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Abstract. A 2+1-dimensional magneto-gasdynamic version of a gas cloud system originating
in work of Ovsiannikov and Dyson is shown, when adiabatic index γ = 2, to admit an integrable
reduction to a subsystem with underlying Hamiltonian-Ermakov structure. A class of exact
solutions of the original nonlinear magneto-gasdynamic system is thereby constructed.

1 Introduction

In a series of papers on 2+1-dimensional magnetogasdynamics, Neukirch et
al [1, 2, 3] introduced a novel procedure wherein the nonlinear acceleration terms
in the Lundquist momentum equation either vanish or are conservative. Here, by
contrast, an elliptic vortex ansatz approach is adopted based on that originally
introduced in [4] in the context of elliptic warm core eddy theory. In recent work,
this procedure has been applied in [5] to a rotating shallow water system with
underlying circular paraboloidal bottom topography as well as in [6] to a non-
isothermal gasdynamic system with origin in work of Ovsiannikov [7] and Dyson
[8] on spinning gas clouds. The procedure of [4] has also been applied to certain
magneto-gasdynamic systems in [9] and [10]. In the latter work, a magneto-
gasdynamic analogue of the pulsrodon of f-plane shallow water theory [4] was
isolated. This corresponds to a pulsating, rotating elliptical plasma cylinder
bounded by a vacuum state. It is noted that the pulsrodon of [4] and associated
solutions were shown to be orbitally Lyaponov stable to perturbations within
the class of elliptical vortex solutions by Holm [11]. The temporal evolution of
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the pulsrodon in the context of the nonlinear reduced gravity shallow water
system of [4] is consistent with experimental work of Rubino and Brandt [12].

The present work concerns a non-isothermal magneto-gasdynamic version of
the gas cloud system of Ovsiannikov and Dyson in [7, 8]. A nonlinear dynamical
subsystem is derived which is shown to be integrable provided the adiabatic
index γ = 2. The subsystem is shown to have underlying Hamiltonian Ermakov-
Ray-Reid structure. A Lax pair for the system is derived in the manner described
for non-conducting gas clouds in [6].

2 The magnetogasdynamic system

Here, we consider the anisentropic magnetogasdynamic system

divq = − 1

γ − 1

d

dt
ln T , γ 6= 1 , (1)

∂ q

∂t
+ (q.∇)q− (µ/ρ ) curl H×H+ f (k× q) = T ∇S −∇

(
γ T

γ − 1

)
, (2)

divH = 0 , (3)

∂H

∂t
= curl (q×H) , (4)

∂S

∂t
+ q.∇S = 0 (5)

with polytropic gas law

S = − ln ρ+
1

γ − 1
ln T , γ 6= 1 . (6)

The above represents a rotating magneto-gasdynamic version of a non-conducting
gas cloud system originally investigated by Ovsiannikov [7], Dyson [8] and sub-
sequently by Gaffet (see [13] and works cited therein). It was observed therein
that the gasdynamic system is compatible with an ansatz in which the entropy S
is quadratic and the velocity linear is spatial variables (time-modulated) and the
temperature T is dependent on time alone. In that case, the 3+1-dimensional
gasdynamic system reduces to an eighteen-dimensional dynamical subsystem.

On elimination of the temperature T in (1) via the gas law (6), and use of
the convective entropy condition (5) the continuity equation

∂ρ

∂t
+ div (ρq) = 0 (7)
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is retrieved while the momentum equation (2) may, in turn, be re-written as

∂ q

∂t
+ (q.∇)q− (µ/ρ ) curl H×H+ f (k× q) + T ∇ ln ρ+∇T = 0 . (8)

Here, attention is restricted to 2+1-dimensional motions in which all the
magneto-gas variables are dependent only on x, y and t. In particular, the mag-
netic induction equation (3) then implies that H admits the representation

H = ∇A× k+ hk (9)

where A(x, t) is the magnetic flux. Insertion of (9) into Faraday’s law (4) pro-
duces the convective constraint

∂A

∂t
+ q.∇A = 0 (10)

together with
∂h

∂t
+ div(hq) = 0 (11)

which holds identically if we set

h = λρ , λ ∈ R . (12)

Substitution of the representation (9) into the momentum equation (8) now
yields

∂q

∂t
+(q.∇)q+(µ/ρ ) (∇2A)∇A+f (k×q)+T∇ ln ρ+µλ2∇ρ+∇T = 0 (13)

together with
Ayρx −Axρy = 0 , (14)

if λ 6= 0, whence
A = A(ρ, t) . (15)

In the sequel, attention is restricted to the separable case

A = Φ(ρ)Ψ(t) (16)

whence, on substitution into (10) and use of the continuity equation it is seen
that

Ψ̇ = ρ
Φ′

Φ
Ψdivq (17)

If as in the non-conducting studies of [7], [8] and [13], the temperature T is
assumed to depend on temperature alone then (1) together with (17) show that

Ψ̇

Ψ
= − 1

γ − 1

(
ρ Φ′

Φ

)
Ṫ

T
, γ 6= 1 (18)
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whence, we set Φ = ρ and

Ψ = νT
1

1−γ , ν ∈ R (19)

so that

A = νρ T
1

1−γ = νe−S . (20)

The momentum equation (13) now reduces to

∂q

∂t
+ (q.∇)q+

(
µ ν2T

2
1−γ∇2ρ+ T

)
∇ ln ρ+ µλ2∇ρ+ f(k× q) = 0 (21)

to be solved in conjunction with the continuity equation (7) and the time evo-
lution

divq = − 1

γ − 1

Ṫ

T
(22)

It is this constrained nonlinear coupled system that is the object of the subse-
quent analysis.

3 A Nonlinear Dynamical Sub-system

In companion studies of isothermal magnetogasdynamics systems in [9, 10]
an elliptic vortex ansatz was introduced under which the logarithmic term in
the momentum equation is removed and reduction made to an analogous f -
plane shallow water system. Therein, by contrast to the polytropic gas law (6),
a parabolic constitutive relation

p = p0 + δρ+ ǫ ρ2 ,
∂p

∂ρ
> 0

was adopted.

Here, an integrable nonlinear dynamical subsystem is sought via the elliptic
vortex ansatz

q = L(t)x+M(t) ,

ρ =
xTE(t)x+ h0(t)

µλ2
,

x =

(
x− q̄(t)
y − p̄(t)

)
(23)

where

L =

(
u1(t) u2(t)

v1(t) v2(t)

)
, E =

(
a(t) b(t)

b(t) c(t)

)
, M =

(
˙̄q(t)

˙̄p(t)

)
(24)
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Insertion of the above ansatz into the continuity equation yields



ȧ

ḃ

ċ


+




3u1 + v2 2v1 0

u2 2(u1 + v2) v1

0 2u2 u1 + 3v2







a

b

c


 = 0 (25)

together with
ḣ0 = −(u1 + v2)h0 . (26)

It is subsequently required that

2(a+ c)
(ν
λ

)2
= −T

γ+1
γ−1 (27)

so that the term in ∇ ln ρ in the momentum equation is thereby removed and
(21) reduces to

∂q

∂t
+ (q.∇)q+ f(k× q) + µλ2∇ρ = 0 (28)

Insertion of (23) into (28) now gives



u̇1

u̇2

v̇1

v̇2




+




LT −fI

fI LT







u1

u2

v1

v2




+ 2




a

b

b

c




= 0 (29)

augmented by the linear auxiliary equations

¨̄p+ f ˙̄q = 0 , ¨̄q − f ˙̄p = 0 (30)

Hence, this reduction of the magnetogasdynamic system is determined by the
7-dimensional dynamical sub-system given by (25) and (29). Once the solution
of this system is known, the quantities h0 and T are obtained via (26) and (1),
that is

Ṫ /T = (1− γ)(u1 + v2) (31)

However, the requirement (27) remains. The admissibility of this constraint on
the dynamical system is examined in the sequel.

In what follows, it proves convenient to proceed in terms of new variables as
previously employed in a shallow water hydrodynamics context in [4], namely

G = u1 + v2 , GR =
1

2
(v1 − u2)

GS =
1

2
(v1 + u2) , GN =

1

2
(u1 − v2) (32)

B = a+ c , BS = b , BN =
1

2
(a− c)
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Here, G and GR represent, in turn, the divergence and spin of the velocity field,
while GS and GN represent shear and normal deformation rates.

On use of the expressions (32), the system (25)−(26) together with (29)
produce the dynamical system

ḣ0 + h0G = 0 ,

Ḃ + 2 [BG+ 2 (BNGN +BSGS ) ] = 0 ,

ḂS + 2BSG+GSB − 2BNGR = 0 ,

ḂN + 2BNG+GNB + 2BSGR = 0 ,

Ġ+
G2

2
+ 2 (G2

N +G2
S −G2

R )− 2fGR + 2B = 0

ĠR +GGR +
f

2
G = 0

ĠN +GGN − fGS + 2BN = 0

ĠS +GGS + fGN + 2BS = 0

(33)

If we now introduce Ω via

G =
2Ω̇

Ω
(34)

then (33)1 and (33)6 yield, in turn,

h0 = cI Ω
−2 (35)

and

GR +
f

2
= c0 Ω

−2 (36)

where c0, cI are arbitrary constants of integration. The relation (31) shows that
the temperature T is given in terms of Ω by

T = T0 Ω
2(1−γ) (37)

where T0 is a constant of integration.

New Ω-modulated variables are now introduced according to

B̄ = Ω4B , B̄S = Ω4BS , B̄N = Ω4BN

ḠS = Ω2GS , ḠN = Ω2GN

(38)
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whence the system (33) reduces to

˙̄B + 4 ( B̄N ḠN + B̄SḠS )/Ω2 = 0 ,

˙̄BS + ( B̄ḠS − 2c0B̄N )/Ω2 + fB̄N = 0 ,

˙̄BN + ( B̄ḠN + 2c0B̄S )/Ω2 − fB̄S = 0 ,

˙̄GN − fḠS + 2B̄N/Ω
2 = 0 ,

˙̄GS + fḠN + 2B̄S/Ω
2 = 0 ,

Ω3Ω̈ +
f2

4
Ω4 − c20 + Ḡ2

N + Ḡ2
S + B̄ = 0

(39)

augmented by the relations (35) and (36).
The constraint (27) may now be re-written as

2
( ν
λ

)2
B̄ = −T

γ+1
γ−1 Ω4 = −T

2
γ−1

0 T

so that
B̄ = ǫ T , ǫ < 0 (40)

that is,
B̄ = δ Ω2(1−γ) , δ 6= 0 (41)

where δ = ǫ T0.
Combination of (39)2 and (39)3 with use of (39)1 produces the integral of

motion

B̄2
S + B̄2

N −
B̄2

4
= cII (42)

while (39)4 and (39)5 together give a further integral of motion

Ḡ2
S + Ḡ2

N − B̄ = cIII (43)

where cII, cIII are constants of integration.

4 A Parametrisation

The integrals of motion (42) and (43) may be conveniently parametrised, in
turn according to

B̄S = ±
√
cII +

1

4
B̄2 cosφ(t) , B̄N = ±

√
cII +

1

4
B̄2 sinφ(t)

ḠS = ±
√
cIII + B̄ sin θ(t) , ḠN = ±

√
cIII + B̄ cos θ(t)

(44)
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Here, we set

B̄S = −
√
cII +

1

4
B̄2 cosφ(t) , B̄N = −

√
cII +

1

4
B̄2 sinφ(t) ,

ḠS = −
√
cIII + B̄ sin θ(t) , ḠN = +

√
cIII + B̄ cos θ(t) .

(45)

Substitution of the parametrisation (45) into (39)1 yields

˙̄B +
4

Ω2

√
( cII + B̄2/4 )( cIII + B̄ ) sin(θ − φ) = 0 (46)

while conditions (39)2,3 reduces to the single requirement

√
cII + B̄2/4

[
φ̇+

2

Ω2
− f

]
− B̄

Ω2

√
cIII + B̄ cos(θ − φ) = 0 (47)

and similarly, (33)4,5 produce the single additional condition

√
cIII + B̄

[
f − θ̇

]
− 2

Ω2

√
cII + B̄2/4 cos(θ − φ) = 0 . (48)

Two conditions which are key to the subsequent development and which
may be established by appeal to the system (33) are now recorded:

Theorem 1.
Ṁ = −3GM , (49)

Q̇ = −3GQ , (50)

where

M = a(u2 −
f

2
) + b(v2 − u1)− c(v1 +

f

2
) ,

Q = −a(u22 + v22) + 2b(u1u2 + v1v2)− c(u21 + v21) + 4∆

(51)

and
△ = ac− b2 (52)

Corollary 1. On use of (32) and (34) it is seen that

M = cIVΩ
−6 , (53)

Q = cVΩ
−6 , (54)

where

M = 2(BNGS −BSGN )−B
(
1

2
f +GR

)
, (55)

Q = −B
(
G2

S +G2
N +G2

R +
1

4
G2

)
+ 4GR(BNGS −BSGN )

+2G(BSGS +BNGN ) + 4△
(56)

and cIV, cV are arbitrary constants of integration.
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In particular, the relations (36), (53) and (55) show that

c0B̄ = −cIV + 2(B̄N ḠS − B̄SḠN ) (57)

whence one obtains:

Corollary 2.

c0B̄ = −cIV + 2

√(
cII +

1

4
B̄2

)(
cIII + B̄

)
cos(θ − φ) (58)

Elimination of cos(θ − φ) between (58) and (47), (48) in turn, yields

φ̇ = f +
2

Ω2

[
−1 + B̄

(
c0B̄ + cIV
4 cII + B̄2

)]
(59)

and

θ̇ = f − 1

Ω2

(
c0B̄ + cIV
cIII + B̄

)
. (60)

It remains to consider the nonlinear equation (39)6 for Ω, namely

Ω3 Ω̈ +
f2

4
Ω4 + cIII + 2B̄ − c20 = 0 (61)

where B̄ is given in terms of Ω by (41). On use of Theorem 1 it is readily
shown that

¨(Ω2B ) + f2Ω2B̄ = −2(Q+ fM) Ω6 = −2(cV + fcIV) (62)

whence

Ω2B̄ =





cVI cos ft+ cVII sin ft− 2(cV + fcIV)/f
2 , f 6= 0

−cVt2 + cVIt+ cVII , f = 0 .
(63)

On elimination of θ − φ and Ω in (46) via the relations (58) and (63) it is
seen that, if B̄ 6= const then B̄ obeys the elliptic integral relation

∫ B̄
cVIII

dB̄∗

B̄∗
√
(B̄∗2 + 4cII) (B̄∗ + cIII)− (c0B̄∗ + cIV)2

=





−2
∫ t

0

dt∗

cVI cos ft∗ + cVII sin ft∗ − 2(cV + fcIV)/f2
, if f 6= 0

= −2
∫ t

0

dt∗

−cV t∗2 + cVI t∗ + cVII
, if f = 0

(64)
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where B̄|t=0 = cVIII.
It remains to consider the compatibility of the constraint (34) and the non-

linear equation (61) with the above elliptic integral expression involving B̄.
Substitution of (41) into (61) produces the nonlinear equation

Ω3Ω̈ +
f2

4
Ω4 + 2 δΩ2−2γ + cIII − c20 = 0 , (65)

while (62) yields

δ ( ¨Ω4−2γ) + δ f2 (Ω4−2γ) = −2(cV + fcIV) . (66)

These equations are required to be compatible and admit, in turn the integrals

Ω̇2 +
f2

4
Ω2 − 2δγ−1Ω−2γ − ( cIII − c20 ) Ω−2 + k1 = 0 , (67)

δ(4− 2γ)2 Ω̇2Ω6−4γ + δ f2Ω8−4γ + 4(cV + fcIV) Ω
4−2γ + k2 = 0 (68)

where k1, k2 are arbitrary constants of integration. It is seen that, since it has
been assumed that δ 6= 0 and γ 6= 1, compatibility requires that the adiabatic
index γ = 2 in which case (67), (68) reduce to

Ω̇2 +
f2

4
Ω2 − δΩ−4 − ( cIII − c20 ) Ω−2 + k1 = 0 (69)

and the relation
δ f2 + 4(cV + fcIV) + k2 = 0 (70)

while, from (41) and (63),

Ω2B̄ = const = δ =

{
−2(cV + fcIV)/f

2 , f 6= 0

cVII , f = 0 .
(71)

and

T =
T0
Ω2

. (72)

Elimination of Ω in (69) via the relation (71) yields

˙̄B2 + f2B̄2 − 4 δ−2B̄5 − 4 δ−2( cIII − c20 ) B̄4 + 4 δ−1k1 B̄
3 = 0 , (73)

while the elliptic integral relation (64) gives

˙̄B2 + 4 δ−2( c2IV − 4 cII cIII ) B̄
2 − 4 δ−2B̄5

− 4 δ−2( cIII − c20 )B̄4 − 8 δ−2( 2cII − c0cIV )B̄3 = 0 . (74)
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Thus, compatibility requires that

4 cII cIII f
2 + c2V + 2f cV cIV = 0 , (75)

and
k1 = −2 δ−1(2 cII − c0 cIV) . (76)

With B̄ = ǫ T (t), determined by the compatible elliptic integral representa-
tion (64) Ω is then given by the relation (71). The angles φ, θ are obtained by
integration, in turn, of (59) and (60). The velocity components u1, u2, v1, v2 and
the quantities a, b, c are given, in turn, by

u1 =
Ω̇

Ω
+

1

Ω2

√
cIII + B̄ cos θ(t),

v1 = −
1

Ω2

√
cIII + B̄ sin θ(t) +

c0
Ω2
− f

2
,

u2 = −
1

Ω2

√
cIII + B̄ sin θ(t)− c0

Ω2
+
f

2
,

v2 =
Ω̇

Ω
− 1

Ω2

√
cIII + B̄ cos θ(t)

(77)

together with

a =
1

Ω4

[
1

2
B̄ −

√
cII +

1

4
B̄2 sinφ(t)

]

b = − 1

Ω4

√
cII +

1

4
B̄2 cosφ(t),

c =
1

Ω4

[
1

2
B̄ +

√
cII +

1

4
B̄2 sinφ(t)

]
,

h0 =
cI
Ω2
.

(78)

The magnetic field is given by

H = ν T−1∇ρ+ λρk (79)

and the magneto-gas density by

ρ =
1

µλ2

[
(x− q̄(t), y − p̄(t))

(
a b
b c

)(
x− q̄(t)
y − p̄(t)

)
+ h0(t)

]
(80)

where p̄(t), q̄(t) are determined by the auxiliary equations (30). The entropy
distribution is determined by

S = ln(T/ρ) (81)

while the pressure p is obtained via the gas law

p = ρ T . (82)

as in [8].
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5 Hamiltonian-Ermakov Structure

It turns out that the nonlinear dynamical system (33) has remarkable un-
derlying structure in that it may be reduced to consideration of a Ermakov-
Ray-Reid system

α̈+ ω2(t)α =
1

α2β
F (β/α) ,

β̈ + ω2(t)β =
1

αβ2
G(α/β) .

(83)

Such systems have their origin in the work of Ermakov [14] and were introduced
by Ray and Reid in [15, 16]. Extension to 2+1-dimensions was presented in [17]
and to multi-component systems in [18]. The main theoretical interest in the
system (83) resides in its admittance of a distinctive integral of motion, namely,
the Ray-Reid invariant

I =
1

2
(αβ̇ − βα̇)2 +

∫ β/α

F (z)dz +

∫ α/β

G(w)dw . (84)

Applications of such Ermakov-Ray-Reid systems arise, most notably, in nonlin-
ear optics (see [19] and literature cited therein).

In the sequel, it proves convenient to proceed with p̄(t) = q̄(t) = 0 in the
ansatz (23). However, the terms are readily re-introduced by use of a Lie group
invariance of the magneto-gasdynamic system.

The semi-axes of the time-modulated ellipse

a(t)x2 + 2b(t)xy + cy2 + h0(t) = 0

(ac− b2 > 0)
(85)

are given by

Φ =

√
2h0

[
√
(a− c)2 + 4b2 − (a+ c) ]

=

√√√√
h0

(B2
N +B2

S)
1
2 − B

2

(86)

and

Ψ =

√
2h0

[−
√
(a− c)2 + 4b2 − (a+ c) ]

=

√√√√
h0

−(B2
N +B2

S)
1
2 − B

2

(87)
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On use of the integral of motion (42) and the relation (40) it is seen that

Φ = Ω
√
cI /

√(
cII +

B̄2

4

)1/2

− B̄

2

= Ω
√
cI /

√(
cII + ǫ2

T 2

4

)1/2

− ǫT
2

(88)

Ψ = Ω
√
cI /

√

−
(
cII +

B̄2

4

)1/2

− B̄

2

= Ω
√
cI /

√

−
(
cII + ǫ2

T 2

4

)1/2

− ǫT
2

(89)

whence, the ratio of the semi-axes is given by

Φ/Ψ =

√−cII
(
cII +

B̄2

4

)1/2

− B̄

2

> 0 , (90)

where it is required that 0 < −cII <
1

4
B̄2. Thus, B̄ = B̄(Φ/Ψ) and the ratio

of the semi-axes of the ellipse is constrained by the elliptic integral relation
(64). By contrast, in the case of the pulsrodon elliptical plasma cylinder in the
isothermic analysis of [10] the ratio of the semi-axes was shown to be constant.

It is readily established that the semi-axes Φ,Ψ of the ellipse (86) are gov-
erned by the Ermakov-Ray-Reid system

Φ̈ +
1

4
f2Φ =

1

Φ2Ψ




ZZ ′

1 + (Ψ/Φ )2
−
(
Ψ

Φ

) (Z2 +
k

4
)

[ 1 + (Ψ/Φ )2 ]2


 ,

Ψ̈ +
1

4
f2Ψ =

1

Ψ2Φ


 −

(
Φ

Ψ

) (Z2 +
k

4
)

[ 1 + (Φ/Ψ)2 ]2
− ZZ ′

1 + (Ψ/Φ )2




(91)

where

Z(Φ/Ψ) = ΨΦ̇− Ψ̇Φ =
2cI√−cII

√
(B̄2 + 4cII)(B̄ + cIII)− (B̄ + cIV)2

B̄2 + 4cII
(92)
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and

B̄ = −
√
−cII

[
Ψ

Φ
+

Φ

Ψ

]
(93)

with the requirement that 0 < |B̄| < cIII. In the above, the constant of integra-
tion k is given by

k =

(
cI
cII

)2 [
f2( c2IV + c2VII )−

4

f2
( cV + fcIV )2

]
.

(f 6= 0)

(94)

In addition, the system (91), in addition to admitting a Ray-Reid integral
of motion, is seen to be Hamiltonian with invariant

H =
1

2
(Φ̇2 + Ψ̇2)− 1

2(Φ2 +Ψ2)

[
Z2 − 1

4
f2(Φ2 +Ψ2)2 +

k

4

]
, (95)

and is, accordingly, integrable.

6 A Lax Pair Formulation

Here, it is shown in the manner of [6] that the nonlinear dynamical system
admits an associated Lax pair representation.

The eight-dimensional dynamical equations (25), (26) together with (29)
arising from the elliptic vortex ansatz (23) and (24) may be reformulated as the
nonlinear matrix system:

Ė+EL+ LT E+E trL = 0 ,

L̇+ L2 + f HL+ 2E = 0
(96)

along with the linear system

ḣ0 + h0 trL = 0 , Ṁ+ f HM = 0 (97)

where H is given by

H =

(
0 −1
1 0

)
. (98)

Moreover, the anisentropic condition (1) may be re-written as

Ṫ + (γ − 1)(trL)T = 0 . (99)

It proves convenient to proceed with the gauge transformation (cf [6])

L̃ = DLD−1 +
1

2
fH , Ẽ = DED−1 (100)
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where

D = exp

(
1

2
Hft

)
. (101)

whence (96) yields
˙̃E+ ẼL̃+ L̃T Ẽ+ Ẽ trL̃ = 0 ,

˙̃L+ L̃2 +
1

4
f2 I+ 2Ẽ = 0 .

(102)

On application of the Cayley-Hamilton identity

L̃2 − (trL̃)L̃+ (det L̃)I = 0 (103)

the matrix equation (102)2 becomes

˙̃L+ (trL̃)L̃− (det L̃)I+
1

4
f2I+ 2Ẽ = 0 . (104)

Further, on introduction of a new trace-free matrix Q̃ via

Q̃ = HẼ (105)

and on use of the relation

HL̃H = L̃T − (trL̃) I (106)

the system (102)1 results in

˙̃Q+ 2(trL̃)Q̃+ [Q̃, L̃] = 0 . (107)

Since trL = tr L̃ = 2Ω̇/Ω, it is natural to introduce the scaling

L̄ = L̃Ω2 , Ē = ẼΩ4 , Q̄ = Q̃Ω4 (108)

so that (104) and (107) adopt the form

˙̄Q+Ω−2 [Q̄, L̄] = 0 ,

˙̄L− Ω−2 (det L̄)I+
f2

4
Ω2I+ 2Ω−2Ē = 0 .

(109)

At this stage, it is noticed that (109)1 may be reformulated in terms of two
trace-free matrixes Q̄ and L̄∗ as

˙̄Q+Ω−2 [Q̄, L̄∗] = 0 , (110)
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where L̄∗ denotes the trace-free part of L̄. Moreover, (109)2 may be decomposed
into the trace-free part

˙̄L∗ +Ω−2 [Q̄,H] = 0 , (111)

together with

(tr ˙̄L)− 2Ω−2 (det L̄∗)− 1

2
Ω−2(trL̄)2 +

1

2
f2Ω2 + 2Ω−2 (trĒ) = 0 . (112)

In general, the matrix system (110), (111) and the scalar equation (112) are
coupled via the relation

ḣ0 + h0 trL̃ = 0 . (113)

A new time variable τ is now introduced via

τ =

∫
Ω−2dt (114)

whence the equations (110) and (111) reduce to (cf the non-conducting case of
[6])

Q̄′ + [Q̄, L̄∗] = 0 , L̄∗′ + [Q̄, H̄] = 0 . (115)

It is now seen that the matrix system (115) constitutes the compatibility con-
dition

M′(λ) + [M(λ) , L(λ)] = 0 (116)

associated with the linear pair

Ψ′ = L(λ)Ψ , µΨ =M(λ)Ψ (117)

where

L(λ) = L̄∗ + λH , M(λ) = Q̄+ λL̄∗ + λ2H (118)

and µ is an arbitrary parameter. Here, L andM represent Lax matrices for the
nonlinear matrix system (115).

Finally, it is observed that, in terms of new time variable τ , (112) reduces
to a classical Steen-Ermakov type equation [14, 20]

Σ′′ + (det L̄∗ − trĒ)Σ =
f2

4Σ3
, Σ = Ω−1 . (119)
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