A , where A is a Weil algebra, was proved in [1] that, roughly speaking, the quotient under the action of the group Aut A is a manifold $J^A M$ which consists of the kernels of the corresponding A-points (see below); when A is the algebra of polynomials of order $\leq k$ in m undetermined, \mathbb{R}_m^k , we obtain the well-known (m, k)-jet spaces of M which constitute a decisive tool when studying partial differential equations (see, for example, [3, 4] and references therein).

One can easily deduce the interest of knowing the properties of the bundles $J^A M$; in [2] some affine properties are obtained; in [1] was deduced the tangent structure and also an immersion of $J^A M$ into certain Grasmann bundle.

^{*}Partially founded by Junta de Castilla y León under contract SA30/00B

Here, we are concerned with a different aspect. First, being the elements of each $J^A M$ ideals of the ring $\mathcal{C}^{\infty}(M)$ we will study here the spaces of ideals (of a suitable type), obtaining the equations defining this space into the aforementioned Grasmann bundle. Second, we will study in a particular case how the several manifolds $J^A M$ are distributed into each one of those spaces of ideals.

1 Preliminaries

A Weil algebra, A, is a finite dimensional local rational \mathbb{R} -algebra; let us denote by \mathfrak{m}_A its maximal ideal, $m = \dim \mathfrak{m}_A/\mathfrak{m}_A^2$, and k the integer such that $\mathfrak{m}_A^{k+1} = 0$, $\mathfrak{m}_A^k \neq 0$; we will call k the order of A.

Remark 1. If the classes of $f_1, \ldots, f_m \in \mathfrak{m}_A$ generate $\mathfrak{m}_A/\mathfrak{m}_A^2$, then any element of A can be obtained as a polynomial in the f_i , that is, $A = \mathbb{R}[f_1, \ldots, f_m]$.

Examples of Weil algebras are \mathbb{R} , $\mathbb{R}[\varepsilon]/\varepsilon^2$ or, more in general, $\mathbb{R}_m^k \stackrel{def}{=} \mathbb{R}[\varepsilon_1,\ldots,\varepsilon_m]/(\varepsilon_1,\ldots,\varepsilon_m)^{k+1}$ and the tensor products $\mathbb{R}_{m_1}^{k_1}\otimes\cdots\otimes\mathbb{R}_{m_r}^{k_r}$.

Let us fix a n-dimensional smooth manifold M.

Definition 1. The set M^A of the \mathbb{R} -algebra morphisms

$$p^A: \mathcal{C}^\infty(M) \to A$$

is the so-called space of A-points of M associated to A; we have a map $M^A \xrightarrow{\pi} M$ which sends p^A to the point $p \in M$ corresponding to the composition $\mathcal{C}^{\infty}(M) \xrightarrow{p^A} A \to A/\mathfrak{m}_A = \mathbb{R}$. In fact, M^A can be endowed with a smooth structure such that π becomes a fiber bundle which is known as the Weil bundle on M associated to A. We will say that a A-point p^A is regular if it is surjective; the set of regular A-points \check{M}^A is a dense open set of M^A (see [3, 4]).

Examples of Weil bundles are the very $M = M^{\mathbb{R}}$, the tangent bundle $TM = M^{\mathbb{R}_1^1}$, the iterated tangent bundles $TT \cdot \cdot \cdot TM = M^{\mathbb{R}_1^1 \otimes \cdots \otimes \mathbb{R}_1^1}$, the frame bundle $\mathcal{R}(M) = \check{M}^{\mathbb{R}_n^1}$, etc.

Definition 2. The kernel of a regular A-point p^A will be called the jet of p^A and we will denote it by $\mathfrak{p}^A = \operatorname{Ker}(p^A)$. The set $J^A M$ comprised by the jets of regular A-points will be called space of A-jets of M.

Proposition 1. The set $J^A M$ can be endowed with an smooth manifold structure in such a way that the map Ker : $\check{M}^A \to J^A M$ becomes a principal fiber bundle with structural group Aut A.

Proof. See [1]

QED

Let \mathfrak{p}^A be the jet of p^A , which projects onto $p \in M$; in particular, \mathfrak{p}^A is an ideal of the ring $\mathcal{C}^{\infty}(M)$ containing \mathfrak{m}_p^{k+1} , where \mathfrak{m}_p is the maximal ideal of the functions vanishing at p and k is the order of A. Therefore we have $\mathfrak{m}_p^{k+1} \subseteq \mathfrak{p}^A \subseteq \mathfrak{m}_p$.

Definition 3. An ideal $I \subset \mathcal{C}^{\infty}(M)$ such that $\mathfrak{m}_p^{k+1} \subseteq I \subseteq \mathfrak{m}_p, \mathfrak{m}_p^k \subsetneq I$, for a point $p \in M$, will be called a Weil ideal of order k at $p \in M$.

Observe that a Weil ideal of order k defines a Weil algebra of order k, $\mathcal{C}^{\infty}(M)/I$; also observe that such a I is completely determined by its class modulo \mathfrak{m}_p^{k+1} .

Let us denote $d(I) \stackrel{def}{=} \dim I/\mathfrak{m}_p^{k+1}$; the set of Weil ideals of order $\leq k$ at a point p with fixed d = d(I) will be denoted by $I_{d,p}^k$; the same way we put $I_d^k = \prod_{p \in M} I_{d,p}^k$.

Each ideal $I \in I_{d,p}^k$ can be identified with a *d*-dimensional subspace of $\mathfrak{m}_p/\mathfrak{m}_p^{k+1}$; that is, $I_{d,p}^k$ is a subset of the Grassmann manifold $Gr(d,\mathfrak{m}_p/\mathfrak{m}_p^{k+1})$. More in general, we have a natural inclusion

$$I_d^k \subseteq Gr(d, T^{*,k}M) \tag{1}$$

where $T^{*,k}M$ is the k-th cotangent fiber bundle of M (the fiber of $T^{*,k}M$ at $p \in M$ is $T_p^{*,k}M = \mathfrak{m}_p/\mathfrak{m}_p^{k+1}$).

In Section 2 we will obtain the equations of that inclusions.

On the other hand, let \mathcal{A} be the set of non isomorphic Weil algebras A such that there exists at least a Weil ideal I with $A \simeq \mathcal{C}^{\infty}(M)/I$; then,

$$I_d^k = \underset{A \in \mathcal{A}}{\amalg} J^A M \tag{2}$$

How do the jet manifolds $J^A M$ are distributed into I_d^k , and hence, into $Gr(d, \mathfrak{m}_p/\mathfrak{m}_p^{k+1})$? In Section 3 we will completely solve this problem in a particular situation: dim M = d = k = 2; we hope the results of this example can give same light about the general situation.

2 The equations of the space of Weil ideals

Let V be a K-vector space, $E \subset V$ a d-dimensional vector subspace and φ an endomorphism of V. Later we will need to obtain the conditions for $\varphi(E) \subseteq E$.

Let $\omega_E \in \bigwedge^d V$ be a representative element of E; that is, if $\{e_1, \ldots, e_d\}$ is a basis of E we take the exterior product $\omega_E = e_1 \wedge \cdots \wedge e_d$. Let us consider the \mathbb{K} -derivation

$$D_{\varphi} \colon \bigwedge^{d} V \to \bigwedge^{d} V \tag{3}$$

induced by φ ; in other words, if $\sigma = v_1 \wedge \cdots \wedge v_d \in \bigwedge^d V$ then

$$D_{\varphi}(\sigma) \stackrel{def}{=} \sum_{i} v_1 \wedge \dots \wedge v_{i-1} \wedge \varphi(v_i) \wedge v_{i+1} \wedge \dots \wedge v_d$$

Proposition 2. A vector subspace E of V is stable by an endomorphism φ (i.e. $\varphi(E) \subseteq E$) if and only if there is an scalar λ such that

$$D_{\varphi}\omega_E = \lambda\omega_E \tag{4}$$

for a representative element $\omega_E \in \bigwedge^d V$ of E. In such a case, λ is the trace of φ when restricted to E.

PROOF. If $\varphi(E) \subseteq E$ then trivially $D_{\varphi}\omega_E = \lambda\omega_E$. For the converse let us suppose that $D_{\varphi}\omega_E = \lambda\omega_E$, where $\omega_E = e_1 \wedge \cdots \wedge e_d$ for a given basis $\mathcal{B} = \{e_1, \ldots, e_d\}$ of E. If, for example, $\varphi(e_1) = v \notin E$, we have,

$$D_{\varphi}(\omega_E) = v \wedge e_2 \wedge \dots \wedge e_d + e_1 \wedge \sum_{j \ge 2} (e_2 \wedge \dots \wedge e_{j-1} \wedge \varphi(e_j) \wedge e_{j+1} \wedge \dots \wedge e_d)$$

then, $e_1 \wedge D_{\varphi}(\omega_E) \neq 0$ but $e_1 \wedge \omega_E = 0$. We deduce that $D_{\varphi}(\omega_E)$ cannot be proportional to ω_E .

Now we will apply the result above to the following problem: when does a vector subspace \overline{E} , with $\mathfrak{m}_p^{k+1} \subseteq \overline{E} \subseteq \mathfrak{m}_p$, is an ideal?

Lemma 1. Let (x_1, \ldots, x_n) be local coordinates around $p \in M$ and \overline{E} a vector subspace with $\mathfrak{m}_p^{k+1} \subseteq \overline{E} \subseteq \mathfrak{m}_p$; then, \overline{E} is an ideal of $\mathcal{C}^{\infty}(M)$ if and only if

 $(x_i - x_i(p)) \cdot \overline{E} \subset \overline{E}, \qquad i = 1, \dots, n$

PROOF. Let us suppose the condition $(x_i - x_i(p)) \cdot \overline{E} \subset \overline{E}$, i = 1, ..., n, is satisfied. Each function $f(x) \in \mathcal{C}^{\infty}(M)$ can be written as $f(x) = P(x) + \overline{f}(x)$, where P(x) is a polynomial in the $(x_i - x_i(p))$, and $\overline{f} \in \mathfrak{m}_p^{k+1}$; obviously $\overline{f} \cdot \overline{E} \subset \mathfrak{m}_p^{k+1} \subset \overline{E}$ and, by hypothesis, $P(x) \cdot \overline{E} \subset \overline{E}$; then \overline{E} is an ideal. The converse is trivial. QED

Proposition 3. Let \overline{E} be as above, $E \stackrel{def}{=} \overline{E}/\mathfrak{m}_p^{k+1} \subset \mathfrak{m}_p/\mathfrak{m}_p^{k+1}$ and denote by $\varphi_i \colon \mathfrak{m}_p/\mathfrak{m}_p^{k+1} \to \mathfrak{m}_p/\mathfrak{m}_p^{k+1}$ the endomorphisms defined as $\varphi_i[f] = [(x_i - x_i(p)) \cdot f]$, $i = 1, \ldots, n$, where $f \in \mathfrak{m}_p$ and [] means the class $\operatorname{mod} \mathfrak{m}_p^{k+1}$. Then, \overline{E} is an ideal if and only if

$$D_{\varphi_i}\omega_E = 0, \qquad i = 1, \dots, n.$$
(5)

PROOF. By Lemma 1, \overline{E} is an ideal if and only if E is stable by the φ_i . According to Proposition 2, that is equivalent to $D_{\varphi_i}\omega_E = \lambda_i\omega_E$; in this case, each $\lambda_i \in \mathbb{R}$ is the trace of φ_i when restricted to E. But, obviously, the endomorphisms φ_i are nilpotent and hence they have no trace.

We will use the above characterization to getting the equations of the subspace $I_{d,p}^k$ comprised by the points of $Gr(d, \mathfrak{m}_p/\mathfrak{m}_p^{k+1})$ that represent Weil ideals.

Let us fix a local chart $\{\mathcal{U}, (x_1, \ldots, x_n)\}, p \in \mathcal{U}, \text{ and denote } \overline{x}_i = x_i - x_i(p).$ Let us take the products $\overline{x}^{\alpha} \stackrel{def}{=} \overline{x}_1^{a_1} \cdots \overline{x}_n^{a_n}, \alpha = (a_1, \ldots, a_n) \in \mathbb{N}^n, |\alpha| = a_1 + \cdots + a_n \leq k$. The classes $[\overline{x}^{\alpha}] \equiv \overline{x}^{\alpha} \mod \mathfrak{m}_p^{k+1}$ define a basis of the vector space $V \stackrel{def}{=} \mathfrak{m}_p/\mathfrak{m}_n^{k+1}.$

Now we order the indexes α according to the lexicographic rule: let $\alpha = (a_1, \ldots, a_n), \beta = (b_1, \ldots, b_n)$; then we say that $\alpha < \beta$ if and only if $|\alpha| < |\beta|$ or $|\alpha| = |\beta|$ and $a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i > b_i$, for some *i*. For example, if n = 2, we have $(1, 0) < (0, 1) < (2, 0) < (1, 1) < (0, 2) < \cdots$.

For any ordered multi-index $H = (\alpha_1, \ldots, \alpha_n)$ (i.e., $\alpha_1 < \alpha_2 < \cdots$), we form the *d*-vector

$$e_H \stackrel{def}{=} [\overline{x}^{\alpha_1}] \wedge \dots \wedge [\overline{x}^{\alpha_n}] \in \bigwedge^d V; \tag{6}$$

The collection $\{e_H\}$ provides a basis of $\bigwedge^d V$. Thus, each point $P \in Gr(d, V)$ $\subseteq \mathbb{P}(\bigwedge^d V)$ (where $\mathbb{P}(\bigwedge^d V)$ is the projective space associated to $\bigwedge^d V$) is represented in the following way,

$$e_P = \sum_H \lambda_{H,p} e_H \in \bigwedge^d V; \tag{7}$$

where the coefficients $\lambda_{H,p} \in \mathbb{R}$ are the homogeneous coordinates of $P \in \mathbb{P}(\bigwedge^d V)$ and verify the Plücker relations.

Let us express the equations of Proposition 3 in terms of the coordinates $\lambda_{H,p}$. Recall that $\varphi_i[f] = [\overline{x}_i f]$; in particular, $\varphi_i[\overline{x}^{\alpha}] = [\overline{x}_1^{\alpha_1} \cdots \overline{x}_i^{\alpha_i+1} \cdots \overline{x}_n^{\alpha_n}] = [\overline{x}^{\alpha+\epsilon_i}]$, where $\epsilon_i = (0, \ldots, 1^i, \ldots, 0)$. Therefore,

$$D_{\varphi_i} e_H = \sum_j [\overline{x}^{\alpha_1}] \wedge \dots \wedge [\overline{x}^{\alpha_i+1}] \wedge \dots \wedge [\overline{x}^{\alpha_d}].$$
(8)

If we denote by $H + \epsilon_i^j$ the ordered multi-index obtained from $(\alpha_1, \ldots, \alpha_j + \epsilon_i, \ldots, \alpha_d)$ by means of a suitable number $\sigma(H, \epsilon_i^j)$ of permutations, we get

$$D_{\varphi_i} e_H = \sum_j (-1)^{\sigma(H,\epsilon_i^j)} e_{H+\epsilon_i^j}$$

Finally, the equations determining $I_{d,p}^k$ into $Gr(d, \mathfrak{m}_p/\mathfrak{m}_p^{k+1})$ are

$$\sum_{H+\epsilon_i^j=K} (-1)^{\sigma(H,\epsilon_i^j)} \lambda_{H,p} = 0, \quad |K| = d+1; \ i = 1, \dots, n.$$
(9)

From the local chart $\{\mathcal{U}, (x_1, \ldots, x_n)\}; \mathcal{U} \subseteq M$, we define homogeneous fiber coordinates $\{\lambda_H\}$ on the bundle $\mathbb{P}(\bigwedge^d T^{*,k}M) = \bigcup_{p \in M} \mathbb{P}(\bigwedge^d \mathfrak{m}_p/\mathfrak{m}_p^{k+1}) \to M$, by the rule

$$\lambda_H(P) = \lambda_{H,p}(P)$$

where P projects onto $p \in \mathcal{U} \subseteq M$ and $\lambda_{H,p}$ is defined by (7).

Proposition 4. With the above notation, the local equations of the space of ideals I_d^k into $Gr(d, T^{*,k}M) \subseteq \mathbb{P}(\bigwedge^d T^{*,k}M)$, are

$$\sum_{H+\epsilon_i^j=K} (-1)^{\sigma(H,\epsilon_i^j)} \lambda_H = 0, \quad |K| = d+1; \ i = 1, \dots, n.$$

3 The structure of $I_2^2 M$, dim M = 2.

In that follows we will fix a 2-dimensional manifold M.

Consider a local chart $\{\mathcal{U}, (x = x_1, y = x_2)\}$. For each $p \in \mathcal{U}$ we obtain a basis $\{e_1, e_2, e_3, e_4, e_5\}$ of $\mathfrak{m}_p/\mathfrak{m}_p^3$ defined as follows: $e_1 = [\overline{x}], e_2 = [\overline{y}], e_3 = [\overline{x}^2], e_4 = [\overline{xy}], e_5 = [\overline{y}^2]$, where, $\overline{x} = x - x(p)$ and $\overline{y} = y - y(p)$ (in this case we have simplified the notation by removing multi-indexes).

From relations

$$\overline{x}e_1 = e_3 \quad \overline{x}e_2 = e_4 \quad \overline{x}e_3 = \overline{x}e_4 = \overline{x}e_5 = 0$$

$$\overline{y}e_1 = e_4 \quad \overline{y}e_2 = e_5 \quad \overline{y}e_3 = \overline{y}e_4 = \overline{y}e_5 = 0$$

we obtain

$$D_{\overline{x}}(e_{1} \wedge e_{2}) = -e_{2} \wedge e_{3} + e_{1} \wedge e_{4} \qquad D_{\overline{y}}(e_{1} \wedge e_{2}) = -e_{2} \wedge e_{4} + e_{1} \wedge e_{5}$$

$$D_{\overline{x}}(e_{1} \wedge e_{3}) = 0 \qquad D_{\overline{y}}(e_{1} \wedge e_{3}) = -e_{3} \wedge e_{4}$$

$$D_{\overline{x}}(e_{1} \wedge e_{4}) = e_{3} \wedge e_{4} \qquad D_{\overline{y}}(e_{1} \wedge e_{4}) = 0$$

$$D_{\overline{x}}(e_{1} \wedge e_{5}) = e_{1} \wedge e_{5} \qquad D_{\overline{y}}(e_{1} \wedge e_{5}) = 0$$

$$D_{\overline{x}}(e_{2} \wedge e_{3}) = -e_{3} \wedge e_{4} \qquad D_{\overline{y}}(e_{2} \wedge e_{3}) = -e_{3} \wedge e_{5}$$

$$D_{\overline{x}}(e_{2} \wedge e_{4}) = 0 \qquad D_{\overline{y}}(e_{2} \wedge e_{4}) = -e_{4} \wedge e_{5}$$

$$D_{\overline{x}}(e_{2} \wedge e_{5}) = e_{4} \wedge e_{5} \qquad D_{\overline{y}}(e_{2} \wedge e_{5}) = 0$$

$$D_{\overline{x}}(e_{i} \wedge e_{j}) = 0, \ i, j \geq 3 \qquad D_{\overline{y}}(e_{i} \wedge e_{j}) = 0, \ i, j \geq 3$$

$$(10)$$

120

where $D_{\overline{x}} = D_{\varphi_1}$ and $D_{\overline{y}} = D_{\varphi_2}$ (see the notation in Proposition 3).

Let $P\in Gr(d,T^{*,k}M)$ which projects to $p\in M$ and is represented by the 2-vector

$$e_P = \sum_{1 \le i < j \le 5} \lambda_{ij} e_i \wedge e_j$$

By applying (10) we see that the equations of Proposition 3 are, in this case,

$$\begin{split} 0 &= D_{\overline{x}}e_P = -\lambda_{12}e_2 \wedge e_3 + \lambda_{12}e_1 \wedge e_5 + \lambda_{14}e_3 \wedge e_4 \\ &+ \lambda_{15}e_3 \wedge e_5 - \lambda_{23}e_3 \wedge e_4 + \lambda_{25}e_4 \wedge e_5 \\ 0 &= D_{\overline{y}}e_P = -\lambda_{12}e_2 \wedge e_4 + \lambda_{12}e_1 \wedge e_5 - \lambda_{13}e_3 \wedge e_4 \\ &+ \lambda_{15}e_4 \wedge e_5 - \lambda_{23}e_3 \wedge e_5 - \lambda_{24}e_4 \wedge e_5 \end{split}$$

From which we get: $\lambda_{12} = \lambda_{13} = \lambda_{14} = \lambda_{15} = \lambda_{23} = \lambda_{24} = \lambda_{25} = 0$ and so

$$e_P = \lambda_{34}e_3 \wedge e_4 + \lambda_{35}e_3 \wedge e_5 + \lambda_{45}e_4 \wedge e_5; \tag{11}$$

in particular, the Plücker relations are automatically satisfied by such a e_P (because $e_P \in \bigwedge^2 \langle e_3, e_4, e_5 \rangle$).

For simplicity, let us denote

$$a = \lambda_{34}, \qquad b = \lambda_{35}, \qquad c = \lambda_{45}; \tag{12}$$

this way, the vector subspace (and also ideal, as we know) associated to e_P is

$$I_P = \{ c_3 e_3 + c_4 e_4 + c_5 e_5 / c c_3 - b c_4 + a c_5 = 0, \ c_i \in \mathbb{R} \} \subset \mathfrak{m}_p$$
(13)

Now, we want to describe the possible structures of the Weil algebra $A = \mathcal{C}^{\infty}(M)/I_P \simeq \mathbb{R}[\overline{x},\overline{y}]/I_P$. If \mathfrak{m}_A denotes the maximal ideal of A, we have $\mathfrak{m}_A^3 = 0$ and dim $A = \dim(\mathbb{R}[\overline{x},\overline{y}]/\mathfrak{m}_p^3) - \dim(I_A/\mathfrak{m}_p^3) = 6 - 2 = 4$. Besides, dim $(\mathfrak{m}_A/\mathfrak{m}_A^2) = 2$; in fact, that dimension must be lower or equal than 2, if dim $(\mathfrak{m}_A/\mathfrak{m}_A^2) = 1$, then there exist an $f \in \mathfrak{m}_A$ such that $A = \mathbb{R}[f]$ and hence dim $A \leq 3$, which is contradictory.

Lemma 2. Let B be a Weil algebra of dimension 4 and $\dim(\mathfrak{m}_B/\mathfrak{m}_B^2) = 2$. Let us denote s the maximum number of linearly independent (modulo \mathfrak{m}_B^2) solutions of the equation $f^2 = 0$, $f \in \mathfrak{m}_B$. The following isomorphisms holds:

- (1) If s = 0, then $B \simeq \mathbb{R}[t, \tau]/(t^2 \tau^2, t\tau)$
- (2) If s = 1, then $B \simeq \mathbb{R}[t, \tau]/(t^2, t\tau, \mathfrak{m}^3)$
- (3) If s = 2, then $B \simeq \mathbb{R}[t, \tau]/(t^2, \tau^2)$

where t, τ are undetermined and \mathfrak{m} denotes the maximal ideal that they generate.

PROOF. Let $f, g \in \mathfrak{m}_B$ be such that their classes generate $\mathfrak{m}_B/\mathfrak{m}_B^2$; in particular, $B = \mathbb{R}[f, g]$.

Case 1) s = 0. If the functions f^2 , fg, g^2 generate (over \mathbb{R}) a vector subspace of dimension greater than one, then dim B > 5; so, two of them are proportional to the third one; subcase 1.1) there exist $\lambda, \mu \in \mathbb{R}$ such that $fg = \lambda f^2, g^2 = \mu f^2$; we deduce $f(g - \lambda f) = 0$; hence, we can suppose $\lambda = 0$; on the other hand, if $\mu \leq 0$ we have $0 = g^2 - \mu f^2 = (g - \sqrt{-\mu}f)^2$ and then $s \neq 0$; therefore $\mu > 0$ and we can take $\sqrt{\mu}f$ as a new f; that is, we can suppose that the relations are fg = 0 and $f^2 - g^2 = 0$; subcase 1.2) there exist $\lambda, \mu \in \mathbb{R}$ such that $f^2 = \lambda fg$, $g^2 = \mu fg$; necessarily, $\lambda, \mu \neq 0$ because s = 0; then have $fg = \frac{1}{\lambda}f^2, g^2 = \frac{\mu}{\lambda}f^2$ which correspond to 1.1; subcase 1.3) there exist $\lambda, \mu \in \mathbb{R}$ such that $fg = \lambda g^2$, $f^2 = \mu g^2$; changing the rules of f and g we are once again in the situation 1.1. Then, we can define the surjective morphism $\mathbb{R}[t, \tau]/(t^2 - \tau^2, t\tau) \to B = \mathbb{R}[f, g]$ sending $t \mapsto f, \tau \mapsto g$, taking into account the respective dimensions we deduce that this map is an isomorphism.

Case 2) s = 1. We can suppose that f is the unique independent solution of $f^2 = 0$. Because dim B = 4, vectors 1, f, g, g^2 , fg cannot be linearly independents; thus, there exist a non trivial relation

$$\lambda_1 g^2 + \lambda_2 f g + \lambda_3 f + \lambda_4 g + \lambda_5 1 = 0$$

first observe that $\lambda_5 = 0$ (if not, $1 \in \mathfrak{m}_B$); moreover $\lambda_3 f + \lambda_4 g \equiv 0 \mod \mathfrak{m}_B^2$, which is impossible if λ_3 , λ_4 are not identically vanishing; thus, the above relation reduces to $\lambda_1 g^2 + \lambda_2 f g = 0$; if $\lambda_1 \neq 0$ we can suppose $\lambda_1 = 1$ and then $g^2 + \lambda_2 f g = (g + \frac{\lambda_2}{2}f)^2 = 0$, which contradicts the assumption s = 1. As a consequence $\lambda_1 = 0$ and $\lambda_2 f g = 0$, where $\lambda_2 \neq 0$; that is, fg = 0. Now we define the surjective morphism $\mathbb{R}[t,\tau]/(t^2, t\tau, \mathfrak{m}^3) \to B = \mathbb{R}[f,g]$ sending $t \mapsto f$, $\tau \mapsto g$; by computing dimensions we conclude.

Case 3) s = 2. In this situation we can suppose that two independent solutions are f, g; that is, $f^2 = g^2 = 0$; we finish the proof as in the previous cases.

Let us denote the three Weil algebras appearing in Lemma 2 by B_s , s = 0, 1, 2. We will apply this result to classify the algebra $\mathcal{C}^{\infty}(M)/I_P$, depending of the parameters a, b, c. Recall that

$$I_P = \left\{ c_3 \overline{x}^2 + c_4 \overline{xy} + c_5 \overline{y}^2 / cc_3 - bc_4 + ac_5 = 0, \ c_i \in \mathbb{R} \right\}$$

If, for example, $b \neq 1$, I_P will be generated by vectors $\overline{x}^2 + \frac{c}{b}\overline{xy}$ and $\overline{y}^2 + \frac{a}{b}\overline{xy}$. Now we search for the number of solutions of $f^2 = 0$, with $f = \lambda[\overline{x}] + \mu[\overline{y}] \in \mathcal{C}^{\infty}(M)/I_P$ (here, symbol [] means the class mod I_P). Taking into account relations $\overline{x}^2 + \frac{c}{b}\overline{xy}$, $\overline{y}^2 + \frac{a}{b}\overline{xy} \equiv 0 \mod I_P$, we have $f^2 = \lambda^2[\overline{x}^2] + \lambda\mu[\overline{xy}] + \mu^2[\overline{y}^2] =$

 $-\frac{c}{b}\lambda^2[\overline{xy}] + 2\lambda\mu[\overline{xy}] - \frac{a}{b}\mu^2[\overline{xy}] = (-\frac{c}{b}\lambda^2 + 2\lambda\mu - \frac{a}{b}\mu^2)[\overline{xy}]; \text{ then } f^2 = 0 \text{ if and only if } c\lambda^2 - 2b\lambda\mu - a\mu^2 = 0.$

The number of independent solutions of the last equation is 0, 1 or 2 if $\triangle < 0$, $\triangle = 0$ or $\triangle > 0$, respectively, where $\triangle \stackrel{def}{=} b^2 - ac$. The same conclusion is easily obtained if we suppose instead $a \neq 0$ or $c \neq 0$.

Therefore, by applying Lemma 2 we have finally,

Theorem 1. If dim M = 2, then

$$I_2^2 M = J^{B_0} M \amalg J^{B_1} M \amalg J^{B_2} M \subset Gr(2, T^{*,2}M)$$

Moreover, with the above notation,

$$\begin{aligned} J^{B_0}M &= \left\{ \begin{array}{l} \lambda_{35}^2 - \lambda_{34}\lambda_{45} < 0; \ \lambda_{ij} = 0, i \leq 2 \end{array} \right\} \\ J^{B_1}M &= \left\{ \begin{array}{l} \lambda_{35}^2 - \lambda_{34}\lambda_{45} = 0; \ \lambda_{ij} = 0, i \leq 2 \end{array} \right\} \\ J^{B_2}M &= \left\{ \begin{array}{l} \lambda_{35}^2 - \lambda_{34}\lambda_{45} > 0; \ \lambda_{ij} = 0, i \leq 2 \end{array} \right\} \end{aligned}$$

Acknowledgements. I thank Prof. J. Muñoz–Díaz who proposed me this work. Also thanks to Prof. P. Sancho for very useful suggestions and to Prof. F. Pugliese for his warm hospitality when a part of this work was done.

References

- R. J. ALONSO-BLANCO: Jet manifold associated to a Weil bundle, Archivum Math. Brno, 36 (2000), 195–199.
- [2] I. KOLÁŘ: Affine structure on Weil bundles, Nagoya Math J. 158 (2000), 99–106.
- [3] I. KOLÁŘ, P. W. MICHOR, J. SLOVÁK: Natural Operations in Differential Geometry, Springer-Verlag, 1993.
- [4] J. MUÑOZ, J. MURIEL, J. RODRÍGUEZ: Weil bundles and jet spaces, to appear in Czech Math. J.
- [5] A. WEIL: Théorie des points proches sur les variétés différentiables, Colloque de C.N.R.S, Strasbourg 1953, 111–117.