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Abstract. The purpose of this article is to study the statics and dynamics of nanotubes by
using the methods of continuum mechanics. The nanotube can be filled with only a liquid or a
vapour phase according to the physicochemical characteristics of the wall and to the disjoining
pressure associated with the liquid and vapour mother bulks of the fluid, regardless of the
nature of the external mother bulk. In dynamics, flows through nanotubes can be much more
important than classical Poiseuille flows. When the external mother bulk is of vapour, the flow
can be a million times larger than the classical flows when slippage on wall does not exist.
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1 Introduction

On one hand, it is well documented in the modern literature that the con-
ventional laws of capillarity are not adequate when applied to fluids confined
by porous materials [3]. On the other hand, the technical development of sci-
ences allows us to observe phenomena at length scales of a very few number of
nanometres. This nanophysics allows to infer applications in numerous fields,
including medicine and biology. Iijima often cited as the discoverer of carbon
nanotubes [21], was fascinated by Krätschmer et al ’ Nature paper [23], and
decided to launch out into a detailed study of nanomaterials. The recent appli-
cations revealed new behaviors that are often surprising and essentially different
from those usually observed at macroscopic scale but also at microscopic scale
[20]. Nonetheless, simple models proposing qualitative behaviors need to be
developed in the different fields of nanosciences; our aim is to investigate the
fluid-solid interaction in static as well as in dynamic conditions by differential
calculus in continuum mechanics.

As it was pointed out in experiments, the density of liquid water changes in
narrow pores [2]; an analytic asymptotic expression was obtained with an ap-
proximation of London potentials for liquid-liquid and solid-liquid interactions,
which yields the surface interaction energy [15]. With the aim to propose an
analytic expression of the density for liquid films with a nanometer thickness
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near a solid wall, we add together the interaction energy at the solid surface to
a density-functional at the liquid-vapour interface and a square-gradient func-
tional which represents the volume free energy of the fluid [14, 16]. The obtained
functional allows to get a differential equation and boundary condition which
yield the density profile in cylindrical nanotubes.

For shallow water, the flows of liquids on solids are mainly represented by
using the Navier-Stokes equations associated with the adherence condition at
the walls [29]. Recent experiments in nanofluidics seem to prove that the ad-
herence condition is often disqualified [10]. So, we can draw consequences which
differ from results of classical models; the model we are presenting reveals an
essential difference between the flows of microfluidics and those of nanofluidics
[33]. The simple laws of scales cannot be only taken into account. The film-solid
interactions are accounted for in terms of the disjoining pressure. This concept
of disjoining pressure has been introduced by Derjaguin in 1936 as the differ-
ence between the pressure in a phase adjacent to a surface confining it and the
pressure in the bulk of this phase [11, 18]. We have previously seen that the
gradient of thickness along layers creates a gradient of disjoining pressure that
induces driving forces along the layer [19]. Moreover, we had noticed that the
stability criterion of the flow issued from the equation of motions fits with the
results of Derjaguin’s school [19].

The liquid flows through nanotubes also depend on the wetting conditions
on the wall. Some phase transitions can appear and drastically change the liquid
flows through nanotubes. Since fifteen years the literature is abundant about
nanotube technology and flows inside nanotubes [26].

The aim of this paper is not to redo the literature but to emphasis on liquid
compressibility near solid walls in nanoscale conditions. We consider a nanotube
made up of a cylindrical hollow tube whose diameter is of some nanometres.
The length of the nanotube is microscopic and the edge of the cylinder is a
solid made out of carbon or other materials [20]. The nanotube is immersed in
a liquid or a vapour made up of the same fluid. The fluid fills the interior of
the nanotube. The fluid is modeled by a van der Waals fluid [22, 35] for which
the surdeformations are taken into account (we called capillary fluid or Cahn
and Hilliard fluid [6, 14]). The volume free energy of the fluid is a function not
only of the density but also of the gradient of density. The conditions on the
wall take account of the fluid density at its immediate proximity [15]. We first
recall the equations of equilibrium and motion of capillary fluids [14]. These
fluids can be modeled on the interfaces as the fluids in the immediate vicinity of
solid media [15]. In liquid or vapour phase, it is possible to express the chemical
potential with a development in a linear form taking account of the isothermal
sound velocity values in the bulks [18]. The main expansions of the free energy in
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liquid and vapour phases are deduced. In nanofluidics, the interactions between
fluid and solid wall dominate over the hydrodynamic behaviour of the fluid
[2]. Boundary conditions are embedding effects; they are expressed thanks to a
surface energy associated with a molecular model in mean field theory [16].

In the case of cylindrical geometry, a differential equation with respect to the
fluid density is obtained. Then, the profile of the fluid density in a cylinder can
be deduced. The result is applied to nanotubes when the diameter ranges from
a little number of nanometres to one hundred nanometres. Depending on the
disjoining pressure between liquid and vapour bulks and on the wettability of
the nanotube wall, we can forecast when the fluid inside the nanotube is liquid
or vapour; the wall effect is dominant. The case of liquid and vapour separated
by an interface is not possible when the nanotube diameter is smaller than one
hundred nanometres and a liquid is generally found inside the nanotube.

Recently, it was showed, by using nonequilibrium molecular dynamics sim-
ulations, that liquid flow through a membrane composed of an array of aligned
carbon nanotubes is four to five orders of magnitude faster than it would be
predicted from conventional fluid-flow theory [25]. These high fluid velocities
are possible because of a frictionless surface at the nanotube wall [27]. Ma-
junder et al quote slip lengths on the order of microns for their experiments
with nanometer size pores [25]. The extremely large slip lengths measured in
carbon nanotubes greatly reduce the fluidic resistance and nanoscale structures
could mimic extraordinarily fast flow possible in biological cellular channels [5].
By calculating the variation of water viscosity and slip length as a function of
the nanotubes diameter, the results can be fully explained in the context of
continuum fluid mechanics [34].

In this paper we recalculate the flows through nanotubes by using a Navier-
Stokes equation but, due to the slip condition and the Navier length, it is pos-
sible to forecast an important difference between classical Poiseuille flows and
flows through nanotubes. The calculations associated with the physicochemical
quality of the nanotube allow to forecast if the fluid phase inside the tube is con-
stituted of liquid or vapour. A spectacular effect must appear when the mother
bulk outside the nanotube is constituted of vapour; in this case, the volume flow
through the nanotube is multiplied by a factor of the order of one million with
respect to the Poiseuille flow and the velocity field through the nanotube may
be very important.
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2 Equation of motion and boundary conditions for a
capillary fluid

2.1 Case of conservative fluid

The second gradient theory [12, 13], conceptually more straightforward than
the Laplace theory, can be used to elaborate a theory of capillarity [28]. The
theory can also be used to investigate domains where the fluids are strongly
inhomogeneous as in the immediate vicinity of solid walls where intermolecular
forces are dominant between fluid and solid with respect to fluid interactions.
By this simple way, the only change with respect to compressible fluids is that
the specific internal energy is not only a function of the density ρ, of the spe-
cific entropy s, but also of grad ρ. Consequently, the specific internal energy ε
characterizes both the compressibility and the surdeformation of the fluid,

ε = f(ρ, s, β), where β = (grad ρ)2.

We recall the main results of capillary fluids already obtained in the literature
[14, 17, 32]:

The equation of conservative motions of such capillary fluids is

ρa = div σ − ρ gradΩ, (1)

where a denotes the acceleration vector, Ω the extraneous force potential and
σ the total stress tensor. The total stress tensor is

σ = −p I− λ (grad ρ)(grad ρ)T or σij = −p δij − λ ρ,iρ,j , i, j ∈ {1, 2, 3} (2)

where T denotes the transposition, with

λ ≡ 2 ρ ε′β and p ≡ ρ2ε′ρ − ρ div(λ grad ρ).

It should be noted that ε′s is the Kelvin temperature expressed as a function
of ρ, s and β. It appears that only the scalar λ accounts for surdeformation
effects. As ε does, the scalar λ depends on ρ, s and β. For the surface tension
study based on the gas kinetic theory, Rocard obtained the expression (2) for
the stress tensor but with λ constant [31]. If λ is constant, the specific energy ε
reads

ε(ρ, s, β) = α(ρ, s) +
λ

2ρ
β,

and the second gradient term λβ/(2 ρ) is simply added to the specific internal
energy α(ρ, s) of the classical compressible fluid. The pressure of the compress-
ible fluid is P ≡ ρ2α′

ρ and the temperature is T ≡ α′
s. Consequently,

p = P − λ
(
β

2
+ ρ∆ρ

)
.
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For the thermodynamical pressure P , Rocard and others authors use the van
der Waals pressure

P = ρ
RT

1− bρ − aρ
2

or other similar laws [31]. It should be noted that if λ is constant, there exits a
relation independent of grad ρ between T, ρ and s.

2.1.1 Case λ constant

Equation (2) yields

σij = −P δij + λ

{(
1

2
ρ,kρ,k + ρρ,kk

)
δij − ρ,iρ,j

}
.

Let us denote ω = Ω− λ∆ρ, then Eq. (1) reads

ρa+ gradP + ρ gradω = 0. (3)

This relation is similar to the perfect fluid case; the term ω involves all capillarity
effects. From σij,j = −P,i+λ ρρ,ijj and by neglecting the extraneous forces, we
obtain:

ρa+ gradP = λ ρ grad∆ρ.

2.1.2 Thermodynamic form of the equation of motion

Commonly - and not only when λ is constant - the equation of motion (1)
can be written in a thermodynamic form

a = θ grad s− grad(h+Ω), with h = ε+
p

ρ
. (4)

In the non-capillarity case (ε′β = 0 or ε = α(ρ, s)), Eq. (4) is well-known. When
T is constant, Eq. (4) yields

a+ grad(π +Ω) = 0, with π = h− T s . (5)

The potentials h and π are the generalized enthalpy and the chemical potential
of the capillary fluid.

2.2 Case of viscous fluid

In the case of viscous fluids, the equation of motion includes not only the
stress tensor σ, but also the viscous stress tensor σv written in the form:

σv = η trD + 2κD,
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whereD is the deformation tensor, symmetric gradient of the velocity field and η
and κ are constant in the viscous linear case. Of course in second gradient theory,
it would be coherent to add terms accounting for the influence of higher order
derivatives of the velocity field to the viscous stress tensor σv; the surdeformation
of density comes from wall effects but the variations of velocity are negligible
and the second derivatives are not taken into account. Equation (1) is modified
by adding the forces associated with the viscosity and we obtain

ρa = div(σ + σv)− ρ grad Ω .

For viscous fluid, Eq. (3) reads

ρa+ gradP + ρ grad(Ω− λ∆ρ)− div σv = 0. (6)

2.3 Boundary conditions at a solid wall

The forces acting between liquid and solid range over a few nanometres
but can be simply described by a special surface energy. This energy is not the
total interfacial energy which results from the direct fluid/solid contact; another
energy results from the distortion in the fluid density profile near the wall. For
a solid wall not too curved at a molecular scale, the total surface free energy ϕ
is developed as [15]:

ϕ(ρ
S
) = −γ1ρS

+
1

2
γ2 ρ

2
S
. (7)

Here ρ
S

denotes the limit value of the fluid density at the surface (S); the
constants γ1, γ2 as the constant λ are positive. In the mean field approximation
of molecular theory they are:

γ1 =
πcls

12δ2mlms
ρsol, γ2 =

πcll
12δ2m2

l

,

with

λ =
2πcll
3σlm

2
l

,

where ml et ms denote the molecular masses of fluid and solid, respectively, ρsol
is the solid density; other constants come from London potentials of liquid-liquid
and liquid-solid interactions expressed in the form





ϕll = −
cll
r6

, when r > σl and ϕll =∞ when r ≤ σl ,
ϕls = −

cls
r6

, when r > δ and ϕls =∞ when r ≤ δ ,

where cll et cls are two positive coefficients associated with Hamaker constants,
σl and σs denote the molecular diameters for the fluid and the solid, δ = 1

2 (σl+
σs).
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The boundary condition for the density at the solid wall (S) associated with
the free surface energy (7) is calculated in [16]:

λ

(
dρ

dn

)

|S
+ ϕ′(ρ

S
) = 0, (8)

where n is the external normal direction to the fluid.

3 The chemical potential in liquid and vapour phases

The chemical potential of a compressible fluid at temperature T is denoted
by µ0 . Due to the equation of state P ≡ P (ρ, T ), it is possible to express µ0

as a function of ρ (and T ). At a given temperature, the volume free energy g0
associated with µ0 verifies g′

0
(ρ) = µ0(ρ). Due to the fact µ0 and g0 are defined

to an additive constant, we add the conditions

µ0(ρl) = µ0(ρv) = 0 and g0(ρl) = g0(ρv) = 0,

where ρl and ρv are the fluid densities in the liquid and vapour bulks corre-
sponding to the plane liquid-vapour interface at temperature T .

The expressions of the two thermodynamical potentials µ0 and g0 can be
expended at the first order near the liquid and vapour bulks, respectively

µ0(ρ) =
c2l
ρl

(ρ− ρl) and µ0(ρ) =
c2v
ρv

(ρ− ρv) ,

g0(ρ) =
c2l
2ρl

(ρ− ρl)2 and g0(ρ) =
c2v
2ρv

(ρ− ρv)2,

where cl and cv are the isothermal sound velocities in the liquid and vapour
bulks [18]. Consequently, at temperature T , it is possible to obtain the con-
nection between the liquid bulk of density ρlb and the vapour bulk of density
ρvb corresponding to curved interfaces (as for spherical bubbles and droplets
[8, 9]): we call them the mother bulk densities. These equilibria do not obey
the Maxwell rule [1], but the values of the chemical potential in the two mother
bulks are equal:

µ0(ρlb) = µ0(ρvb). (9)

Consequently, we define µlb(ρ) and µvb(ρ) at temperature T as:

µlb(ρ) = µ0(ρ)− µ0(ρlb) ≡ µ0(ρ)− µ0(ρvb) = µvb(ρ).

An expansion to the first order near the liquid and vapour bulks yields

µlb(ρ) =
c2l
ρl

(ρ− ρlb) and µvb(ρ) =
c2v
ρv

(ρ− ρvb)
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and due to relation (9),

c2l
ρl

(ρlb − ρl) =
c2v
ρv

(ρvb − ρv)

which clarifies the connection between ρlb and ρvb .
To the chemical potential µlb(ρ) ≡ µvb(ρ) at temperature T , we associate the

volume free energies glb(ρ) and gvb
(ρ) that are null for ρlb and ρvb , respectively:

glb(ρ) = g0(ρ)− g0(ρlb)− µ0(ρlb)(ρ− ρlb),

g
vb
(ρ) = g0(ρ)− g0(ρvb)− µ0(ρvb)(ρ− ρvb).

The free energies glb(ρ) and gvb (ρ) are the reference free energies associated with
the liquid and vapour mother bulks. The reference free energy glb(ρ) differs from
gvb (ρ) by a constant. Moreover, the volume free energies are expanded as

glb(ρ) =
c2l
2ρl

(ρ− ρlb)
2 and gvb(ρ) =

c2v
2ρv

(ρ− ρvb)2 .

4 Liquid and vapour densities in a nanotube

A nanotube is constituted of a hollow cylinder of length size ℓ and of small
diameter d = 2R, (d/ℓ ≪ 1). We consider solid walls with a large thickness
with regards to molecular dimensions such that the surface energy verifies an
expression in form (7). We assume that a capillary fluid is a convenient model
to represent fluids inside the nanotube.

At equilibrium, far from the nanotube tips and by neglecting the external
forces, the profile of density is solution of Eq. (5) with a = 0 and π = µ0−λ∆ρ:

λ∆ρ = µ0(ρ)− C, (10)

where C is an additional constant. The value of C is associated with the density
value in the mother bulk outside the nanotube (where ∆ρ = 0) [11]. Conse-
quently, the reference density value ρ

ref
may be chosen as ρlb or ρvb .

We consider the cases when exclusively liquid or vapour fill up the nanotube;
the mother bulk can be as well liquid as vapour. The profile of density is given
by the differential equation:

λ

(
d2u

dr2
+

1

r

du

dr

)
−
c2
ref

ρ
ref

u = 0, with u = ρ− ρ
ref
, (11)

where c
ref

is the isothermal sound velocity associated with liquid mother bulk
(respectively vapour mother bulk) when the liquid phase fills up the nanotube
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(respectively vapour phase). In cylindrical coordinates, r denotes the radial
coordinate. The reference length is

δ
ref

=
√
λ ρ

ref
/c2

ref
.

We denote by x the dimensionless variable such that r = δ
ref

x. Equation (11)
reads

d2u

dx2
+

1

x

du

dx
− u = 0.

The solutions of Eq. (4) in classical expansion form u =
∑∞

n=0 anx
n yield:

∞∑

n=2

n2 an x
n−2 − an−2 x

n−2 = 0 =⇒ n2 an = an−2 .

Due to the symmetry at x = 0, the odd terms are null and consequently,

u = a0

∞∑

p=0

1

4p (p !)2
x2p .

The series has an infinite radius of convergence. Let us define the quantities

f(x) =
∞∑

p=0

1

4p (p!)2
x2p,

h(x) ≡ f ′(x) =
∞∑

p=1

2p

4p (p!)2
x2p−1,

k(x) ≡ f ′′(x) =
∞∑

p=1

2p (2p− 1)

4p (p!)2
x2p−2.

Consequently, u = a0 f(r/δref ). The boundary condition (8) at x = R/δ
ref

is:

λ
du

dx
= γ1 − γ2 ρ or a0 =

δ
ref

(
γ1 − γ2 ρref

)

λh
(

R
δ
ref

)
+ γ2 δref f

(
R

δ
ref

)

and the density profile reads

ρ = ρ
ref

+
δ
ref

(
γ1 − γ2 ρref

)

λh
(

R
δ
ref

)
+ γ2 δref f

(
R

δ
ref

) f

(
r

δ
ref

)
.
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Let us consider the free volume energy gρref (ρ), null in the mother bulk of
density ρ

ref
(where ρ

ref
= ρlb or ρ

ref
= ρvb) chosen as the reference mother

bulk; the free energy φ per unit of volume in a inhomogeneous fluid is

φ = gρref (ρ) +
λ

2

(
dρ

dr

)2

and consequently, if φ is expressed as a function of r,

φ(r) = gρref


ρref

+
δ
ref

(
γ1 − γ2 ρref

)
f
(

r
δ
ref

)

λh
(

R
δ
ref

)
+ γ2 δref f

(
R

δ
ref

)


+

λ

2




(
γ1 − γ2 ρref

)
h
(

r
δ
ref

)

λh
(

R
δ
ref

)
+ γ2 δref f

(
R

δ
ref

)




2

. (12)

4.1 Impossibility of a two-phase fluid in a nanotube

Figure 1. Two-phase fluid in a nanotube: The nanotube is simultaneously filled
with two phases liquid and vapour of the same fluid. The two phases (a) and (b) are
separated by a cylindric material interface.

Let us consider a nanotube simultaneously filled with liquid and vapour of
the same fluid; an interface appears between the liquid and vapour phases. By
reason of symmetry the liquid-vapour interface is a material surface represented
by a cylindrical surface with the same axis as the nanotube. The interface has
a positive surface energy γlv increasing the free energy of the fluid inside the
nanotube.

First case: domain (a) is liquid and domain (b) is vapour. An approximation
allows us to compare the energy of the only liquid phase and the energy of the
two-phase fluid when the liquid is in contact with the nanotube wall. The free
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energies associated with the wall are approximatively equal. We have the relation
glb(ρ) ≡ gvb(ρ) + glb(ρvb) with −glb(ρvb) = P (ρvb) − P (ρlb) = Π(ρlb); the term
Π(ρlb) is called the disjoining pressure relatively to the mother bulk ρlb [11, 18].

The difference between the free energy per unit length E1 of the liquid phase
and the free energy per unit length E2 of the two-phase fluid is approximatively

E2 − E1 = π
(
−e21Π(ρlb) + 2e1γlv

)
,

where e1 denotes the radius of the domain (b) of vapour delimited by the in-
terface. Consequently, the free energy for the two-phase fluid in the nanotube
is smaller than for only the liquid phase if e1 ≥ 2γlv/Π(ρlb).

Second case: domain (a) is vapour and domain (b) is liquid. We can also
compare the energy of the only vapour phase and the energy of the two-phase
fluid when the vapour is in contact with the nanotube wall. The free energies
associated with the wall are approximatively equal.

The difference between the free energy per unit length E3 of the vapour phase
and the free energy per unit length E4 of the two-phase fluid is approximatively

E4 − E3 = π
(
e22Π(ρlb) + 2e2γlv

)
,

where e2 denotes the radius of the domain (b) of liquid delimited by the interface.
Consequently, the free energy in the nanotube is smaller for the two-phase fluid
than for the vapour phase if e2 ≥ 2γlv/(−Π(ρlb).

As an example, we consider the case of water at 20◦ Celsius, in c.g.s. units,
the interfacial free energy γlv = 72. If |Π(ρlb)| = 107 (or 10 atmospheres),
corresponding to an important absolute value of the disjoining pressure, we
obtain e1 = e2 ≥ R0 = 14.4 × 10−6 = 144 nm= 0.144µm. Consequently,
the nanotube is filled with only one phase if its radius verifies the inequality
R < R0. The limit radius R0 corresponds to the radius of a microscopic tube.
Consequently, we have just to compare the free energies of the liquid and the
vapour phases filling up the nanotube.

4.2 Liquid phase in the nanotube

We consider the case when the fluid phase in the nanotube is liquid; the
liquid density is close to ρlb (and ρlb ≃ ρl). We choose glb as reference level of

volume free energy. By taking account of Eq. (12) and δl =
√
λρl/c

2
l , we get

φ(r) =
c2l
2ρl



δl (γ1 − γ2 ρlb) f

(
r
δl

)

λh
(
R
δl

)
+ γ2 δlf

(
R
δl

)




2

+
λ

2




(γ1 − γ2 ρlb)h
(

r
δl

)

λh
(
R
δl

)
+ γ2 δl f

(
R
δl

)




2

. (13)
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Due to the fact that c2l δ
2
l /2ρl = λ/2, Eq. (13) reads

φ(r) =
λ

2
(γ1 − γ2 ρlb)

2
f
(

r
δl

)2
+ h

(
r
δl

)2

(
λh
(
R
δl

)
+ γ2 δl f

(
R
δl

))2 .

The total free energy per unit of length in the nanotube is:

Elb(ρlb) = 2π

(∫ R

0
φ(r) r dr +R

(
−γ1 +

γ2
2
ρ
R

)
ρ
R

)
,

where

ρ
R
= ρlb +

δl (γ1 − γ2 ρlb)
γ2 δl f

(
R
δl

)
+ λh

(
R
δl

) f
(
R

δl

)
.

Consequently, if we denote r = δl x and n = R/ δl, we obtain the total free
energy per unit of surface in the nanotube Flb(ρlb) ≡ Elb(l)/2πR in the form

Flb(ρlb) =
δlc

2
l

2ρl

(γ1 − γ2 ρlb)
2

n

∫ n

0

f (x)2 + h (x)2
(
γ2 f (n) +

λ
δl
h (n)

)2 x dx+
(
−γ1 +

γ2
2
ρ
R

)
ρ
R
.

(14)

4.3 Vapour in the nanotube

We consider the case when the fluid phase in the nanotube is vapour; the
vapour density is close to ρvb (and ρvb ≃ ρv). For the reference level of volume
free energy we obtain for a density close to ρv

glb(ρ) =
c2v
2ρv

(ρ− ρv)2 −Π(ρlb).

The density in the nanotube is close to the vapour density ρvb and consequently
we neglect the surface free energy of the wall. With γ1 − γ2 ρvb ≈ γ1 we get

φ(r) ≈ ψ(r)−Π(ρlb) with ψ(r) =
λ

2
γ21

f
(

r
δv

)2
+ h

(
r
δv

)2

(
λh
(

R
δv

)
+ γ2 δv f

(
R
δv

))2 ,

where δv =
√
λρv/c2v. The total free energy per unit of length in the nanotube

is:

Elb(ρvb) = 2π

(∫ R

0
ψ(r) r dr −Π(ρlb)

R2

2

)
.
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If we denote r = δv x and N = R/δv, we obtain the total free energy per unit
of surface in the nanotube Flb(ρvb) ≡ Elb(v)/2π R in the form

Flb(ρvb) =
δv c

2
v

2ρv

γ21
N

∫ N

0

f (x)2 + g (x)2
(
γ2 f (N) + λ

δv
g (N)

)2 x dx −
N δv
2

Π(ρlb). (15)

4.4 Numerical application in the case of water
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Figure 2. Nanotube of diameter 4 nm: When we change the value of the disjoining
pressure Π(ρlb), the total free energy in a nanotube filled up with liquid water phase
is smaller than the total free energy of a nanotube filled up with vapour water phase.
Consequently, the nanotube is always filled up with a liquid water phase.

In c.g.s. units the physical constants of water are cv = 3.7 × 104; cl =
1.478 × 105; ρv = 1.7 × 10−6; ρl = 0.998;λ = 1.17 × 10−5; γ2 = 54.

We have obtained the free energy values for liquid and vapour phases. Re-
lations (14-15) depend on both the wetting quality of the wall and the value of
the disjoining pressure. For convenient materials, we can numerically compare
the free energy of the liquid with the free energy of the vapour. We consider
the case when the water fluid is in contact with different nanotube walls. The
x-axis corresponds to the value of γ1 associated with the hydrophobicity or hy-
drophillicity of the wall. The value of γ2 depends only on the fluid. When γ1
is small enough, the wall of the nanotube is hydrophobic and when γ1 is large
enough, the wall of the nanotube is hydrophillic. The y-axis corresponds to the
value of the total free energy in the nanotube per unit surface of the wall. The
case when the nanotube wall is strongly hydrophobic corresponds to γ1 < 30. In
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Figure 3. Nanotube of diameter 20 nm: When the disjoining pressure is positive
and strong enough and if the wall is strongly hydrophobic, the nanotube can be filled
up with a water vapour phase. For an hydrophillic wall the nanotube is always filled
up with a liquid water phase.

all the graphs the straight line parallel to the x-axis corresponds to the free en-
ergy per unit surface of the nanotube filled up with a vapour phase; the oblique
curve corresponds to the free energy per unit surface of the nanotube filled up
with a liquid phase. The graphs corresponding to the values of the two free
energies (14-15) allow to foresee if the nanotube is filled up with liquid or with
vapour. They are presented in Figures 2 to 4.

When the disjoining pressure is negative, the nanotube is filled up with a
liquid water phase for all diameters of the nanotube. When the nanotube wall
is hydrophobic, for a large radius and a strong positive disjoining pressure, the
nanotube can be filled up with a vapour phase. As a result, the case of vapour
phase filling up the nanotube is less usual than the case of liquid water phase.

In all the cases, we note that the volume free energy of the phase in the
nanotube is negligible with respect to the surface free energy of the wall.

5 Permanent viscous motions in a nanotube

”Fluid flow through nanoscopic structures, such as carbon nanotubes, is
very different from the corresponding flow through microscopic and macroscopic
structures. For example, the flow of fluids through nanomachines is expected to
be fundamentally different from the flow through large-scale machines since,
for the latter flow, the atomistic degrees of freedom of the fluids can be safely
ignored, and the flow in such structures can be characterized by viscosity, density
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Figure 4. Nanotube of diameter 100 nm: The tube corresponding to a diameter
of about 0.1µm is a microtube. The quality of the wall and the effect of the disjoining
pressure are in competition. If the disjoining pressure is strong enough and if the wall
is moderately hydrophobic, the tube is filled up with vapour water phase. When the
disjoining pressure is negative, the tube is always filled up with liquid water phase.

and other bulk properties. Furthermore, for flows through large-scale systems,
the no-slip boundary condition is often implemented, according to which the
fluid velocity is negligibly small at the fluid/wall boundary. Reducing the length
scales immediately introduces new phenomena into the physics of the problem,
in addition to the fact that at nanoscopic scales the motion of both the walls
and the fluid, and their mutual interaction, must be taken into account” [30].

In this section, we consider the permanent and laminar motions of viscous
capillary liquid in a nanotube. Because the liquid is heterogeneous, for capillary
fluids, the liquid stress tensor is not anymore scalar and the equations of hydro-
dynamics are not valid. However, the results obtained for viscous flows [24] can
be adapted at nanoscale.

As in [31], we assume that the kinematic viscosity coefficient ν = κ/ρ only
depends on the temperature. In the equation of motions, the viscosity term is

(1/ρ) div σv = 2ν [ div D + D grad {Ln (2κ)} ] ,

where D is the velocity deformation tensor and D grad{Ln (2κ)} is negligible
with respect to divD.

We denote the velocity by V = (0, 0, w)T where w is the velocity compo-
nent in direction of the nanotube axis. When we neglect the external forces (as
gravity), the liquid nano-motion verifies Eq. (6) written in the form

a+ grad[µo(ρ)− λ∆ρ ] = ν∆V with ∆V ≃
[
0, 0,∆w

]T
. (16)
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Simple fluids slip on a solid wall only at a molecular level [7] and con-
sequently, in classical conditions, the kinematic condition at solid wall is the
adherence condition (z = 0 ⇒ w = 0). Recent papers in nonequilibrium
molecular dynamic simulations of three dimensional micro-Poiseuille flows in
Knudsen regime reconsider micro-channels: the influence of gravity force, sur-
face roughness, surface wetting condition and wall density are investigated. The
results point out that the no-slip condition can be observed for Knudsen flow
when the surface is rough. The roughness is a dominant parameter when the
slip of fluid is concerned. The surface wetting condition substantially influences
the velocity profiles [33]. But it is not the case for smooth surfaces. The re-
lation between wall shear stress and slip velocity is the key for characterizing
the slip flow. With water flowing through hydrophobic thin capillaries, there
are some qualitative evidences for slippage [4]. De Gennes said: ”the results are
unexpected and stimulating and led us to think about unusual processes which
could take place near a wall. They are connected with the thickness of the film
when the thickness is of an order of the mean free path” [10].

When the free mean path L is smaller than d, the Knudsen number Kn is
smaller than 1. That is the case for liquid where the mean free path L is of the
same order than the molecular diameter. For example in the case of liquid water,
Kn ranges between 0.5 and 10−2 while the nanotube radius ranges between 1
nm and 50 nm. The adherence boundary condition at a surface, commonly
employed with the Navier-Stokes equation assuming a zero flow, is physically
invalid and a slip regime occurs; the boundary condition must be changed to
take account of the slippage at the solid surfaces.

For gases, the mean free path is of order of one hundred molecular diameters
and consequently the flow regime is only valid for large nanotubes. For thin
nanotubes the rarefied gas regime must be considered; but the calculation in
slip regime may give an idea of the change of flow with respect to the Navier-
Stokes regime also for gases. Nonetheless, we note that the vapour phase in
the tube occurs for large nanotube relevant from the microfluidic case and the
slip condition using continuum mechanics is realistic. In fluid/wall slippage, the
condition at solid wall writes

w = Ls
∂w

∂r
at r = R, (17)

where Ls is the so-called Navier length [24]. The Navier length is expected to
be independent of the thickness of the nanoflow and may be as large as a few
microns [33].

In the following, the dynamics of liquid nanoflows is studied in the case of
nonrough nanotubes. Consequently,

i) The equation of motion writes in the form (16),
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ii) The boundary conditions take account of the slip condition (17).
When the liquid nanoflow thickness is small with respect to transverse di-

mensions of the wall, it is possible to simplify Eq. (16) which governs the viscous
flow; so, when d≪ ℓ,

iii) We consider a laminar flow: the velocity component along the wall is large
with respect to the normal velocity component to the wall which is negligible.

iv) For permanent motion, the equation of continuity reads:

(grad ρ)T V + ρ divV = 0.

The velocity vector V mainly varies along the direction orthogonal to the wall
and grad ρ is normal to V. The density is constant along each stream line

(
�

ρ = 0 ⇐⇒ divV = 0); the trajectories are drawn on isodensity surfaces and
w = w(r). Due to the solid wall effect, the density in the tube is closely constant
out from a boundary layer of approximatively one nanometer [18]; consequently
we consider the approximation of an incompressible liquid in the tube.

v) Due to the geometry of the tube, for permanent motion, the acceleration
is null. Equations (6) or (16) separate as:
• The first part along the z-coordinate,

∂P

∂z
= κ∆w with ∆w =

1

r

d

dr

(
r
dw

dr

)
, (18)

• The second part in the plane orthogonal to the tube axis,

∂

∂r
(λ∆ρ− µ0) = 0. (19)

Equation (19) yields the same equation (10) as at equilibrium. Equation (18)
yields

1

r

d

dr

(
r
dw

dr

)
= −℘

κ
, (20)

where ℘ denotes the pressure gradient along the nanotube. The cylindrical sym-
metry of the nanotube yields the solution of Eq. (20) in the form

w = −℘
κ

r2

4
+ b,

where b is constant. Condition (17) implies

− ℘

4κ
R2 + b = Ls

℘

2κ
R

and consequently,

w =
℘

4κ

(
−r2 +R(R+ Ls)

)
.
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The density in the nanotube is closely equal to ρl and the volume flow through

the nanotube is Q = 2π

∫ R

0
w r dr =

π ℘

8κ
R3(R + 4Ls). With Qo denoting the

Poiseuille flow corresponding to a tube of the same radius R, we obtain:

Q = Qo

(
1 +

4Ls

R

)
. (21)

In most cases, the Navier length is of the micron order (Ls = 1µm = 103 nm)
[25]. If we consider a nanotube with R = 2nm, we obtain Q = 2 × 103Qo.
For R = 50nm, that we consider as the maximum radius of nanotube with
respect to microfluidics, we obtain Q = 40Qo. Consequently, the flow of liquid
in nanofluidics is dramatically more important than the Poiseuille flow in cylin-
drical tubes. In the case of gases, we obtain the same results for nanotube of
radius R = 50nm corresponding to a Knudsen number smaller than 0.5. For
nanotubes of radius smaller than 30 nm, when the nanotube is unusually filled
up with a vapour phase, the flow is not anymore a continuous flow but is rel-
evant to kinetic of rarified gases. Nevertheless, the magnitude of this flow is of
several order more important than Poiseuille flow.

We have to emphasis that, when the mother bulk is vapour, in classical
Poiseuille flow, the phase is vapour in the tube but, for a nanotube the phase is
generally liquid (as in conditions presented in Fig. 2 and Fig. 3) and the volume
flow through the nanotube is approximatively:

Q = Qo
ρl
ρv

(
1 +

4Ls

R

)
.

In the case of water ρl/ρv ∼ 103, we get a volume flow 103 time more important
than the volume flow obtained in Eq. (21):

Q ∼ 106Qo .

6 Conclusion

A nanotube with a diameter ranging between 4 and 100 nanometres is filled
up only with one liquid phase or one vapour phase independently of the external
mother bulk. For nanotubes with diameters smaller than 20 nm, the fluid phase
inside the nanotube is generally liquid. For nanotubes of large diameters with
respect to the molecular scale, the fluid phase can be liquid or vapour according
to the values of the disjoining pressure and of the physicochemical properties of
the tube walls.
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For nanotubes with small diameters, the flows can be significantly greater
than usual Poiseuille flows, especially if the mother bulk consists of vapour.

These results, obtained by using a nonlinear model of continuum mechanics
and its associated differential equations, are in good agreement with experiments
and molecular dynamics calculations.
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