On a canonical immersion of the A-jet manifolds into a Grassmann bundle

Ricardo J. Alonso-Blanco*
Departamento de Matemáticas, Universidad de Salamanca
Plaza de la Merced 1-4, 37008 Salamanca, Spain
ricardo@gugu.usal.es

Received: 19 March 2001; accepted: 19 March 2001.

Abstract

For a given smooth manifold M we will consider the ideals I of $\mathcal{C}^{\infty}(M)$ such that \mathcal{C}^{∞} / I is a Weil algebra of order k; the set of these ideals is the disjoint union of several A-jets manifolds; by fixing $\operatorname{dim} \mathcal{C}^{\infty} / I$ we will immerse the above mentioned set into a Grassmann bundle of the k-th cotangent bundle of M, explicitly showing the equations of such an immersion. Finally, in a particular case, we will see how the aforesaid A-jets manifolds are placed.

Keywords: Jet, contact element, Weil bundle, Grassmann bundle.
MSC 2000 classification: 58A20

Introduction

The theory of Weil bundles [5], describes in an elegant and powerful way an ample class of objects of the global analysis and differential geometry, comprised such ones as the bundles of (m, r)-velocities and iterated tangent bundles (see [3, $4]$); moreover, that notion recovers the old and useful idea of S. Lie of considering not only the points of a manifold themselves but also infinitesimal manifolds or 'valued points'.

On the other hand, given a Weil bundle M^{A}, where A is a Weil algebra, was proved in [1] that, roughly speaking, the quotient under the action of the group Aut A is a manifold $J^{A} M$ which consists of the kernels of the corresponding A-points (see below); when A is the algebra of polynomials of order $\leq k$ in m undetermined, \mathbb{R}_{m}^{k}, we obtain the well-known (m, k)-jet spaces of M which constitute a decisive tool when studying partial differential equations (see, for example, $[3,4]$ and references therein).

One can easily deduce the interest of knowing the properties of the bundles $J^{A} M$; in [2] some affine properties are obtained; in [1] was deduced the tangent structure and also an immersion of $J^{A} M$ into certain Grasmann bundle.

[^0]Here, we are concerned with a different aspect. First, being the elements of each $J^{A} M$ ideals of the ring $\mathcal{C}^{\infty}(M)$ we will study here the spaces of ideals (of a suitable type), obtaining the equations defining this space into the aforementioned Grasmann bundle. Second, we will study in a particular case how the several manifolds $J^{A} M$ are distributed into each one of those spaces of ideals.

1 Preliminaries

A Weil algebra, A, is a finite dimensional local rational \mathbb{R}-algebra; let us denote by \mathfrak{m}_{A} its maximal ideal, $m=\operatorname{dim} \mathfrak{m}_{A} / \mathfrak{m}_{A}^{2}$, and k the integer such that $\mathfrak{m}_{A}^{k+1}=0, \mathfrak{m}_{A}^{k} \neq 0$; we will call k the order of A.

Remark 1. If the classes of $f_{1}, \ldots, f_{m} \in \mathfrak{m}_{A}$ generate $\mathfrak{m}_{A} / \mathfrak{m}_{A}^{2}$, then any element of A can be obtained as a polynomial in the f_{i}, that is, $A=\mathbb{R}\left[f_{1}, \ldots, f_{m}\right]$.

Examples of Weil algebras are $\mathbb{R}, \mathbb{R}[\varepsilon] / \varepsilon^{2}$ or, more in general, $\mathbb{R}_{m}^{k} \stackrel{\text { def }}{=}$ $\mathbb{R}\left[\varepsilon_{1}, \ldots, \varepsilon_{m}\right] /\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)^{k+1}$ and the tensor products $\mathbb{R}_{m_{1}}^{k_{1}} \otimes \cdots \otimes \mathbb{R}_{m_{r}}^{k_{r}}$.

Let us fix a n-dimensional smooth manifold M.
Definition 1. The set M^{A} of the \mathbb{R}-algebra morphisms

$$
p^{A}: \mathcal{C}^{\infty}(M) \rightarrow A
$$

is the so-called space of A-points of M associated to A; we have a map $M^{A} \xrightarrow{\pi} M$ which sends p^{A} to the point $p \in M$ corresponding to the composition $\mathcal{C}^{\infty}(M) \xrightarrow{p^{A}}$ $A \rightarrow A / \mathfrak{m}_{A}=\mathbb{R}$. In fact, M^{A} can be endowed with a smooth structure such that π becomes a fiber bundle which is known as the Weil bundle on M associated to A. We will say that a A-point p^{A} is regular if it is surjective; the set of regular A-points \check{M}^{A} is a dense open set of M^{A} (see $[3,4]$).

Examples of Weil bundles are the very $M=M^{\mathbb{R}}$, the tangent bundle $T M=$ $M^{\mathbb{R}_{1}^{1}}$, the iterated tangent bundles $T T \stackrel{r}{r} \cdot T M=M^{\mathbb{R}_{1}^{1} \otimes \cdots \otimes \mathbb{R}_{1}^{1}}$, the frame bundle $\mathcal{R}(M)=\check{M}^{\mathbb{R}_{n}^{1}}$, etc.

Definition 2. The kernel of a regular A-point p^{A} will be called the jet of p^{A} and we will denote it by $\mathfrak{p}^{A}=\operatorname{Ker}\left(p^{A}\right)$. The set $J^{A} M$ comprised by the jets of regular A-points will be called space of A-jets of M.

Proposition 1. The set $J^{A} M$ can be endowed with an smooth manifold structure in such a way that the map Ker : $\check{M}^{A} \rightarrow J^{A} M$ becomes a principal fiber bundle with structural group Aut A.

Proof. See [1

Let \mathfrak{p}^{A} be the jet of p^{A}, which projects onto $p \in M$; in particular, \mathfrak{p}^{A} is an ideal of the ring $\mathcal{C}^{\infty}(M)$ containing \mathfrak{m}_{p}^{k+1}, where \mathfrak{m}_{p} is the maximal ideal of the functions vanishing at p and k is the order of A. Therefore we have $\mathfrak{m}_{p}^{k+1} \subseteq \mathfrak{p}^{A} \subseteq \mathfrak{m}_{p}$.

Definition 3. An ideal $I \subset \mathcal{C}^{\infty}(M)$ such that $\mathfrak{m}_{p}^{k+1} \subseteq I \subseteq \mathfrak{m}_{p}, \mathfrak{m}_{p}^{k} \nsubseteq I$, for a point $p \in M$, will be called a Weil ideal of order k at $p \in M$.

Observe that a Weil ideal of order k defines a Weil algebra of order k, $\mathcal{C}^{\infty}(M) / I$; also observe that such a I is completely determined by its class modulo \mathfrak{m}_{p}^{k+1}.

Let us denote $d(I) \stackrel{\text { def }}{=} \operatorname{dim} I / \mathfrak{m}_{p}^{k+1}$; the set of Weil ideals of order $\leq k$ at a point p with fixed $d=d(I)$ will be denoted by $I_{d, p}^{k}$; the same way we put $I_{d}^{k}=\underset{p \in M}{\coprod} I_{d, p}^{k}$.

Each ideal $I \in I_{d, p}^{k}$ can be identified with a d-dimensional subspace of $\mathfrak{m}_{p} / \mathfrak{m}_{p}^{k+1}$; that is, $I_{d, p}^{k}$ is a subset of the Grassmann manifold $\operatorname{Gr}\left(d, \mathfrak{m}_{p} / \mathfrak{m}_{p}^{k+1}\right)$. More in general, we have a natural inclusion

$$
\begin{equation*}
I_{d}^{k} \subseteq G r\left(d, T^{*, k} M\right) \tag{1}
\end{equation*}
$$

where $T^{*, k} M$ is the k-th cotangent fiber bundle of M (the fiber of $T^{*, k} M$ at $p \in M$ is $\left.T_{p}^{*, k} M=\mathfrak{m}_{p} / \mathfrak{m}_{p}^{k+1}\right)$.

In Section 2 we will obtain the equations of that inclusions.
On the other hand, let \mathcal{A} be the set of non isomorphic Weil algebras A such that there exists at least a Weil ideal I with $A \simeq \mathcal{C}^{\infty}(M) / I$; then,

$$
\begin{equation*}
I_{d}^{k}=\underset{A \in \mathcal{A}}{\amalg} J^{A} M \tag{2}
\end{equation*}
$$

How do the jet manifolds $J^{A} M$ are distributed into I_{d}^{k}, and hence, into $G r\left(d, \mathfrak{m}_{p} / \mathfrak{m}_{p}^{k+1}\right)$? In Section 3 we will completely solve this problem in a particular situation: $\operatorname{dim} M=d=k=2$; we hope the results of this example can give same light about the general situation.

2 The equations of the space of Weil ideals

Let V be a \mathbb{K}-vector space, $E \subset V$ a d-dimensional vector subspace and φ an endomorphism of V. Later we will need to obtain the conditions for $\varphi(E) \subseteq E$.

Let $\omega_{E} \in \bigwedge^{d} V$ be a representative element of E; that is, if $\left\{e_{1}, \ldots, e_{d}\right\}$ is a basis of E we take the exterior product $\omega_{E}=e_{1} \wedge \cdots \wedge e_{d}$. Let us consider the \mathbb{K}-derivation

$$
\begin{equation*}
D_{\varphi}: \bigwedge^{d} V \rightarrow \bigwedge^{d} V \tag{3}
\end{equation*}
$$

induced by φ; in other words, if $\sigma=v_{1} \wedge \cdots \wedge v_{d} \in \bigwedge^{d} V$ then

$$
D_{\varphi}(\sigma) \stackrel{\text { def }}{=} \sum_{i} v_{1} \wedge \cdots \wedge v_{i-1} \wedge \varphi\left(v_{i}\right) \wedge v_{i+1} \wedge \cdots \wedge v_{d}
$$

Proposition 2. A vector subspace E of V is stable by an endomorphism φ (i.e. $\varphi(E) \subseteq E$) if and only if there is an scalar λ such that

$$
\begin{equation*}
D_{\varphi} \omega_{E}=\lambda \omega_{E} \tag{4}
\end{equation*}
$$

for a representative element $\omega_{E} \in \bigwedge^{d} V$ of E. In such a case, λ is the trace of φ when restricted to E.

Proof. If $\varphi(E) \subseteq E$ then trivially $D_{\varphi} \omega_{E}=\lambda \omega_{E}$. For the converse let us suppose that $D_{\varphi} \omega_{E}=\lambda \omega_{E}$, where $\omega_{E}=e_{1} \wedge \cdots \wedge e_{d}$ for a given basis $\mathcal{B}=\left\{e_{1}, \ldots, e_{d}\right\}$ of E. If, for example, $\varphi\left(e_{1}\right)=v \notin E$, we have,
$D_{\varphi}\left(\omega_{E}\right)=v \wedge e_{2} \wedge \cdots \wedge e_{d}+e_{1} \wedge \sum_{j \geq 2}\left(e_{2} \wedge \cdots \wedge e_{j-1} \wedge \varphi\left(e_{j}\right) \wedge e_{j+1} \wedge \cdots \wedge e_{d}\right)$
then, $e_{1} \wedge D_{\varphi}\left(\omega_{E}\right) \neq 0$ but $e_{1} \wedge \omega_{E}=0$. We deduce that $D_{\varphi}\left(\omega_{E}\right)$ cannot be proportional to ω_{E}.

QED

Now we will apply the result above to the following problem: when does a vector subspace \bar{E}, with $\mathfrak{m}_{p}^{k+1} \subseteq \bar{E} \subseteq \mathfrak{m}_{p}$, is an ideal?

Lemma 1. Let $\left(x_{1}, \ldots, x_{n}\right)$ be local coordinates around $p \in M$ and $\bar{E} a$ vector subspace with $\mathfrak{m}_{p}^{k+1} \subseteq \bar{E} \subseteq \mathfrak{m}_{p}$; then, \bar{E} is an ideal of $\mathcal{C}^{\infty}(M)$ if and only if

$$
\left(x_{i}-x_{i}(p)\right) \cdot \bar{E} \subset \bar{E}, \quad i=1, \ldots, n
$$

Proof. Let us suppose the condition $\left(x_{i}-x_{i}(p)\right) \cdot \bar{E} \subset \bar{E}, \quad i=1, \ldots, n$, is satisfied. Each function $f(x) \in \mathcal{C}^{\infty}(M)$ can be written as $f(x)=P(x)+\bar{f}(x)$, where $P(x)$ is a polynomial in the $\left(x_{i}-x_{i}(p)\right)$, and $\bar{f} \in \mathfrak{m}_{p}^{k+1}$; obviously $\bar{f} \cdot \bar{E} \subset$ $\mathfrak{m}_{p}^{k+1} \subset \bar{E}$ and, by hypothesis, $P(x) \cdot \bar{E} \subset \bar{E}$; then \bar{E} is an ideal. The converse is trivial.

QED

Proposition 3. Let \bar{E} be as above, $E \stackrel{\text { def }}{=} \bar{E} / \mathfrak{m}_{p}^{k+1} \subset \mathfrak{m}_{p} / \mathfrak{m}_{p}^{k+1}$ and denote by $\varphi_{i}: \mathfrak{m}_{p} / \mathfrak{m}_{p}^{k+1} \rightarrow \mathfrak{m}_{p} / \mathfrak{m}_{p}^{k+1}$ the endomorphisms defined as $\varphi_{i}[f]=\left[\left(x_{i}-x_{i}(p)\right) \cdot f\right]$, $i=1, \ldots, n$, where $f \in \mathfrak{m}_{p}$ and [] means the class $\bmod \mathfrak{m}_{p}^{k+1}$. Then, \bar{E} is an ideal if and only if

$$
\begin{equation*}
D_{\varphi_{i}} \omega_{E}=0, \quad i=1, \ldots, n . \tag{5}
\end{equation*}
$$

Proof. By Lemma $1, \bar{E}$ is an ideal if and only if E is stable by the φ_{i}. According to Proposition 2, that is equivalent to $D_{\varphi_{i}} \omega_{E}=\lambda_{i} \omega_{E}$; in this case, each $\lambda_{i} \in \mathbb{R}$ is the trace of φ_{i} when restricted to E. But, obviously, the endomorphisms φ_{i} are nilpotent and hence they have no trace. $\overline{Q E D}$

We will use the above characterization to getting the equations of the subspace $I_{d, p}^{k}$ comprised by the points of $G r\left(d, \mathfrak{m}_{p} / \mathfrak{m}_{p}^{k+1}\right)$ that represent Weil ideals.

Let us fix a local chart $\left\{\mathcal{U},\left(x_{1}, \ldots, x_{n}\right)\right\}, p \in \mathcal{U}$, and denote $\bar{x}_{i}=x_{i}-x_{i}(p)$. Let us take the products $\bar{x}^{\alpha} \stackrel{\text { def }}{=} \bar{x}_{1}^{a_{1}} \ldots \bar{x}_{n}^{a_{n}}, \alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n},|\alpha|=a_{1}+$ $\cdots+a_{n} \leq k$. The classes $\left[\bar{x}^{\alpha}\right] \equiv \bar{x}^{\alpha} \bmod \mathfrak{m}_{p}^{k+1}$ define a basis of the vector space $V \stackrel{\text { def }}{=} \mathfrak{m}_{p} / \mathfrak{m}_{p}^{k+1}$.

Now we order the indexes α according to the lexicographic rule: let $\alpha=$ $\left(a_{1}, \ldots, a_{n}\right), \beta=\left(b_{1}, \ldots, b_{n}\right)$; then we say that $\alpha<\beta$ if and only if $|\alpha|<|\beta|$ or $|\alpha|=|\beta|$ and $a_{1}=b_{1}, \ldots a_{i-1}=b_{i-1}, a_{i}>b_{i}$, for some i. For example, if $n=2$, we have $(1,0)<(0,1)<(2,0)<(1,1)<(0,2)<\cdots$.

For any ordered multi-index $H=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ (i.e., $\alpha_{1}<\alpha_{2}<\cdots$), we form the d-vector

$$
\begin{equation*}
e_{H} \stackrel{\text { def }}{=}\left[\bar{x}^{\alpha_{1}}\right] \wedge \cdots \wedge\left[\bar{x}^{\alpha_{n}}\right] \in \bigwedge^{d} V \tag{6}
\end{equation*}
$$

The collection $\left\{e_{H}\right\}$ provides a basis of $\bigwedge^{d} V$. Thus, each point $P \in G r(d, V)$ $\subseteq \mathbb{P}\left(\bigwedge^{d} V\right)$ (where $\mathbb{P}\left(\bigwedge^{d} V\right)$ is the projective space associated to $\left.\bigwedge^{d} V\right)$ is represented in the following way,

$$
\begin{equation*}
e_{P}=\sum_{H} \lambda_{H, p} e_{H} \in \bigwedge^{d} V \tag{7}
\end{equation*}
$$

where the coefficients $\lambda_{H, p} \in \mathbb{R}$ are the homogeneous coordinates of $P \in \mathbb{P}\left(\bigwedge^{d} V\right)$ and verify the Plücker relations.

Let us express the equations of Proposition 3 in terms of the coordinates $\lambda_{H, p}$. Recall that $\varphi_{i}[f]=\left[\bar{x}_{i} f\right]$; in particular, $\varphi_{i}\left[\bar{x}^{\alpha}\right]=\left[\bar{x}_{1}^{\alpha_{1}} \cdots \bar{x}_{i}^{\alpha_{i}+1} \cdots \bar{x}_{n}^{\alpha_{n}}\right]=$ $\left[\bar{x}^{\alpha+\epsilon_{i}}\right]$, where $\epsilon_{i}=\left(0, \ldots, 1^{i}, \ldots, 0\right)$. Therefore,

$$
\begin{equation*}
D_{\varphi_{i}} e_{H}=\sum_{j}\left[\bar{x}^{\alpha_{1}}\right] \wedge \cdots \wedge\left[\bar{x}^{\alpha_{i}+1}\right] \wedge \cdots \wedge\left[\bar{x}^{\alpha_{d}}\right] . \tag{8}
\end{equation*}
$$

If we denote by $H+\epsilon_{i}^{j}$ the ordered multi-index obtained from $\left(\alpha_{1}, \ldots, \alpha_{j}+\right.$ $\left.\epsilon_{i}, \ldots, \alpha_{d}\right)$ by means of a suitable number $\sigma\left(H, \epsilon_{i}^{j}\right)$ of permutations, we get

$$
D_{\varphi_{i}} e_{H}=\sum_{j}(-1)^{\sigma\left(H, \epsilon_{i}^{j}\right)} e_{H+\epsilon_{i}^{j}} .
$$

Finally, the equations determining $I_{d, p}^{k}$ into $G r\left(d, \mathfrak{m}_{p} / \mathfrak{m}_{p}^{k+1}\right)$ are

$$
\begin{equation*}
\sum_{H+\epsilon_{i}^{j}=K}(-1)^{\sigma\left(H, \epsilon_{i}^{j}\right)} \lambda_{H, p}=0, \quad|K|=d+1 ; i=1, \ldots, n . \tag{9}
\end{equation*}
$$

From the local chart $\left\{\mathcal{U},\left(x_{1}, \ldots, x_{n}\right)\right\} ; \mathcal{U} \subseteq M$, we define homogeneous fiber coordinates $\left\{\lambda_{H}\right\}$ on the bundle $\mathbb{P}\left(\bigwedge^{d} T^{*, k} M\right)=\bigcup_{p \in M} \mathbb{P}\left(\bigwedge^{d} \mathfrak{m}_{p} / \mathfrak{m}_{p}^{k+1}\right) \rightarrow M$, by the rule

$$
\lambda_{H}(P)=\lambda_{H, p}(P)
$$

where P projects onto $p \in \mathcal{U} \subseteq M$ and $\lambda_{H, p}$ is defined by (7).
Proposition 4. With the above notation, the local equations of the space of ideals I_{d}^{k} into $G r\left(d, T^{*, k} M\right) \subseteq \mathbb{P}\left(\bigwedge^{d} T^{*, k} M\right)$, are

$$
\sum_{H+\epsilon_{i}^{j}=K}(-1)^{\sigma\left(H, \epsilon_{i}^{j}\right)} \lambda_{H}=0, \quad|K|=d+1 ; i=1, \ldots, n .
$$

3 The structure of $I_{2}^{2} M, \operatorname{dim} M=2$.

In that follows we will fix a 2 -dimensional manifold M.
Consider a local chart $\left\{\mathcal{U},\left(x=x_{1}, y=x_{2}\right)\right\}$. For each $p \in \mathcal{U}$ we obtain a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ of $\mathfrak{m}_{p} / \mathfrak{m}_{p}^{3}$ defined as follows: $e_{1}=[\bar{x}], e_{2}=[\bar{y}], e_{3}=\left[\bar{x}^{2}\right]$, $e_{4}=[\overline{x y}], e_{5}=\left[\bar{y}^{2}\right]$, where, $\bar{x}=x-x(p)$ and $\bar{y}=y-y(p)$ (in this case we have simplified the notation by removing multi-indexes).

From relations

$$
\begin{array}{lll}
\bar{x} e_{1}=e_{3} & \bar{x} e_{2}=e_{4} & \bar{x} e_{3}=\bar{x} e_{4}=\bar{x} e_{5}=0 \\
\bar{y} e_{1}=e_{4} & \bar{y} e_{2}=e_{5} & \bar{y} e_{3}=\bar{y} e_{4}=\bar{y} e_{5}=0
\end{array}
$$

we obtain

$$
\begin{array}{ll}
D_{\bar{x}}\left(e_{1} \wedge e_{2}\right)=-e_{2} \wedge e_{3}+e_{1} \wedge e_{4} & D_{\bar{y}}\left(e_{1} \wedge e_{2}\right)=-e_{2} \wedge e_{4}+e_{1} \wedge e_{5} \\
D_{\bar{x}}\left(e_{1} \wedge e_{3}\right)=0 & D_{\bar{y}}\left(e_{1} \wedge e_{3}\right)=-e_{3} \wedge e_{4} \\
D_{\bar{x}}\left(e_{1} \wedge e_{4}\right)=e_{3} \wedge e_{4} & D_{\bar{y}}\left(e_{1} \wedge e_{4}\right)=0 \\
D_{\bar{x}}\left(e_{1} \wedge e_{5}\right)=e_{1} \wedge e_{5} & D_{\bar{y}}\left(e_{1} \wedge e_{5}\right)=0 \tag{10}\\
D_{\bar{x}}\left(e_{2} \wedge e_{3}\right)=-e_{3} \wedge e_{4} & D_{\bar{y}}\left(e_{2} \wedge e_{3}\right)=-e_{3} \wedge e_{5} \\
D_{\bar{x}}\left(e_{2} \wedge e_{4}\right)=0 & D_{\bar{y}}\left(e_{2} \wedge e_{4}\right)=-e_{4} \wedge e_{5} \\
D_{\bar{x}}\left(e_{2} \wedge e_{5}\right)=e_{4} \wedge e_{5} & D_{\bar{y}}\left(e_{2} \wedge e_{5}\right)=0 \\
D_{\bar{x}}\left(e_{i} \wedge e_{j}\right)=0, i, j \geq 3 & D_{\bar{y}}\left(e_{i} \wedge e_{j}\right)=0, i, j \geq 3
\end{array}
$$

where $D_{\bar{x}}=D_{\varphi_{1}}$ and $D_{\bar{y}}=D_{\varphi_{2}}$ (see the notation in Proposition 3).
Let $P \in G r\left(d, T^{*, k} M\right)$ which projects to $p \in M$ and is represented by the 2 -vector

$$
e_{P}=\sum_{1 \leq i<j \leq 5} \lambda_{i j} e_{i} \wedge e_{j}
$$

By applying (10) we see that the equations of Proposition 3 are, in this case,

$$
\begin{aligned}
0=D_{\bar{x}} e_{P}=-\lambda_{12} e_{2} \wedge e_{3} & +\lambda_{12} e_{1} \\
& \wedge e_{5}+\lambda_{14} e_{3} \wedge e_{4} \\
& +\lambda_{15} e_{3} \wedge e_{5}-\lambda_{23} e_{3} \wedge e_{4}+\lambda_{25} e_{4} \wedge e_{5} \\
0=D_{\bar{y}} e_{P}=-\lambda_{12} e_{2} \wedge e_{4} & +\lambda_{12} e_{1} \wedge e_{5}-\lambda_{13} e_{3} \wedge e_{4} \\
& +\lambda_{15} e_{4} \wedge e_{5}-\lambda_{23} e_{3} \wedge e_{5}-\lambda_{24} e_{4} \wedge e_{5}
\end{aligned}
$$

From which we get: $\lambda_{12}=\lambda_{13}=\lambda_{14}=\lambda_{15}=\lambda_{23}=\lambda_{24}=\lambda_{25}=0$ and so

$$
\begin{equation*}
e_{P}=\lambda_{34} e_{3} \wedge e_{4}+\lambda_{35} e_{3} \wedge e_{5}+\lambda_{45} e_{4} \wedge e_{5} \tag{11}
\end{equation*}
$$

in particular, the Plücker relations are automatically satisfied by such a e_{P} (because $e_{P} \in \bigwedge^{2}\left\langle e_{3}, e_{4}, e_{5}\right\rangle$).

For simplicity, let us denote

$$
\begin{equation*}
a=\lambda_{34}, \quad b=\lambda_{35,} \quad c=\lambda_{45} \tag{12}
\end{equation*}
$$

this way, the vector subspace (and also ideal, as we know) associated to e_{P} is

$$
\begin{equation*}
I_{P}=\left\{c_{3} e_{3}+c_{4} e_{4}+c_{5} e_{5} / c c_{3}-b c_{4}+a c_{5}=0, c_{i} \in \mathbb{R}\right\} \subset \mathfrak{m}_{p} \tag{13}
\end{equation*}
$$

Now, we want to describe the possible structures of the Weil algebra $A=$ $\mathcal{C}^{\infty}(M) / I_{P} \simeq \mathbb{R}[\bar{x}, \bar{y}] / I_{P}$. If \mathfrak{m}_{A} denotes the maximal ideal of A, we have $\mathfrak{m}_{A}^{3}=0$ and $\operatorname{dim} A=\operatorname{dim}\left(\mathbb{R}[\bar{x}, \bar{y}] / \mathfrak{m}_{p}^{3}\right)-\operatorname{dim}\left(I_{A} / \mathfrak{m}_{p}^{3}\right)=6-2=4$. Besides, $\operatorname{dim}\left(\mathfrak{m}_{A} / \mathfrak{m}_{A}^{2}\right)=2$; in fact, that dimension must be lower or equal than 2 , if $\operatorname{dim}\left(\mathfrak{m}_{A} / \mathfrak{m}_{A}^{2}\right)=1$, then there exist an $f \in \mathfrak{m}_{A}$ such that $A=\mathbb{R}[f]$ and hence $\operatorname{dim} A \leq 3$, which is contradictory.

Lemma 2. Let B be a Weil algebra of dimension 4 and $\operatorname{dim}\left(\mathfrak{m}_{B} / \mathfrak{m}_{B}^{2}\right)=2$. Let us denote s the maximum number of linearly independent (modulo \mathfrak{m}_{B}^{2}) solutions of the equation $f^{2}=0, f \in \mathfrak{m}_{B}$. The following isomorphisms holds:
(1) If $s=0$, then $B \simeq \mathbb{R}[t, \tau] /\left(t^{2}-\tau^{2}, t \tau\right)$
(2) If $s=1$, then $B \simeq \mathbb{R}[t, \tau] /\left(t^{2}, t \tau, \mathfrak{m}^{3}\right)$
(3) If $s=2$, then $B \simeq \mathbb{R}[t, \tau] /\left(t^{2}, \tau^{2}\right)$
where t, τ are undetermined and \mathfrak{m} denotes the maximal ideal that they generate.
Proof. Let $f, g \in \mathfrak{m}_{B}$ be such that their classes generate $\mathfrak{m}_{B} / \mathfrak{m}_{B}^{2}$; in particular, $B=\mathbb{R}[f, g]$.

Case 1) $s=0$. If the functions $f^{2}, f g, g^{2}$ generate (over \mathbb{R}) a vector subspace of dimension greater than one, then $\operatorname{dim} B>5$; so, two of them are proportional to the third one; subcase 1.1) there exist $\lambda, \mu \in \mathbb{R}$ such that $f g=\lambda f^{2}, g^{2}=\mu f^{2}$; we deduce $f(g-\lambda f)=0$; hence, we can suppose $\lambda=0$; on the other hand, if $\mu \leq 0$ we have $0=g^{2}-\mu f^{2}=(g-\sqrt{-\mu} f)^{2}$ and then $s \neq 0$; therefore $\mu>0$ and we can take $\sqrt{\mu} f$ as a new f; that is, we can suppose that the relations are $f g=0$ and $f^{2}-g^{2}=0$; subcase 1.2) there exist $\lambda, \mu \in \mathbb{R}$ such that $f^{2}=\lambda f g$, $g^{2}=\mu f g$; necessarily, $\lambda, \mu \neq 0$ because $s=0$; then have $f g=\frac{1}{\lambda} f^{2}, g^{2}=\frac{\mu}{\lambda} f^{2}$ which correspond to 1.1 ; subcase 1.3) there exist $\lambda, \mu \in \mathbb{R}$ such that $f g=\lambda g^{2}$, $f^{2}=\mu g^{2}$; changing the rules of f and g we are once again in the situation 1.1. Then, we can define the surjective morphism $\mathbb{R}[t, \tau] /\left(t^{2}-\tau^{2}, t \tau\right) \rightarrow B=\mathbb{R}[f, g]$ sending $t \mapsto f, \tau \mapsto g$, taking into account the respective dimensions we deduce that this map is an isomorphism.

Case 2) $s=1$. We can suppose that f is the unique independent solution of $f^{2}=0$. Because $\operatorname{dim} B=4$, vectors $1, f, g, g^{2}, f g$ cannot be linearly independents; thus, there exist a non trivial relation

$$
\lambda_{1} g^{2}+\lambda_{2} f g+\lambda_{3} f+\lambda_{4} g+\lambda_{5} 1=0
$$

first observe that $\lambda_{5}=0$ (if not, $1 \in \mathfrak{m}_{B}$); moreover $\lambda_{3} f+\lambda_{4} g \equiv 0 \bmod \mathfrak{m}_{B}^{2}$, which is impossible if λ_{3}, λ_{4} are not identically vanishing; thus, the above relation reduces to $\lambda_{1} g^{2}+\lambda_{2} f g=0$; if $\lambda_{1} \neq 0$ we can suppose $\lambda_{1}=1$ and then $g^{2}+\lambda_{2} f g=\left(g+\frac{\lambda_{2}}{2} f\right)^{2}=0$, which contradicts the assumption $s=1$. As a consequence $\lambda_{1}=0$ and $\lambda_{2} f g=0$, where $\lambda_{2} \neq 0$; that is, $f g=0$. Now we define the surjective morphism $\mathbb{R}[t, \tau] /\left(t^{2}, t \tau, \mathfrak{m}^{3}\right) \rightarrow B=\mathbb{R}[f, g]$ sending $t \mapsto f$, $\tau \mapsto g$; by computing dimensions we conclude.

Case 3) $s=2$. In this situation we can suppose that two independent solutions are f, g; that is, $f^{2}=g^{2}=0$; we finish the proof as in the previous cases.

QED
Let us denote the three Weil algebras appearing in Lemma 2 by $B_{s}, s=$ $0,1,2$. We will apply this result to classify the algebra $\mathcal{C}^{\infty}(M) / I_{P}$, depending of the parameters a, b, c. Recall that

$$
I_{P}=\left\{c_{3} \bar{x}^{2}+c_{4} \overline{x y}+c_{5} \bar{y}^{2} / c c_{3}-b c_{4}+a c_{5}=0, c_{i} \in \mathbb{R}\right\}
$$

If, for example, $b \neq 1, I_{P}$ will be generated by vectors $\bar{x}^{2}+\frac{c}{b} \overline{x y}$ and $\bar{y}^{2}+\frac{a}{b} \overline{x y}$. Now we search for the number of solutions of $f^{2}=0$, with $f=\lambda[\bar{x}]+\mu[\bar{y}] \in$ $\mathcal{C}^{\infty}(M) / I_{P}$ (here, symbol [] means the class mod I_{P}). Taking into account relations $\bar{x}^{2}+\frac{c}{b} \overline{x y}, \bar{y}^{2}+\frac{a}{b} \overline{x y} \equiv 0 \bmod I_{P}$, we have $f^{2}=\lambda^{2}\left[\bar{x}^{2}\right]+\lambda \mu[\overline{x y}]+\mu^{2}\left[\bar{y}^{2}\right]=$
$-\frac{c}{b} \lambda^{2}[\overline{x y}]+2 \lambda \mu[\overline{x y}]-\frac{a}{b} \mu^{2}[\overline{x y}]=\left(-\frac{c}{b} \lambda^{2}+2 \lambda \mu-\frac{a}{b} \mu^{2}\right)[\overline{x y}] ;$ then $f^{2}=0$ if and only if $c \lambda^{2}-2 b \lambda \mu-a \mu^{2}=0$.

The number of independent solutions of the last equation is 0,1 or 2 if $\triangle<0, \triangle=0$ or $\triangle>0$, respectively, where $\triangle \stackrel{\text { def }}{=} b^{2}-a c$. The same conclusion is easily obtained if we suppose instead $a \neq 0$ or $c \neq 0$.

Therefore, by applying Lemma 2 we have finally,
Theorem 1. If $\operatorname{dim} M=2$, then

$$
I_{2}^{2} M=J^{B_{0}} M \amalg J^{B_{1}} M \amalg J^{B_{2}} M \subset G r\left(2, T^{*, 2} M\right)
$$

Moreover, with the above notation,

$$
\begin{aligned}
& J^{B_{0}} M=\left\{\begin{array}{l}
\lambda_{35}^{2}-\lambda_{34} \lambda_{45}<0 ; \quad \lambda_{i j}=0, i \leq 2 \\
J^{B_{1}} M=\left\{\begin{array}{l}
\lambda_{35}^{2}-\lambda_{34} \lambda_{45}=0 ; \quad \lambda_{i j}=0, i \leq 2 \\
J^{B_{2}} M=\left\{\begin{array}{l}
35
\end{array}\right\}
\end{array}\right\} . \lambda_{34} \lambda_{45}>0 ; \quad \lambda_{i j}=0, i \leq 2
\end{array}\right\}
\end{aligned}
$$

Acknowledgements. I thank Prof. J. Muñoz-Díaz who proposed me this work. Also thanks to Prof. P. Sancho for very useful suggestions and to Prof. F. Pugliese for his warm hospitality when a part of this work was done.

References

[1] R. J. Alonso-Blanco: Jet manifold associated to a Weil bundle, Archivum Math. Brno, 36 (2000), 195-199.
[2] I. KolÁř: Affine structure on Weil bundles, Nagoya Math J. 158 (2000), 99-106.
[3] I. Kolář, P. W. Michor, J. Slovák: Natural Operations in Differential Geometry, Springer-Verlag, 1993.
[4] J. Muñoz, J. Muriel, J. Rodríguez: Weil bundles and jet spaces, to appear in Czech Math. J.
[5] A. Weil: Théorie des points proches sur les variétés différentiables, Colloque de C.N.R.S, Strasbourg 1953, 111-117.

[^0]: *Partially founded by Junta de Castilla y León under contract SA30/00B

