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Abstract. The modern theory of extended thermodynamics, shows that the well known
constitutive equations of continuum mechanics of non-local form in space are in reality ap-
proximations of balance laws when some relaxation times are neglected. We recall, for example,
the Fourier’s equation, the Navier-Stokes’ equations, the Fick’s equation, the Darcy’s law and
several others. This idea suggests that the “authentic” constitutive equations are local and,
therefore, the differential systems of mathematical physics are hyperbolic rather than parabolic.
Another consequence is that these equations do not need to satisfy the so called objectivity
principle that on the contrary still continues to be valid only for the constitutive equations.
Under suitable assumptions the conditions dictated by the entropy principle in the hyperbolic
case guarantees the entropy principle validity also in the parabolic limit. Considerations are
also made with regard to the formal limit between hyperbolic system and parabolic ones and
from hyperbolic versus hyperbolic, between a system and a subsystem.

1 Constitutive equations and Material Frame Indif-
ference

The physical laws in continuum theories are balance laws:

∂F0

∂t
+
∂Fi

∂xi
= f . (1)

Of course the system is not closed and we need the so called constitutive
equations. A very roughly mathematical definition of constitutive equations can
be considered as the equations that need to close the system i.e., choosing a
field u ∈ RN we have to give the relations between the 5N components of the
vectors F0,Fi and f and the N field components of the unknown vector u. But
of course, as we will see later this definition have no physical meaning because
we need that the additive equations must be represents the real constitutive
properties of the material.
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For a long time the constitutive equation was done in an empiric way and
they belong substantially in three big class:

- Local constitutive equations - Examples are: stress-strain relations in non-
linear elasticity t ≡ t(E) (the Hook law in the linear case), and the caloric
and thermal equations of state in Euler fluids that connect internal energy and
pressure as function of density and temperature ε ≡ ε(ρ, T ), p ≡ p(ρ, T ).

Introducing these constitutive equation in the balance laws we obtain a
differential system which, in general, is hyperbolic.

- Non local type (in space) - In the case of a single dissipative fluid, examples
are: the Fourier law q = L grad(1/T ) where q is the heat flux, the Navier-Stokes
equations σ = 2 νDD + λ divv I where L, ν and λ are phenomenological coeffi-
cients related respectively to the heat conductivity and the viscosity coefficients,
while σ is the viscous stress tensor, D = 1/2(∇v + (∇v)T ) is the deformation
velocity and DD indicate the deviatoric part of D that is traceless.

In the case of a mixture of dissipative fluids with n constituents well known
examples are the Navier-Stokes, Fourier and Fick laws:

σ = 2 νDD + λ divv I,

q = L grad

(
1

T

)
+

n−1∑

b=1

Lb grad

(
µb − µn
T

)
, (2)

Ja = L̃a grad

(
1

T

)
−

n−1∑

b=1

Lab grad

(
µb − µn
T

)
,

where Ja are the diffusion flux vectors, the µ’s are the chemical potentials and
L̃a, Lb, Lab, (a, b = 1, 2, . . . , n − 1) are phenomenological coefficients related to
diffusion.

When we introduce these constitutive equations in the balance laws we ob-
tain a mathematical system of differential equations where the spatial deriva-
tives are of second order and the time derivatives are of first order. These dif-
ferential systems have a parabolic structure.

- Non local type (in time)- Examples are: the visco-elasticity or in general
all materials in which the stress depends not only of deformations but also of
the history of the deformation (constitutive equations with memory). Except
for the case of exponential kernel the mathematical structure of the system is
of integro-differential type.

In the modern constitutive theory all the constitutive equations must obey
two universal principles:

- The objectivity principle: the balance laws are invariant with respect Galilean
transformations and the proper constitutive equations are independent of the
Observer (material frame indifference, Noll, see, e.g [1]);
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- The entropy principle, that in the Rational Thermodynamics requires that
any solutions of the full system satisfies a supplementary entropy balance laws
with a non-negative entropy production (Coleman-Noll [2] - Müller [3]):

∂ρS

∂t
+

∂

∂xi
(
ρSvi +Φi

)
≥ 0 for all processes,

where S denotes the entropy density and Φi the entropy flux.

A long debate was present in literature after Ingo Müller published a famous
paper [4] in which he proved that he Fourier and Navier-Stokes “constitutive”
equations violate the objectivity principle. At that time Müller was convinced
that the result indicates that the objectivity principle is not a valid principle
and therefore a huge literature start between supporter and not supporter of
the objectivity principle. Several authors add also artificial time derivatives to
try to recover the objectivity for the heat equation and for the stress. Here we
record an independent observation on the subject by Bressan [5] and Ruggeri [6]
that may solve in a simple way the problem. Bressan and Ruggeri observe that
a possible interpretation of the Müller result is that the objectivity principle is
indeed universal, but the Fourier and Navier-Stokes equations are not “true”
constitutive equations. The precise and convincing answer was done by the
Extended Thermodynamics (ET) [7].

2 The Extended Thermodynamics

The idea of Rational Extended Thermodynamics [7] was to view the trun-
cated system of moment equations associated with Boltzmann equation on the
same ground of a phenomenological system of continuum mechanics end accord-
ing with the rational thermodynamic, the restrictions must be imposed only on
the basis of universal principles, i.e.: Entropy principle, Objectivity Principle
and Causality and Stability (convexity of the entropy).

The restrictions are so strong (in particular the entropy principle) that, at
least, for processes not to far from the equilibrium the system is completely
closed. In the case of 13 moments the results are in perfect agreement with the
kinetic closure procedure proposed by Grad [8] (see [9], [7]).

We restrict our attention to the Grad equations only in the one-dimensional
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case





ρ̇+ ρvx = 0

ρv̇ + (p− σ)x = 0

ρε̇+ qx + (p− σ)vx = 0

τσ
[
σ̇ − 8

15qx +
7
3σvx

]
− 4

3µvx = −σ

τq

[
q̇ + 16

5 qvx − 7
2(

p
ρ)xσ − 1

ρ(p+ σ)σx +
σ
ρpx

]
+ χTx = −q,

(3)

here the dot indicate the material derivative.

We note that together with the conservation of mass, momentum and energy,
we have two new balance laws that govern the behaviour of the extended fields
σ and q. When the underlined terms in (3) are negligible the last two equations
reduce to the Navier-Stokes, Fourier equations respectively. In particular this
limit can be done using the so called Maxwellian iteration [10].

2.1 Maxwellian Iteration

To reveal the relation between extended and classical model, a formal itera-
tive scheme known as Maxwellian iteration is applied. The first iterates q(1) and
σ(1) are calculated from the right–hand sides of balance laws by putting “zeroth”
iterates — equilibrium values q(0) = 0 and σ(0) = 0 on the left–hand sides. In the
next step second iterates q(2) and σ(2) are obtained from the right–hand sides of
the same Eqs. by putting first q(1) and σ(1) on their left–hand sides, an so on.
Therefore the Maxwellian iterations is substantially an identification of a relax-
ation time and a formal power expansion of the solution in terms of it: a sort of
Chapman - Enskog procedure at macroscopic level. Therefore the Fourier and
Navier Stokes equations are the first approximation of Maxwellian iteration of
the ET balance law system and therefore they are not true constitutive equations
and do not need to satisfy the frame indifference principle.

We observe that this is true not only for rarefied gas but also for real gas as
was proved recently in [11].

3 The Mixture theory

A similar situation occurs in the case of a mixture of fluids for what concerns
the Fick law for the diffusion. Let consider a mixture of n species and for any
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constituents α = 1, 2, . . . , n we can define the concentration as:

cα =
ρα
ρ
, ρ =

n∑

α=1

ρα,

(
n∑

α=1

cα = 1

)
.

There are two possible approach to the mixture. A classical approach and an
Extended ones.

In the extended framework the description of simple homogeneous mixtures
in the context of rational thermodynamics relies on the postulate that each
constituent obeys the same balance laws as a single fluid [12]. They express
rates of change of mass, momentum and energy with appropriate production
terms due to mutual interaction of constituents. In particular the differential
system is formed by the conservation laws of mass, momentum and energy of
the mixture (as a whole):

∂ρ

∂t
+ div(ρv) = 0;

∂(ρv)

∂t
+ div(ρv ⊗ v − t) = 0; (4)

∂
(
1
2ρv

2 + ρε
)

∂t
+ div

{(
1

2
ρv2 + ρε

)
v − tv + q

}
= 0.

and the balance laws for the first n − 1 constituents (b = 1, 2, . . . , n − 1) for
mass, momentum and energy:

∂ρb
∂t

+ div(ρbvb) = τb;

∂(ρbvb)

∂t
+ div(ρbvb ⊗ vb − tb) = mb; (b = 1, . . . , n− 1); (5)

∂
(
1
2ρbv

2
b + ρbεb

)

∂t
+ div

{(
1

2
ρbv

2
b + ρbεb

)
vb − tbvb + qb

}
= eb

The unknown fields of the system (4), (5) are

u ≡ (ρα,vα, Tα)
T , or u ≡ (ρ, cb,v,vb, T, Tb)

T

(α = 1, 2, . . . , n; b = 1, 2, . . . , n− 1), where T is an appropriate average temper-
ature [14], [13].

3.1 Maxwellian Iteration for the Mixture

We observe that in the classical theory of mixture are omitted the last two
blocks of equations (5)2,3 and the field is simple

u ≡ (ρ, cb,v, T )
T ; (b = 1, 2, . . . , n− 1).
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The question is which is the classical counterpart of (5)2,3?

It is extremely interesting to observe that applying the Maxwellian iteration
scheme to the momentum equation of single constituents (5)2 after some simple
manipulations we obtain the Fick law (2)3 [7], [13].

While we have also as limit of energy balances of each constituents (5)3 a
new non local “constitutive equation” for the temperature differences similar to
he Fick laws that is not present in literature [13], [14]:

Θa = Ta − T = −
n−1∑

b=1

Mab rb divv, (6)

where Mab is a definite positive phenomenological matrix and rb for perfect
gases

rb = ρbc
(b)
V (γb − γn) .

The γb and c
(b)
V are respectively the ratio of specific heat and the specific heat at

constant volume of each constituents. Eq. (6) is not obtained in classical theory
and it is interesting to observe that maybe this is due to the fact that if the
gas have constituents with the same degree of freedom, i.e. the same γ, then
rb ≡ 0 and all the temperatures are equal in the first Maxwellian iteration. In
this last case to reveal difference of the temperature between constituents need
to go further to the second order in the Maxwellian iteration and this was done
in a recent paper by Ruggeri and Simić [15].

3.2 Darcy Law in porous media

Another simple example in the context of mixture theory is that famous
Darcy’s equation for porous media in which the relative velocity between the
fluid part vF and the solid ones vS is proportional to the pressure gradient of
fluid (see, e.g. [16]):

grad pF = −k
µ
(vS − vF ) , (7)

where k and µ are respectively the permeability and the viscosity.

It is well know that Darcy’s law is in reality an approximation to the balance
of linear momentum for the fluid that is flowing through the porous solid which
is treated as a rigid body, i.e. (7) is a limit case of (see [17]):

ρF v̇F + grad pF = −k
µ
(vS − vF ) .
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4 Maxwellian iteration and Entropy Principle

We have seen that using the Maxwellian iteration we can obtain by Extended
Thermodynamics- at least formally - the usual non-local constitutive equations
of classical theory. Therefore the parabolic systems of classical theories appears,
from physical point of view, approximations of hyperbolic systems when some
relaxation times are negligible:

• Fourier and Navier Stokes as limit case of moments equations of Extended
Thermodynamics;

• Fick law as limit case of momentum equations of each species in mixture
with single-temperature;

• The new diffusion equation for difference of temperatures in mixture with
multi-temperature as limit case of energy balance of each constituents.

• The Darcy law for porous material is a limit case of momentum equation.

Nevertheless also if the previous non-local equations are not constitutive
equations but approximations of balance laws the non-local equations are very
useful approximations. In many applications the relaxation times are negligible
and they are relevant only in limiting situations: rarefied gas, low temperature,
high frequencies, etc. Another advantage of the non-local approximation is that
in this limit we are able to measure non-observable quantities like heat flux,
viscosity stress and in particular the velocities and the temperature of each
species in a mixture of fluids.

Clearly a major open problem in this framework is the rigorous proof of
the convergence of the solutions via Maxwellian iterations. To make a little
step toward this important result we have first of all to focus our attention to
another very subtle point: is the entropy principle preserved in the Maxwellian
iteration scheme? In other words: if the “full” hyperbolic theory satisfies the
entropy inequality are we sure that the corresponding parabolic limit satisfies
automatically a suitable entropy inequality?

We want to prove that the answer is affirmative provided that we have to
assume the convexity of entropy also the requirement that the processes are not
far from equilibrium.

At it is well know a system of balance laws (1) endowed with a supplementary
entropy law:

∂th
0 + ∂xi

hi = Σ ≤ 0

with a convex entropy density h0 respect the densities field u ≡ F0, can be put
in symmetric form choosing the main field u′ = ∂h0/∂u. In fact, Boillat in
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the context of classical approach [18] and Ruggeri and Strumia in a covariant
formulation [19] proved that there exists four potentials

h′α = u′ · Fα − hα, α = 0, 1, 2, 3

such that

Fα =
∂h′α

∂u′ ; Σ = u′ · f .

Inserting into (1), the original system becomes symmetric with hessian matrices
(note that h′0 is the Legendre transform of h0 and therefore convex function of
the dual field u′). If we split the system in a block of conservation equations
and another of balance laws and in correspondence we split u′ ≡ (v′,w′) it was
proved in [20] that the equilibrium manifold in the main field components is the
hyperplane w′ = 0. Therefore if we assume that the process are not far from
equilibrium we can assume without loss of generality that

h′0 =
1

2

∣∣w′∣∣2 + h′0eq(v
′)

and therefore omitting now the prime in the main field, the symmetric system
in one-space dimension assume the form:

H ∂tv +A ∂xv+B ∂xw = 0 (8)

∂tw+BT∂xv+C ∂xw = −L w (9)

where v ∈ Rn, w ∈ Rm, H ≡ H(v) (m × m) ∈ Sym+ (symmetric definite
positive matrix), A ≡ A(v,w) (m ×m) ∈ Sym, C ≡ C(v,w) (n × n) ∈ Sym
(symmetric matrices) and L ≡ L(v) (n×n) ∈ Sym+ for the residual inequality
because Σ = −wT · Lw ≤ 0. Putting w = 0 into (9) we have

B̄T∂xv = −L w

where B̄ ≡ B(v,0). Then substituting into (8) we obtain as first Maxwellian
iteration:

H ∂tv ≃ D ∂xxv

where the diffusion matrix D = B̄L−1B̄T ∈ Sym+. As consequence the entropy
principle is preserved in the passage between the hyperbolic system and the
parabolic limit.

5 The Mathematical Situation

From mathematical point of view seem on the contrary that hyperbolic
systems are particular case of parabolic ones. The prototype is Burgers equation



Extended Thermodynamics and Maxwellian Iteration 201

GRAD

EULER

FNS

χ

µ

ε 

−> 0

−> 0

−> 0

χ

µ

−> 0

−> 0

More Moments Regularized MomentsMaxwellian Iteration

e.g. 21 Moments e.g.  Regularized Grad

−> 0τ −> 0τ

Figure 1. Systems and Sub-Systems and parabolic limit.

with artificial viscosity to restore uniqueness of weak solutions:

ut + uux = µuxx.

Moreover roughly speaking parabolic equations seem from mathematical point
more realistic because usual exists regular solutions at the contrary of hyperbolic
one for which soon regular solutions become shock or blow up.

I want now to convince that this is not completely true also from mathemat-
ical point of view. The first question is in reality in my opinion a misunderstand-
ing due to the confusion between systems and sub-systems. I want to explain
this with the simple example of Grad system (3). We have to recall that the
relaxation times τσ, τq are proportional to the viscosity and heat conductivity
respectively [7]:

τσ ∝ εµ; τq ∝ εχ,

where ε is related to the Knudsen number. If we look the Fig. 1 and (3) we
can see that effectively the Euler fluid sub-system is a particular case of the
Navier and Fourier system when µ and χ vanishing. Nevertheless also Euler
is a sub-system of Grad system and moreover the Navier-Stokes-Fourier is a
particular case of the Grad system when ε tends to zero. Therefore the confusing
point in literature is that the Euler system is a particular sub-system of both
Navier-Stokes-Fourier and Grad system. This situation is also valid if we take an
ET with many moments. When we apply the Maxwellian iteration we have as
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parabolic counterpart the so called regularized moments [21]. In any case given a
n-moment system all the previous moments are principal sub-systems according
the general mathematical nesting structure find by Boillat and Ruggeri [22].
Moreover all the parabolic limit are also to be considered as approximations of
the hyperbolic system as sketched in Fig.1.

5.1 Qualitative Analysis

On the other hand also the question that parabolic systems can have smooth
solutions in contrast with hyperbolic systems is also not true because all the ET
examples are hyperbolic system with dissipation. It is well known that system
of balance law endowed with a convex entropy law, and dissipative, the so
called Kawashima-Shizuta K-condition [23] becomes a sufficient condition for
the existence of global smooth solutions provided the initial data are sufficiently
smooth (Hanouzet and Natalini [24], Wen-An Yong [25], Bianchini, Hanouzet
and Natalini [26], see also the Dafermos book [27]):

Theorem 1 (Global Existence). Assume that the system of balance laws is
strictly dissipative and the K-condition is satisfied. Then there exists δ > 0, such
that, if ‖u(x, 0)‖2 ≤ δ, there is a unique global smooth solution, which verifies

u ∈ C0
(
[0,∞); H2(R) ∩ C1

(
[0,∞);H1(R)

)
.

Moreover Ruggeri and Serre have proved in the one-dimensional case that
the constant states are stable [28]:

Theorem 2 (Stability of Constant State). Under natural hypotheses of
strongly convex entropy, strict dissipativeness, genuine coupling and “zero mass”
initial for the perturbation of the equilibrium variables, the constant solution sta-
bilizes

‖u(t)‖2 = O
(
t−1/2

)
.

Recently Lou and Ruggeri [29] have observed that the weaker K-condition in
which we require the K-condition only for the right eigenvectors corresponding
to genuine non linear is a necessary (but not sufficient) condition for the global
existence of smooth solutions. This is the case of ET in classical [30] and in
relativity [31], [32] and in the case of mixture with multi-temperatures [33].

6 Conclusions

In conclusion Extended Thermodynamics seems to indicate in clear manner
that non local relations are not constitutive equations but approximations of
balance laws. The true constitutive equations are in local from and they obey
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the material frame difference. The physical systems are hyperbolic in agree-
ment with relativity principle that any disturbance propagate with finite speed.
Nevertheless the usual Fourier, Navier-Stokes, Fick, Darcy and others non local
equations are useful to measure non-observable quantities and they are good
approximation in many practical problems. The Maxwellian iteration preserve
the Entropy principle at least for processes not far from equilibrium. Hyperbolic
systems with dissipation (balance laws with production terms) can have global
smooth solutions provide the initial data are small.

For more details of this talk see [34].
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