Note on strongly Lie nilpotent rings

F. Catino and M. M. Miccoli
Dipartimento di Matematica, Università di Lecce
Via Provenzale Lecce–Arnesano, P.O. Box 193 I - 73100 Lecce, Italy
francesco.catino@unile.it, maddalena.miccoli@unile.it

Received: 18 February 1997; accepted: 24 November 2000.

Abstract. This note contains a few introductory results on strongly Lie nilpotent rings and, in particular, an analogue of a well known theorem of P. Hall on nilpotent groups.

Keywords: ring, central chains, strongly Lie nilpotent ring

MSC 2000 classification: 16A22

1 Introduction

Let R be an associative ring. For all $a, b \in R$ we set $a \circ b = ab - ba$. It is well-known that $(R, +, \circ)$ is a Lie ring. For all $A, B \subseteq R$, the additive subgroup of R generated by all Lie products $a \circ b$ $(a \in A, b \in B)$ is denoted by $A \circ B$.

Now we put $\gamma_1(R) = R$ and for any $n \in \mathbb{N}$, $n > 1$, $\gamma_n(R) = \gamma_{n-1}(R) \circ R$. If there exists $c \in \mathbb{N}$ such that $\gamma_{c+1}(R) = 0$, then R is called a Lie nilpotent ring.

We define the Lie powers $R^{(n)}(n \in \mathbb{N})$ as follows: $R^{(1)} = R$, and for all $n \in \mathbb{N}$, $n > 1$, $R^{(n)}$ is the ideal of R generated by $R^{(n-1)} \circ R$. If there exists $c \in \mathbb{N}$ such that $R^{(c+1)} = 0$, then R is called a strongly Lie nilpotent ring (see [7]).

Clearly, $\gamma_n \subseteq R^{(n)}$ for all $n \in \mathbb{N}$, thus a strongly Lie nilpotent ring is Lie-nilpotent.

There are many results on strongly Lie nilpotent group rings, see for example Bovdi’s paper [2].

The 2nd section of this note contains a few developments in the spirit of Jennings’ paper [4]. In the 3rd section, an analogue of a well known theorem of P. Hall on nilpotent groups for strongly Lie nilpotent rings is obtained.

2 Central series of ideals

We recall that if I and J are ideals of a ring R and $I \subseteq J$, then J/I is called a central factor if $J \circ R \subseteq I$ or, equivalently, J/I belongs to the centre $Z(R/I)$ of the ring R/I.
A chain \((J^{(\lambda)})\) of ideals of a ring \(R\) is called a central series of \(R\) if every factor \(J^{(\lambda+1)}/J^{(\lambda)}\) is central (see [4]).

The lower central series of a ring \(R\) is the descending series whose terms \(R^{(\alpha)}\) are defined by setting: \(R^{(1)} = R\) and, for \(\alpha > 1\), \(R^{(\alpha)} = \bigcap_{\beta < \alpha} R^{(\beta)}\) if \(\alpha\) is a limit ordinal and \(R^{(\alpha)}\) is the ideal of \(R\) generated by \(R^{(\alpha-1)} \circ R\), otherwise.

Following an idea of Jennings [4], we now define the upper central series of an arbitrary ring.

If \(B\) is an additive subgroup of a ring \(R\), then the set \(M := \{x| x \in B, \ R x \subseteq B\}\) is the largest left ideal of \(R\) which is contained in \(B\). Moreover, the set \(F := \{y| y \in M, \ yR \subseteq M\}\) is the largest ideal of \(R\) which is contained in \(B\).

It is easy to see that \(F(R) = \{y| y \in Z(R), \ yR \subseteq Z(R)\}\) is the largest ideal of \(R\) which is contained in the centre \(Z(R)\) of \(R\). The ideal \(F(R)\) is called the strong centre of \(R\). We remark that the annihilator of a ring \(R\) is contained in \(F(R)\).

The upper central series of a ring \(R\) is the ascending series whose terms \(F^{(\alpha)}(R)\) are defined by setting \(F^{(0)}(R) = \{0\}\) and, for \(\alpha > 0\), \(F^{(\alpha)}(R) = \bigcup_{\beta < \alpha} F^{(\beta)}(R)\) if \(\alpha\) is a limit ordinal and \(F^{(\alpha+1)}(R)/F^{(\alpha)}(R) = F(R/F^{(\alpha)}(R))\) otherwise. In particular, \(F^{(1)}(R)\) is the strong centre of \(R\).

Moreover, for any positive integer \(k\)

\[
F^{(k)}(R) = \{x| x \in R, \ \forall r, s \in R \ x(1 + r) \circ s \in F^{(k-1)}(R)\} \tag{1}
\]

The following result gives some relationship between the lower central series and the upper central series of arbitrary ring \(R\).

Proposition 1. Let \(R\) be a ring, and let \(k\) and \(l\) be positive integers. (1)

\[
\begin{align*}
(1) \quad & R^{(k)} \cdot R^{(l)} \subseteq R^{(k+l-1)} \\
(2) \quad & R^{(k)} \circ R^{(l)} \subseteq R^{(k+l)} \\
(3) \quad & (R^{(k)})^{(l)} \subseteq R^{(kl)} \\
(4) \quad & R^{(k)} \cdot F^{(l)}(R) \subseteq F^{(l-k+1)}(R) \text{ se } k \leq l \\
(5) \quad & F^{(l)}(R) \cdot R^{(k)} \subseteq F^{(l-k+1)}(R) \text{ se } k \leq l \\
(6) \quad & R^{(k)} \circ F^{(l)}(R) \subseteq F^{(l-k)}(R) \text{ se } k \leq l \\
(7) \quad & F^{(k)}(R/F^{(l)}(R)) = F^{(k+l)}(R)/F^{(l)}(R)
\end{align*}
\]

Proof. For (1), (2) see [4], Theorem 3.3 e Theorem 3.4. We prove our assertions by induction. First, (3) is trivial for \(l = 1\). If \(l > 1\), then, by (2), we have

\[
(R^{(k)})^{(l-1)} \circ R^{(k)} \subseteq R^{k(l-1)} \circ R^{(k)} \subseteq R^{(k(l-1)+k)} = R^{(kl)}
\]

for all positive integer \(k\). Hence \((R^{(k)})^{(l)} \subseteq R^{(kl)}\).
(4): If \(k = 1 \), then, for all \(l \in \mathbb{N} \)
\[
R^{(k)} F^{(l)}(R) = R^{(1)} F^{(l)}(R) \subseteq F^{(l)}(R) \subseteq F^{(l-k+1)}(R)
\]
Now let \(k > 1 \). For all \(a \in R^{(k-1)}, \ b \in R \) and \(c \in F^{(l)}(R) \), the inductive hypothesis implies that
\[
(a \circ b)c = ac \circ b - a(c \circ b) \in F^{(l-k+1)}(R),
\]
as desired.

(5): Analogously to (4).

(6): If \(k = 1 \), then, for all \(l \in \mathbb{N} \)
\[
R^{(k)} \circ F^{(l)}(R) = R \circ F^{(l)}(R) \subseteq F^{(l-1)}(R) = F^{(l-k)}(R)
\]
Now let \(k > 1 \). For all \(a \in R^{(k-1)}, \ b \in R, \ r \in R \) and \(c \in F^{(l)}(R) \), inductively we have
\[
(a \circ b) \circ c = b \circ (c \circ a) + a \circ (b \circ c) \in F^{(l-k)}(R)
\]
Hence, by (5), we have
\[
(a \circ b)r \circ c = (a \circ b) \circ rc + r \circ (c(a \circ b)) \in F^{(l-k)}(R)
\]

(7): If \(k = 1 \), then, for all \(l \in \mathbb{N} \)
\[
F^{(k)}(R/F^{(l)}(R)) = F(R/F^{(l)}(R)) = F^{(l+1)}(R)/F^{(l)}(R) = F^{(k+1)}(R)/F^{(l)}(R)
\]
Now let \(k > 1 \). For all \(l \in \mathbb{N} \) and for all \(y \in R \) we have
\[
y + F^{(l)}(R) \in F^{(k)}(R/F^{(l)}(R)) \iff
\]
\[
\iff \forall a, b \in R \quad (y(1 + a) \circ b) + F^{(l)}(R) \in F^{(k-1)}(R/F^{(l)}(R))
\]
\[
\iff \forall a, b \in R \quad (y(1 + a) \circ b) + F^{(l)}(R) \in F^{(k-1+l)}(R)/F^{(l)}(R)
\]
\[
\iff \forall a, b \in R \quad y(1 + a) \circ b \in F^{(k-1+l)}(R) \iff y \in F^{(k+1)}(R)
\]
which completes the proof. \(\qed \)

Corollary 1. If \(R \) is a ring and \(k \) is a positive integer, then
\[
\text{char } R/F^{(k)}(R) = \text{char } R^{(k+1)}.
\]
Proof. Let \(k \in \mathbb{N} \) and let \(m := \text{char} \ F^{(k)}(R) \neq 0 \). For all \(a \in R^{(k)}, \ r \in R \), we have

\[
m(a \circ r) = a \circ mr \in R^{(k)} \circ F^{(k)}(R) = 0,
\]
by Prop. 1 (6). Since \(R^{(k+1)} \) is the ideal of \(R \) generated by \(R^{(k)} \circ R \), it follows that \(\text{char} R^{(k+1)} \) divides \(m \).

Now let \(n := \text{char} R^{(k+1)} \neq 0 \). For each \(r, r_1, \ldots, r_k, s_1, \ldots, s_k \in R \) we have

\[
\cdots (((nr(1 + r_1) \circ s_1)(1 + r_2) \circ s_2) \cdots)(1 + r_k) \circ s_k =
\]

\[
= n((1 + r_1) \circ s_1)(1 + r_2) \circ s_2) \cdots)(1 + r_k) \circ s_k = 0
\]

By (1), it follows that \(nr \in F^{(k)}(R) \). Hence \(\text{char} R/F^{(k)}(R) \) divides \(n \).

It follows immediately that \(\text{char} R/F^{(k)}(R) = 0 \) if and only if \(\text{char} R^{(k+1)} = 0 \). \(\blacksquare \)

The following proposition gives a relation between the characteristic of the factors of the upper central series of a ring and that of its strong centre.

Proposition 2. If \(R \) is a ring such that \(\text{char} F(R) \neq 0 \), then the characteristic of \(F^{(k+1)}(R)/F^{(k)}(R) \) divides the characteristic of \(F(R) \), for each non-negative integer \(k \).

Proof. Let \(n := \text{char} F(R) \neq 0 \). We show by induction on \(k \) that \(nx \in F^{(k)}(R) \), for all \(x \in F^{(k+1)}(R) \) and \(k \in \mathbb{N}_0 \).

For \(k = 0 \), there is nothing to prove. Let \(k \geq 1 \) and assume that \(ny \in F^{(k-1)}(R) \) for each \(y \in F^{(k)}(R) \). Let \(x \in F^{(k-1)}(R) \). For all \(r, s \in R \) we have \(x(1+r)os \in F^{(k)}(R) \). Inductively, \(nx(1+r)os \in F^{(k-1)}(R) \). Hence \((nx)(1+r)os \) belongs to \(F^{(k-1)}(R) \) and \(nx \in F^{(k)}(R) \), by (1). \(\blacksquare \)

3 Analogue of a theorem of P. Hall

In [4], Jennings proves that a ring is strongly Lie nilpotent if and only if it has a finite central series. Moreover, we have

Proposition 3. Let \(R \) be a ring. If \(c \in \mathbb{N} \) and \(0 = I_0 \subset \ldots \subset I_c = R \) is a central series of \(R \), then

\[
R^{(c-k+1)} \subseteq I_k \subseteq F^{(k)}(R)
\]

for each \(k \in \{0, 1, \ldots, c\} \).

Proof. The first inclusion holds by [4] (Theorem 2.1). We prove, by induction on \(k \), that \(I_k \subseteq F^{(k)}(R) \). For \(k = 0 \), there is nothing to prove. Let \(k \geq 1 \)
and assume that $I_{k-1} \subseteq F^{(k-1)}(R)$. Let $z \in I_k$. Since I_k/I_{k-1} is a central factor, we have inductively

$$z(1 + r) \circ s \in I_{k-1} \subseteq F^{(k-1)}(R)$$

for all $r, s \in R$. Hence $z \in F^{(k)}(R)$, by (1).

The proposition shows that the lower and upper central series of any strongly Lie nilpotent ring R have the same length c. This length c is called the strongly Lie nilpotent class of R.

The following result is analogous to one obtained for nilpotent rings (see [5], 1.2.6).

Proposition 4. If R is a strongly Lie nilpotent ring, then $\text{char } R = 0$ if and only if $\text{char } F(R) = 0$.

Proof. If $\text{char } F(R) = 0$, then clearly $\text{char } R = 0$. Conversely, let $\text{char } R = 0$ and assume that $\text{char } F(R) = m \neq 0$. If c is the strongly nilpotent class of R, then $R^{(c)} \subseteq F(R)$. Hence $\text{char } R^{(c)} \neq 0$. Let $i := \min\{j | j \in \mathbb{N}, \text{ char } R^{(j)} \neq 0\}$ and let $n := \text{char } R^{(i)}$. Then there is an element $x \in R^{(i-1)}$ such that $mnx \neq 0$.

For all $y, z \in R$, we have

$$nx(1 + y) \circ z = n(x(1 + y) \circ z) = n(x \circ z + xy \circ z) = 0$$

By (1), $nx \in F(R)$, therefore $mnx = 0$, a contradiction to the choice of x.

The results above are examples of a strong analogy between the theories of nilpotent groups and strongly Lie nilpotent rings.

In particular, we recall the well-known theorem of P. Hall for nilpotent groups: if N is a normal subgroup of a group G and $N, G/N'$ are nilpotent, then G is nilpotent (see [6]). A version of this theorem for Lie algebras is contained, for example, in [1].

We give a version of the theorem of P. Hall for strongly Lie nilpotent rings.

Lemma 1. Let R be a ring, I an ideal of R such that its strong centre $F(I)$ is an ideal of R and M the largest ideal of R contained in $I \circ I$.

If there is a finite central series of R between $F(I)$ and I, then there is a finite central series of R between 0 and M.

Proof. Let $t \in \mathbb{N}$ and

$$F(I) = I_0 \subseteq I_1 \subseteq \cdots \subseteq I_t = I$$

(2)

a finite central series of R between $F(I)$ and I.

For each $i \in \mathbb{N}$, $i \leq 2t$, let B_i the additive subgroup of R generated by $\bigcup_{h+k=i} I_h \circ I_k$, and let \overline{B}_i be the ideal R generated by B_i.
Evidently
\[0 = \mathcal{B}_1 \subseteq \mathcal{B}_2 \subseteq \cdots \subseteq \mathcal{B}_{2t} \]
(3)

We show that (3) is a central series of \(R \).

It is sufficient to prove that, for all \(a \in I_h, \ b \in I_k \) such that \(h + k = i \) and for all \(r, s, v \in R \) we have
\[
\begin{align*}
 a \circ b \circ v & \in \mathcal{B}_{i-1} \\
 (a \circ b) \circ r \circ v & \in \mathcal{B}_{i-1} \\
 r(a \circ b) \circ v & \in \mathcal{B}_{i-1} \\
 r(a \circ b) \circ s \circ v & \in \mathcal{B}_{i-1}
\end{align*}
\]

Since (2) is a central series, by the Jacobi identity, we have
\[
(a \circ b) \circ v = a \circ v \circ b + v \circ b \circ a \in B_{i-1} \subseteq \mathcal{B}_{i-1}
\]

Moreover (cfr. [3], Lemma 2)
\[
(a \circ b)(r \circ v) = v(a \circ r) \circ b \\
- r(a \circ b \circ v) \\
- a \circ r \circ bv + a \circ br \circ v \\
- a \circ b \circ v \circ r + a \circ r \circ b \circ v \in \mathcal{B}_{i-1}.
\]

Hence
\[
(a \circ b)r \circ v = (a \circ b \circ v)r + (a \circ b)(r \circ v) \in \mathcal{B}_{i-1}.
\]

It follows that
\[
r(a \circ b) \circ v = -(a \circ b \circ r) \circ v + (a \circ b)r \circ v \in \mathcal{B}_{i-1}.
\]

Finally,
\[
s(a \circ b)r \circ v = s((a \circ b)r \circ v) + (s \circ v)(a \circ b)r \in \mathcal{B}_{i-1}.
\]

Hence for all \(i \in \mathbb{N}, \ 1 < i \leq 2t \) we have
\[
(B_i \cap M) \circ R \subseteq (B_i \circ R) \cap (M \circ R) \subseteq B_{i-1} \cap M.
\]

Therefore
\[
0 = B_1 \cap M \subseteq \cdots \subseteq B_{2t} \cap M = M
\]
is a finite central series of \(R \) between 0 and \(M \).

Theorem 1. Let \(R \) be a ring, \(I \) an ideal of \(R \) such that its strong centre \(F(I) \) is an ideal of \(R \), and let \(M \) be the largest ideal of \(R \) contained in \(I \circ I \).

If \(I \) and \(R/M \) are strongly Lie nilpotent rings, then \(R \) is strongly Lie nilpotent.
Proof. We proceed by induction on the strongly Lie nilpotent class \(c \) of \(I \). If \(c = 1 \), then \(I = F(I) \) and \(I \circ I = 0 \). It follows that \(M = 0 \). Hence \(R \) is strongly Lie nilpotent.

If \(c = 2 \), then \(I \circ I \subseteq F(I) \). Hence \(M \subseteq F(I) \). As \(R/M \) is strongly nilpotent, it follows that \(R/F(I) \) is strongly Lie nilpotent. Now, \(I/F(I) \) is an ideal of \(R/F(I) \), and therefore there is a finite central series of \(R \) between \(F(I) \) and \(I \).

By \(1 \), there is a finite central series of \(R \) between \(0 \) and \(M \). It follows that \(R \) is strongly Lie nilpotent.

If \(c > 3 \) and \(\overline{M} \) is the largest ideal of \(R/F(I) \) contained in \(I/F(I) \circ I/F(I) \), then \(F(I) \subseteq M \) and \(\overline{M} = M/F(I) \). Since \((R/F(I))/\overline{M} \cong R/M \), we have that \((R/F(I))/\overline{M} \) is strongly Lie nilpotent. Now \(I/F(I) \) is strongly Lie nilpotent of class \(c - 1 \) and, inductively \(R/F(I) \) is strongly Lie nilpotent.

Proceeding as in the case of \(c = 2 \), we complete our proof.

References

