Stable cut loci on surfaces

Mu Yeol Park*
Department of Mathematics, Dong-A University, Sa-Ha, Pusan 604-714, South Korea, e978410@home.donga.ac.kr

Received: 5 March 1998; accepted: 7 September 1999.
Keywords: cut locus, parallel curves, boundary curves
MSC 2000 classification: primary 53C99, secondary 58C27, 58C28

Introduction

Let M be a 2-dimensional compact connected smooth manifold without boundary. Let $p \in M$ be fixed. Take a geodesic $g(t), 0 \leq t \leq \infty$, starting at p. Then the first point on this geodesic where the geodesic ceases to minimize distance from p is called the cut point of p along the geodesic $g(t)$. The cut locus $C(p)$ is the set of all cut points of p. Since M is compact, $C(p) \neq \emptyset$. The graph G is said to be smoothly embedded in M if for every point $q \in G$, there exists a smooth coordinate chart $\rho: V \rightarrow R^{2}$ where V is an open neighborhood of q in M, such that, for every edge e of G with $q \in e, \rho(e \cap V)$ is contained in a 1-dimensional affine subspace of R^{2}. Suppose G is a connected finite graph which is smoothly embedded in M, and whose vertices have degree 1 or 3 only. Furthermore, suppose that for every vertex v of G of degree 3, the tangent vectors to M at v in the directions of the three edges of G incident to v are not contained in a closed half-space of $T_{v} M$. Also, suppose that the inclusion map $\iota: G \rightarrow M$ induces an isomorphism $\iota_{*}: H_{1}(G ; Z / 2) \rightarrow H_{1}(M ; Z / 2)$. In §1-3, with the preceding hypothesis, we construct a smooth Riemannian metric α on M and find a point $p \in M$ so that the cut locus $C(p, \alpha)$ of p with respect to α is G, and in $\S 4$, we show that the cut locus $C(p, \alpha)$ is stable for α.

1 Construction of the model curves

Let $\gamma: R \rightarrow R^{2}$ be a C^{∞} unit speed plane curve.
Then $\gamma^{\prime}(t)=T_{\gamma}(t)$ and $T_{\gamma}^{\prime}(t)=\kappa_{\gamma}(t) N_{\gamma}(t)$ where $T_{\gamma}(t)$ is the unit tangent vector of $\gamma(t), N_{\gamma}(t)$ is the unit normal vector of $\gamma(t)$ such that $\left\{T_{\gamma}(t), N_{\gamma}(t)\right\}$ has the standard orientation and $\kappa_{\gamma}(t)$ is the signed curvature of $\gamma(t)$. The center

[^0]of curvature of $\gamma(t)$ at $\gamma\left(t_{0}\right)$ is $\gamma\left(t_{0}\right)+\frac{N_{\gamma}\left(t_{0}\right)}{\kappa_{\gamma}\left(t_{0}\right)}$ where $\kappa_{\gamma}\left(t_{0}\right) \neq 0$. The evolute of $\gamma(t)$ is $\gamma(t)+\frac{N_{\gamma}(t)}{\kappa_{\gamma}(t)}$ where $\kappa_{\gamma}(t) \neq 0$. The parallel curve of $\gamma(t)$ at distance r is given by $\gamma(t)+r N_{\gamma}(t)$. The cut point of $\gamma\left(t_{0}\right)$ is the first point on the normal line at $\gamma\left(t_{0}\right)$ in the direction of $N_{\gamma}\left(t_{0}\right)$ where the normal line ceases to minimize its distance from γ. The cut locus of γ is the set of all cut points of $\gamma(t)$ (i. e. the cut locus of γ is the Maxwell set of the family of parallel curves of γ with the distance parameter). The cut point on the normal ray $\gamma(t)+u N_{\gamma}, u \geq 0$ cannot occur after the center of curvature of $\gamma(t)$. This is easy to prove. We also need the following generalization of the cut locus of the plane curve. Let $\gamma_{i}:\left[a_{i}, b_{i}\right] \rightarrow R^{2}, i=1,2, \ldots, n$ be a finite collection of smooth disjoint arcs. For $t_{0} \in\left[a_{i}, b_{i}\right]$, the cut locus of $\gamma_{i}\left(t_{0}\right)$ with respect to $\gamma_{1}, \ldots, \gamma_{n}$ is the first point on the normal line at $\gamma_{i}\left(t_{0}\right)$ in the direction of $N_{\gamma}\left(t_{0}\right)$ where the normal line ceases to minimize distance to the union of the arcs. The cut locus of $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ is the set of all such cut points.

Lemma 1. Let $g:[c, d] \rightarrow R$ be a C^{∞} function and $a, b \in R^{2}$ with $\|b\|=1$. There exists a unique C^{∞} plane curve C in R^{2} having parametrization f by arc length such that if $f:[c, d] \rightarrow R^{2}$ then $f(c)=a, f^{\prime}(c)=b$, and $\kappa_{f}(t)=g(t)$ for every $t \in[c, d]$. In other words, a plane curve is determined up to a rigid motion, by its signed curvature.

The proof of Lemma 1 may be found in the standard Differential Geometry textbooks. Now, we are ready to construct three different types of model curves. Let θ be a variable angle such that $\frac{\pi}{2}>\theta>\frac{\pi}{3}$.
(1) Construct a curve whose curvature function is constant, i. e. an arc of a circle with angle $2 \theta-\frac{2}{3} \pi$ starting from $\left(s_{0} \cos \left(\frac{\pi}{2}-\theta\right), l+s_{0} \sin \left(\frac{\pi}{2}-\theta\right)\right)$ to $\left(\frac{\sqrt{3}}{2} l+s_{0} \cos \left(\theta-\frac{\pi}{6}\right),-\frac{l}{2}+s_{0} \sin \left(\theta-\frac{\pi}{6}\right)\right)$, where l is the given positive number and $0<s_{0}<\frac{\sqrt{3} l \sqrt{1+\tan \left(\frac{\pi}{2}-\theta\right)}}{2\left(1-\sqrt{3} \tan \left(\frac{\pi}{2}-\theta\right)\right)}$.
(2) Construct a curve γ satisfying the following conditions.
a. $\kappa_{\gamma}(t)>0$ near $t=0, \kappa_{\gamma}^{\prime}(0)=0$ and $\kappa_{\gamma}^{\prime \prime}(0)<0$.
b. $\kappa_{\gamma}(-t)=\kappa_{\gamma}(t)$ and κ_{γ} is monotonically decreasing for $t>0$.
c. If $\gamma(t)=(X(t), Y(t))$, then $\gamma(-t)=(-X(t), Y(t)), \gamma(0)=(0,-\delta)$, and $X^{\prime}(t), Y^{\prime}(t)>0$ for $t>0$ where $\delta>0$.

The cut locus of γ is contained in Y-axis by some consideration. Finally, we'll show that the end-point of the cut locus is an ordinary cusp of the
evolute of γ. Let $F: R \times R^{2} \rightarrow R$ be defined by

$$
\begin{gathered}
F(t, x):=(x-\gamma(t)) \cdot(x-\gamma(t))-r^{2} \text { where } r>0 \\
\frac{\partial F}{\partial t}=(x-\gamma(t)) \cdot T_{\gamma}(t)=0 \text { implies } x-\gamma(t)=\lambda N_{\gamma}(t) \text { for some } \lambda .
\end{gathered}
$$

Also, $F(t, x)=0$ implies that $\lambda= \pm r$.

$$
\begin{aligned}
\frac{\partial^{2} F}{\partial t^{2}} & =-2\left(-T_{\gamma}(t) \cdot T_{\gamma}(t)+(x-\gamma(t)) \cdot \kappa_{\gamma}(t) N_{\gamma}(t)\right) \\
& =-2\left(-1+(x-\gamma(t)) \cdot \kappa_{\gamma}(t) N_{\gamma}(t)\right)
\end{aligned}
$$

$F=\frac{\partial F}{\partial t}=\frac{\partial^{2} F}{\partial t^{2}}=0$ implies $x=\gamma(t)+\frac{N_{\gamma}(t)}{\kappa_{\gamma}(t)}$.
Let $K: R \times R^{2} \rightarrow R$ be given by

$$
K(t, x):=(x-\gamma(t)) \cdot T_{\gamma}(t) .
$$

Then the discriminant set $\left\{\left.\gamma(t)+\frac{N_{\gamma}(t)}{\kappa_{\gamma}(t)} \right\rvert\, t \in(-\epsilon, \epsilon)\right\}$ of K is the evolute of γ. (The discriminant set of K is $\left\{x \in R^{2}\right.$; there exists $t \in R$ with $\left.\left.F(t, x)=\frac{\partial F}{\partial t}(t, x)=0\right\}\right)$

$$
\begin{gathered}
\frac{\partial K}{\partial t}=\frac{\partial^{2} K}{\partial t^{2}}=0 \text { at } t=0 \text { if and only if } \\
{\left[\kappa_{\gamma}(0) \neq 0, \kappa_{\gamma}^{\prime}(0)=0, \text { and } x=\gamma(0)+\frac{N_{\gamma}(0)}{\kappa_{\gamma}(0)}\right],}
\end{gathered}
$$

since $\frac{\partial^{2} K}{\partial t^{2}}=\frac{\kappa_{\gamma}^{\prime}(t)}{\kappa_{\gamma}(t)}=0$ at $t=0\left(\right.$ because $\left.\kappa_{\gamma}^{\prime}(0)=0\right)$
To be an ordinary cusp of the evolute of $\gamma, \frac{\partial^{3} K}{\partial t^{3}} \neq 0$ at $t=0$. $\frac{\partial^{3} K}{\partial t^{3}}=$ $\frac{\kappa_{\gamma}^{\prime \prime}(t)}{\kappa_{\gamma}(t)} \neq 0$ at $t=0$ since $\kappa_{\gamma}^{\prime \prime}(0) \neq 0$. (see J. W. Bruce and P. J. Giblin [2])
(3) Construct a curve γ satisfying the following conditions:
a. $\kappa_{\gamma}(t)>0$ for all $t, \kappa_{\gamma}^{\prime}(0)=0$ and $\kappa_{\gamma}^{\prime \prime}(0)>0$.
b. $\kappa_{\gamma}(-t)=\kappa_{\gamma}(t)$ and κ_{γ} is monotonically increasing for $t>0$.
c. If $\gamma(t)=(X(t), Y(t))$, then $\gamma(-t)=(-X(t), Y(t)), \gamma(0)=(e, 0)$, and $X^{\prime}(t), Y^{\prime}(t)>0$ for $t>0$ where $e>0$.

The initial point is $\left(-w+s_{0} \sin \theta, s_{0} \sin \theta\right)$ and initial vector is $\left(\cos \left(\frac{\pi}{2}-\right.\right.$ $\left.\theta), \sin \left(\frac{\pi}{2}-\theta\right)\right)$. Also, we can construct another curve below the X-axis which is symmetric with respect to X-axis.

The parallel curves of these two curves at distance r intersect each other transversely for some r since the two normal lines of two curves intersect each other transversely at points of the X-axis between $(-w, 0)$ and $(w, 0)$ except $(0,0)$. The cut locus of these two curves is the straight line segment from $(-w, 0)$ to $(w, 0)$.

So we have finished the local construction of three different types of model curves.

2 Construction of the regular neighborhoods

Let q^{1} be a vertex of G of degree 1 . By definition of a smooth embedding, there exists a smooth coordinate chart $\rho: V_{1} \rightarrow R^{2}$ where V_{1} is an open neighborhood of q^{1} in M, such that, for the unique edge e of G with $q^{1} \in e, \rho\left(e \cap V_{1}\right)$ is contained in a ray from $\rho\left(q^{1}\right)$.

Let τ be a Euclidean motion (translation and rotation) of R^{2} which takes $\rho\left(q^{1}\right)$ to the origin and R to the positive X-axis. Let $\xi_{1}=\tau \circ \rho$, and let $U_{1}=$ $\xi_{1}\left(V_{1}\right)$. Choose $\delta_{1}>0$ such that $B_{\delta_{1}}(0)=\left\{(x, y) \in R^{2} \mid x^{2}+y^{2}<\left(\delta_{1}\right)^{2}\right\} \subset U_{1}$, and $\left(\xi_{1}\right)^{-1}\left(B_{\delta_{1}}(0)\right)=V_{1}^{\prime} \subset V_{1}$.

Let q^{3} be a vertex of degree 3. By definition of a smooth embedding and our assumption on the vertices of degree 3 , there exists a smooth coordinate chart $\rho: V_{3} \rightarrow R^{2}$ where V_{3} is an open neighborhood of q^{3}, such that $\rho\left(V_{3} \cap G\right)$ is contained in three rays starting from $\rho\left(q^{3}\right)$ in $\rho\left(V_{3}\right)$ with angles which are all $<\pi$.

Lemma 2. Given three rays r_{1}, r_{2} and r_{3} from $(0,0)$ all of whose intersection angles are less than π, there exists a non-singular linear transformation $L: R^{2} \rightarrow R^{2}$ such that $L\left(r_{1}\right)=\{k(1,0) \mid k \geqslant 0\}, L\left(r_{2}\right)=\left\{\left.k\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \right\rvert\, k \geqslant 0\right\}$ and $L\left(r_{3}\right)=\left\{\left.k\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \right\rvert\, k \geqslant 0\right\}$.

Lemma 2 is trivial since the projective group $P G L(2, R)$ acts transitively on triple of points of the projective plane.

Next, we will define a coordinate chart for each open neighborhood of a edge of G. Let $i=1,2, \ldots$, the number of vertices of degree 1 and $k=1,2, \ldots$, the number of vertices of degree 3 . For each i and k, we have δ_{1}^{i} and δ_{3}^{k} by the previous two constructions. Let $\delta:=\min \left\{\delta_{1}^{i}, \delta_{3}^{k}, 1\right\}$. Thus we have coordinate chars $\xi_{1}^{i}: O_{1}^{i} \rightarrow B_{\delta}(0)$ and $\xi_{3}^{k}: O_{3}^{k} \rightarrow B_{\delta}(0)$ (i. e. $O_{1}^{i}=\left(\xi_{1}^{i}\right)^{-1}\left(B_{\delta}(0)\right)$ and $O_{3}^{k}=\left(\xi_{3}^{k}\right)^{-1}\left(B_{\delta}(0)\right)$.

Since the normal bundle of an edge \bar{e} is trivial, we have a diffeomorphism g from the normal bundle of \bar{e} to $[-2,2] \times R$ where the interval $[-2,2]$ parametrizes \bar{e}.

By our previous construction of neighborhoods of vertices, we have coordinate charts $\tilde{\xi}_{1}^{i}: O_{1}^{i} \rightarrow B_{\delta}((2,0))$ (or $B_{\delta}((-2,0))$) and $\tilde{\xi}_{3}^{k}: O_{3}^{k} \rightarrow B_{\delta}((2,0)$) (or $\left.B_{\delta}((-2,0))\right)$ where the chart $\tilde{\xi}_{1}^{i}$ (resp. $\left.\tilde{\xi}_{3}^{k}\right)$ is obtained from the above ξ_{1}^{i} (resp. $\left.\xi_{3}^{k}\right)$, by composition with Euclidean isometries. We choose the parametrization $[-2,2] \rightarrow \bar{e}$ so that it is equal to the inverse of the restriction of the given coordinate charts on $[-2,-2+\delta)$ and $(2-\delta, 2]$. On $\bigcup_{i, k}\left(O_{1}^{i} \cup O_{3}^{k}\right)$, there is the flat metric induced by the coordinate charts. If we consider the space of metrics on M as the space of sections of a fibre bundle with base M and fibre the set of positive definite $(n \times n)$ matrices (see M. Buchner [3, p. 203]), we can extend this flat metric together with the metric on \bar{e} induced by the given paremetrization to neighborhood of \bar{e} in M by the prolongation theorem for smooth sections.

Let exp: $[-2,2] \times R \rightarrow M$ be the composition of g^{-1} with the exponential map of the normal bundle of \bar{e}. Then by the tubular neighborhood theorem, exp restricts to a diffeomorphism h between an open neighborhood U_{2} of the zero section in $[-2,2] \times R$ and a neighborhood V_{2} of \bar{e}. We define a new metric on V_{2} as the flat metric induced by h; i. e. so that h is an isometry. Since h was already an isometry near the vertices of e, this new metric extends the flat metric defined near the vertices. Thus we obtain a flat metric on a neighborhood of G. Then there is a $\epsilon_{0}>0$ such that $[-2,2] \times\left(-\epsilon_{0}, \epsilon_{0}\right) \subset U_{2}$. Let $\epsilon^{\prime}:=\min \left\{\epsilon_{0}, \frac{\delta}{2}\right\}$ and $h^{-1}\left([-2.2] \times\left(-\epsilon^{\prime}, \epsilon^{\prime}\right) \subset V_{2}\right.$. For any $n=1,2, \ldots$ the number of edges, there is ϵ_{n}^{\prime} such that $\left(h_{n}\right)^{-1}\left([-2,2] \times\left(-\epsilon_{n}^{\prime}, \epsilon_{n}^{\prime}\right)\right) \subset V_{2}^{n}$. Let $\epsilon:=\min \left\{\epsilon_{n}^{\prime}\right\}$.

Let us define subgraphs G_{1}^{i}, G_{2}^{j}, and G_{3}^{k} of the graph G as follows.
(1) $G_{1}^{i}:=$ an edge e together with an incident vertex of degree 1 but without incident vertex of degree 3 where $i=1,2, \ldots$, number of vertices of degree 1.
(2) $G_{2}^{j}:=$ an edge e without two incident vertices of degree 3 where $j=$ $1,2, \ldots$, number of edges with two incident vertices of degree 3 .
(3) $G_{3}^{k}:=G \cap O_{3}^{k}$, where $k=1,2, \ldots$, number of vertices of degree 3

We want to construct the neighborhoods of G_{1}^{i}, G_{2}^{j}, and G_{3}^{k}.
On G_{1}^{i}, we can get a coordinate chart $\eta_{1}^{i}: J_{1}^{i} \rightarrow \mathcal{J}_{\infty}^{\rangle}$as follows. By our previous construction, we obtain $\mathcal{J}_{\infty}^{>}=(-\epsilon, 4) \times(-\epsilon, \epsilon)$. For $p \in O_{1}^{i}, \eta_{1}^{i}(p)=$ $\xi_{1}(p)$ and for $p \in O_{2}^{j}, \eta_{1}^{i}(p)=h(p)+(2,0)$ (Recall that $\left.\delta \geq 2 \epsilon>0\right)$. Let $J_{1}^{i}:=\left(\eta_{1}^{i}\right)^{-1}\left(\mathcal{J}_{\infty}\right)$.

On G_{2}^{j}, we just get a coordinate chart $\eta_{2}^{j}: J_{2}^{j} \rightarrow \mathcal{J}_{\in}^{\mid}$by $\eta_{2}^{j}=h, \mathcal{J}_{\in}^{\mid}=$ $(-\epsilon, \epsilon) \times(-\epsilon, \epsilon)$ and $J_{2}^{j}:=\left(\eta_{2}^{j}\right)^{-1}\left(\mathcal{J}_{\epsilon}^{\mid}\right)$.

On G_{3}^{k}, we get a coordinate chart $\eta_{3}^{k}: J_{3}^{k} \rightarrow \mathcal{J}_{\ni}^{\|}$by $\eta=\xi_{3}, \mathcal{J}_{\ni}^{\|}=\mathcal{B}_{\delta}(\prime)$ and $J_{3}^{k}:=\left(\eta_{3}^{k}\right)^{-1}\left(\mathcal{J}_{\ni}^{\|}\right)$.

In J_{1}^{i}, J_{2}^{j}, and J_{3}^{k}, we get the flat metric induced by the coordinate charts $\eta_{1}^{i}, \eta_{2}^{j}$, and η_{3}^{k}. Also, if $J_{1}^{i} \cap J_{2}^{j} \neq \emptyset,\left(\eta_{3}^{k}\right)^{-1} \circ \eta_{1}^{i}: J_{1}^{i} \cap J_{3}^{k} \rightarrow J_{1}^{i} \cap J_{3}^{k}$ is an isometry, and if $J_{2}^{j} \cap J_{3}^{k} \neq \emptyset,\left(\eta_{3}^{k}\right)^{-1} \circ$ (Euclidean motions) $\circ \eta_{2}^{j}: J_{2}^{j} \cap J_{3}^{k} \rightarrow J_{2}^{j} \cap J_{3}^{k}$ is an isometry.

Let $J:=\bigcup_{i, j, k}\left(J_{1}^{i} \cup J_{2}^{j} \cup J_{3}^{k}\right)$. So J is a regular neighborhood of G in M.

3 Construction of the metric α

By the construction of $\mathcal{J}_{\infty}^{\rangle}, \mathcal{J}_{\in}^{\mid}$, and $\mathcal{J}_{\ni}^{\|}$in section 2, we have δ and ϵ with $\delta>2 \epsilon>0$. Let $\delta^{\prime}=\frac{3}{4} \delta$ and $s_{0}=\frac{\epsilon}{\sin \theta}$.

In $\mathcal{J}_{\ni}^{\|}$, draw the circle with center $(0,0)$ and radius δ^{\prime} and three bands with width ϵ whose center line is the edge from $(0,0)$ to $(\delta, 0)$. We get the intersection points between this circle and the boundary of the bands, and two line segments from these points to a point on the edge with intersection angle Θ with the corresponding edge. The length of each of the line segments is s_{0}. Denote the length from $(0,0)$ to a point of the edge at which the line segments intersect by l. By construction (I) of $\S 1$, we can get the curve $\gamma:(-c, c) \rightarrow \mathcal{J}_{\infty}^{\prime}$ such that $\gamma(-c)=\left(4-l-s_{0} \cos \Theta, s_{0} \sin \Theta\right)$ and $\gamma(0)=\left(-\frac{1}{\kappa_{\gamma}(0)}, 0\right)$.

In \mathcal{J}_{\in}^{\mid}, by construction (III) of $\S 1$, we get $\gamma:(-d, d) \rightarrow \mathcal{J}_{\in}^{\mid}$such that $\gamma(-d)=\left(-2+l-s_{0} \cos \Theta, s_{0} \sin \Theta\right)$ and $\gamma(0)=(0, A)$ for $A>0$.

Then in $J_{1}^{i} \cap J_{3}^{k}$ or $J_{2}^{j} \cap J_{3}^{k}$, the inverse of these constructed arcs in $\mathcal{J}_{\infty}^{\rangle}, \mathcal{J}_{\in}^{\mid}$, and $\mathcal{J}_{\ni}^{\|}$under the coordinate charts fit smoothly by isometries since near their ends of the arcs have the same constant curvature.

Finally, in $J \subset M$, the union of the inverse of the constructed arcs under the coordinate charts are smooth curves by above reason. Let these curves be called Γ and J^{\prime} the closed region bounded by Γ (including G). Obviously $G \subset \operatorname{int}\left(J^{\prime}\right) \subset$ $J^{\prime} \subset J$. Consider the Mayer-Vietoris exact sequence of the pair $\left(J, \overline{M \backslash J^{\prime}}\right)$ with coefficients $Z / 2$.

$$
\begin{align*}
& \cdots \rightarrow H_{2}\left(J \backslash \operatorname{int}\left(J^{\prime}\right)\right) \rightarrow H_{2}(J) \oplus H_{2}\left(\overline{M \backslash J^{\prime}}\right) \rightarrow H_{2}(M) \\
& \rightarrow H_{1}\left(J \backslash \operatorname{int}\left(J^{\prime}\right)\right) \rightarrow H_{1}(J) \oplus H_{1}\left(\overline{M \backslash J^{\prime}}\right) \rightarrow H_{1}(M) \\
& \rightarrow \tilde{H}_{0}\left(J \backslash \operatorname{int}\left(J^{\prime}\right)\right) \rightarrow \tilde{H}_{0}(J) \oplus \tilde{H}_{0}\left(\overline{M \backslash J^{\prime}}\right) \rightarrow \tilde{H}_{0}(M) \rightarrow 0 \tag{1}
\end{align*}
$$

Since M is a 2-dimensional compact connected manifold without boundary, $H_{2}(M)=Z / 2$ and $\tilde{H}_{0}(M)=0$. Since Γ is a deformation retract of $J \backslash \operatorname{int}\left(J^{\prime}\right)$, $H_{2}\left(J \backslash \operatorname{int}\left(J^{\prime}\right)=0\right.$. Since $\overline{M \backslash J^{\prime}}$ is a surface with non-empty boundary and $\overline{M \backslash J^{\prime}} \subset M, H_{2}\left(\overline{M \backslash J^{\prime}}\right)=0$. Since G is a deformation retract of J^{\prime} and J^{\prime} is homotopy equivalent to $J, H_{2}(J)=0$ and $\tilde{H}_{0}(J)=0$. Also, since the inclusion map $\iota: G \rightarrow M$ induces an isomorphism $\iota_{*}: H_{1}(G ; Z / 2) \rightarrow H_{1}(M ; Z / 2)$,
$H_{1}(J)=H_{1}(M)=(Z / 2)^{m}$ for some positive integer m. Since $J \backslash \operatorname{int}\left(J^{\prime}\right)$ is homotopy equivalent to Γ, the inclusion maps $J \backslash \operatorname{int}\left(J^{\prime}\right) \rightarrow J$ and $J \backslash \operatorname{int}\left(J^{\prime}\right) \rightarrow$ $\overline{M \backslash J^{\prime}}$ induce the zero homomorphisms. Thus $H_{1}\left(J \backslash \operatorname{int}\left(J^{\prime}\right)\right)=H_{2}(M)=Z / 2$. Then Γ is connected, so $\tilde{H}_{0}\left(J \backslash \operatorname{int}\left(J^{\prime}\right)\right)=0$. Now exactness of the Mayer-Vietoris sequence implies that $H_{1}\left(\overline{M \backslash J^{\prime}}\right)=0$. Also, $\tilde{H}_{0}\left(\overline{M \backslash J^{\prime}}\right)=0$. Thus $\overline{M \backslash J^{\prime}}$ is diffeomorphic to a disk D^{2} with Γ mapping to ∂D^{2}.

Proposition 1. Let D be an n-disk embedded in C^{∞} manifold M. For any Riemannian metric on M \int(D), there is a Riemannian metric on M which agrees with the original metric on $M \backslash$ int (D) such that for some p in $D, \exp _{p}$ is a diffeomorphism of unit disk about the origin in $T_{p}(M)$ onto M.

The proof of Proposition 3 can be found in Weinstein [8, Proposition C]. By Proposition 3, we can extend the flat metric constructed on the neighborhood J^{\prime} of the graph G to a metric α on M such that for some $p \in M \backslash J^{\prime}, \exp _{p}$: $T_{p}(M) \rightarrow M$ is a diffeomorphism from the unit disk in $T_{p}(M)$ onto $\overline{M \backslash J^{\prime}}$. In particular, the image of the unit circle in $T_{p}(M)$ is the curve Γ, and the geodesic rays from p are orthogonal to Γ. Thus, in the isometric coordinate neighborhoods $\mathcal{J}_{\infty}^{\prime}, \mathcal{J}_{\epsilon}^{〕}$, and $\mathcal{J}_{\ni}^{\|}$constructed above, the geodesic rays from p are the normal lines to the model curves. Since the metric in J^{\prime} is flat, the graph G is the cut locus $C(p, \alpha)$.

4 Stability of $C(p, \alpha)$

In section 3, we have constructed a metric α such that $C(p, \alpha)=G$ for some $p \in M$. The cut locus $C(p, \alpha)$ is said to be stable for α if there is a neighborhood W of α in the space of all metrics on M with the Whitney C^{∞}-topology such that for each $\beta \in W$, there is a diffeomorphism $A(\beta): M \rightarrow M$ with the property that $A(\beta)(C(p, \alpha)=C(p, \beta)$ (see M. Buchner [3, 4]). In this section, we want to prove that $C(p, \alpha)$ is stable for α. To do this, we use Looijenga's set-up (see Looijenga [5]). Let Γ, α, and $G \subset J^{\prime} \subset J$ be as in the previous section, and let r_{0} be the largest distance from a point of G to the curve Γ. From now on, we denote Γ as $\gamma: R \rightarrow M$ like a function. Let $\delta>0$ and $U:=\left\{(t, x, r): x \in J^{\prime}, d_{\alpha}(x, \gamma(t))<r_{0}+\delta,-\delta<r<r_{0}+\delta\right\}$ where d_{α} is the distance function on M corresponding to the metric α. The family $F: U \rightarrow R$ is defined by

$$
F(t, x, r):=\left(d_{\alpha}(x, \gamma(t))\right)^{2}-r^{2}
$$

The deformation $H: U \rightarrow R \times J^{\prime} \times\left(-\delta, r_{0}+\delta\right)$ associated to the family F is defined by

$$
H(t, x, r):=(F(t, x, r), x, r)
$$

The deformation H is stable if for F^{\prime} close to F (in the Whitney C^{∞} topology) there exist diffeomorphisms $h, h^{\prime}, h^{\prime \prime}$ such that the following diagram commutes

where $H^{\prime}(t, x, r)=\left(F^{\prime}(t, x, r), x, r\right)$ and $h^{\prime}(t, x, r)=\left(t, h^{\prime \prime}(x, r)\right)$ (see Looijenga [5]). Note that $h^{\prime \prime}$ is close to the identity map and the restriction of h to $J^{\prime} \times\left(-\delta, r_{0}+\delta\right)$ is also close to the identity map.

We consider the action of $\operatorname{Diff}(R)$ on $C^{\infty}(R)$ by $h \cdot f:=f \circ h^{-1}$ where $\operatorname{Diff}(R)$ is the group of diffeomorphisms from R to R. Let $\Psi: J^{\prime} \times\left(-\delta, r_{0}+\delta\right) \rightarrow$ $C^{\infty}(R)$ be defined by

$$
(\Psi(x, r))(t):=\left(d_{\alpha}(x, \gamma(t))\right)^{2}-r^{2}(=F(t, x, r))
$$

By the work of Thom, Mather, and Sergeraert, the deformation H is stable if and only if Ψ is transverse to all the $\operatorname{Diff}(R)$-orbits in $C^{\infty}(R)$ (see Looijenga [5]).

The discriminant of the family F is the set

$$
\begin{array}{r}
\mathcal{D}_{F}:=\{(x, r): \text { there exist } t \in R \text { such that } F(t, x, r)=0, \\
\left.\frac{\partial F}{\partial t}(t, x, r)=0\right\} \\
=\{(x, r): \text { there exist } t \in R \text { such that } \Psi(x, r)(t)=0, \\
\left.\frac{d}{d t}(\Psi(x, r)(t))=0\right\}
\end{array}
$$

First, we show that if H is stable then $C(p, \alpha)$ is stable for α. Suppose that the deformation H is stable. The cut locus $G=C(p, \alpha)$ is the image by the projection $J^{\prime} \times\left(-\delta, r_{0}+\delta\right) \rightarrow J^{\prime}$ of the closure \bar{G} of the double point curve of $\mathcal{D}_{\mathcal{F}}$. (To see this, consider $\mathcal{E}_{F}=\left\{(t, x, r): F(t, x, r)=0, \frac{\partial F}{\partial t}(t, x, r)=0\right\}$, then \mathcal{E}_{F} is a smooth surface and the double point curve of $\mathcal{D}_{\mathcal{F}}$ means the double points of the projection of $\mathcal{E}_{\mathcal{F}}$ to (x, r)-space.) Now, if we perturb the metric of M, we obtain a new cut locus G^{\prime}, which is the projection of the cut locus $\overline{G^{\prime}}$ of $\mathcal{D}_{\mathcal{F}^{\prime}}$ corresponding to the perturbed family $H^{\prime}(t, x, r)=\left(F^{\prime}(t, x, r), x, r\right)$ where F^{\prime} is the corresponding perturbed family with respect to metrics. Since H is stable, there exist diffeomorphisms h, h^{\prime} and $h^{\prime \prime}$ such that $H^{\prime}(t, x, r)=\left(h^{\prime} \circ H \circ\right.$ $\left.h^{-1}\right)(t, x, r)$ and $\overline{G^{\prime}}=h^{\prime \prime}(\bar{G})$. Thus $\overline{G^{\prime}}=h^{\prime \prime}(\bar{G})$ where $h^{\prime \prime}$ is a diffeomorphism.

Since the projection $J^{\prime} \times\left(-\delta, r_{0}+\delta\right) \rightarrow J^{\prime}$ restricts to a mapping $\bar{G} \rightarrow G$ and $h^{\prime \prime}$ is close to the identity, $h^{\prime \prime}$ induces a homeomorphism $\phi: G \rightarrow G^{\prime}$ which
extends to a diffeomorphism $\Phi: M \rightarrow M$. Thus the cut locus G of γ is stable with respect to perturbation of the metric α of M.

Next, we prove that Ψ is transverse to all Diff-orbits on $C^{\infty}(R)$. Before the proof, we need to know the $\operatorname{Diff}(R)$-orbits in $C^{\infty}(R)$. The orbits of singularities in $C^{\infty}(R)$ are followings:
(1) f has one critical point t_{0} such that $f\left(t_{0}\right)=f^{\prime}\left(t_{0}\right)=0$ and $f^{\prime \prime}\left(t_{0}\right) \neq 0$.
(2) f has one critical point t_{0} such that $f\left(t_{0}\right)=f^{\prime}\left(t_{0}\right)=f^{\prime \prime}\left(t_{0}\right)=0$ and $f^{\prime \prime \prime}\left(t_{0}\right) \neq 0$.
(3) f has one critical point t_{0} such that $f\left(t_{0}\right)=f^{\prime}\left(t_{0}\right)=f^{\prime \prime}\left(t_{0}\right)=f^{\prime \prime \prime}\left(t_{0}\right)=0$ and $f^{(i v)}\left(t_{0}\right) \neq 0$.
(4) f has two distinct critical points t_{0} and t_{1} such that $f\left(t_{0}\right)=f\left(t_{1}\right)=$ $f^{\prime}\left(t_{0}\right)=f^{\prime}\left(t_{1}\right)=0, f^{\prime \prime}\left(t_{0}\right) \neq 0$ and $f^{\prime \prime}\left(t_{1}\right) \neq 0$.
(5) f has three distinct critical points t_{0}, t_{1}, and t_{2} such that $f\left(t_{0}\right)=f\left(t_{1}\right)=$ $f\left(t_{2}\right)=f^{\prime}\left(t_{0}\right)=f^{\prime}\left(t_{1}\right)=f^{\prime}\left(t_{2}\right)=0, f^{\prime \prime}\left(t_{0}\right) \neq 0, f^{\prime \prime}\left(t_{1}\right) \neq 0$, and $f^{\prime \prime}\left(t_{2}\right) \neq$ 0 .

The preimage of these orbits are the strata of the discriminant locus $\mathcal{D}_{\mathcal{F}} \subset$ $\mathcal{J}^{\prime} \times(-\delta, \nabla,+\delta)$. Type(1) are smooth points of $\mathcal{D}_{\mathcal{F}}$, type (2) are cusp points of $\mathcal{D}_{\mathcal{F}}$, type(3) are swallowtail points of $\mathcal{D}_{\mathcal{F}}$, type(4) are double points of $\mathcal{D}_{\mathcal{F}}$, type(5) are triple points of $\mathcal{D}_{\mathcal{F}}$.

To prove that Ψ is transverse to all $\operatorname{Diff}(R)$-orbits in $C^{\infty}(R)$, we use Mather's infinitesimal versality criterion, which we now describe (see [6]).

Consider an orbit $X \subset C^{\infty}(R)$ along which the function f has exactly s critical points t_{0}, \ldots, t_{s-1} such that $f\left(t_{0}\right)=\cdots=f\left(t_{s-1}\right)=0$. Suppose that $\Psi\left(x_{0}, r_{0}\right)=f \in X$. To prove that Ψ is transverse to X at f, we just consider the germs of $F(t, x, r)$ at $\left(t_{i}, x_{0}, r_{0}\right), i=0, \ldots, s-1$. For each i, let $f_{i}(t) \in R[[t]]$ be the Taylor series of f at t_{i} (so $\left.f_{i}^{(n)}(0)=f^{(n)}\left(t_{i}\right)\right)$. Let $<f_{i}^{\prime}(t)>$ be the ideal of $R[[t]]$ generated by $f_{i}^{\prime}(t)$, and consider the R-algebra

$$
A=\frac{R[[t]]}{\left\langle f_{0}^{\prime}(t)\right\rangle} \times \cdots \times \frac{R[t t]]}{\left\langle f_{s-1}^{\prime}(t)\right\rangle} .
$$

Choose local coordinates $x=(u, v)$ on M near x_{0} and let F_{u}, F_{v}, F_{r} be the elements corresponding to the functions $\frac{\partial F}{\partial u}\left(t, u_{0}, v_{0}, r_{0}\right), \frac{\partial F}{\partial v}\left(t, u_{0}, v_{0}, r_{0}\right)$, $\frac{\partial F}{\partial r}\left(t, u_{0}, v_{0}, r_{0}\right)$, respectively. Then Ψ is transverse to X at f if and only if F_{u}, F_{v}, F_{r} span A as a real vector space (Mather's infinitesimal criterion).

First, we consider the orbits of type(1)-(3) for which $s=1$. Mather's criterion is easily checked for type(1). Furthermore, if $\Psi\left(t, x_{0}, r_{0}\right)$ has type(3) and Ψ is
transverse to the orbits of type (3) at $\left(x_{0}, r_{0}\right)$, then Ψ is transverse to the orbit of type(2) for (x, r) sufficiently close to $\left(x_{0}, r_{0}\right)$. The proof that $C(p, \alpha)$ is stable if H is stable shows that we can replace J^{\prime} by an arbitrary neighborhood of the cut locus $G=C(p, \alpha)$. Thus we need only check that Ψ is transverse to the orbit of type(3).

To check Mather's criterion for singularity of type(3), we can work in a coordinate patch J_{1}^{\prime} as constructed above, In these coordinates,

$$
F(t, u, v, r)=((u, v)-\gamma(t)) \cdot((u, v)-\gamma(t))-r^{2}
$$

where γ is the model curve type (II)(in $\S 1$). By this construction, $\gamma(0)=(0,0)$ and $\gamma^{\prime}(0)=(1,0)$. Thus we can parametrize γ as $\left(t, a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+\cdots\right)$. Now, F has a singularity at $\left(0,0, \frac{1}{\kappa_{\gamma}(0)}, \frac{1}{\kappa_{\gamma}(0)}\right)$. Let $f(t)=F\left(t, 0, \frac{1}{k_{\gamma}(0)}, \frac{1}{\kappa_{\gamma}(0)}\right)$. By Mather's criterion, Ψ is transverse to the orbit of f in $C^{\infty}(R)$ if and only if $\left.\frac{\partial F}{\partial u}\right|_{(u, v, r)=\left(0,1 / \kappa_{\gamma}(0), 1 / \kappa_{\gamma}(0)\right)}$ generate $\frac{R[[t]]}{\left\langle f^{\prime}(t)\right\rangle}$ where $R[[t]]$ is the ring of power series at 0 .

$$
\begin{aligned}
F(t, u, v, r)= & ((u, v)-\gamma(t)) \cdot((u, v)-\gamma(t))-r^{2} \\
= & u^{2}-2 u t+t^{2}+v^{2}-2\left(a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+\cdots\right) v \\
& \quad+\left(a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+\cdots\right)^{2}-r^{2}
\end{aligned}
$$

By the construction(II) of $\S 1, \kappa_{\gamma}(0)>0, \kappa_{\gamma}^{\prime}(0)=0$, and $\kappa_{\gamma}^{\prime \prime}(0) \neq 0$.

$$
\begin{aligned}
& \left.\frac{\partial F}{\partial u}\right|_{(u, v, r)=\left(0,1 / \kappa_{\gamma}(0), 1 / \kappa_{\gamma}(0)\right)}=-2 t \\
& \left.\frac{\partial F}{\partial v}\right|_{(u, v, r)=\left(0,1 / \kappa_{\gamma}(0), 1 / \kappa_{\gamma}(0)\right)}=\frac{2}{\kappa_{\gamma}(0)}-2\left(a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+\cdots\right) \\
& \left.\frac{\partial F}{\partial r}\right|_{(u, v, r)=\left(0,1 / \kappa_{\gamma}(0), 1 / \kappa_{\gamma}(0)\right)}=-2 r=-\frac{2}{\kappa_{\gamma}(0)} \neq 0
\end{aligned}
$$

Also, $a_{2}=\frac{\kappa_{\gamma}(0)}{2}, a_{3}=0$ and $a_{4}=\frac{\kappa_{\gamma}^{3}(0)}{8}$ by basic calculation. Thus

$$
\begin{aligned}
f(t)= & F\left(t, 0, \frac{1}{\kappa_{\gamma}(0)}, \frac{1}{\kappa_{\gamma}(0)}\right) \\
= & t^{2}-\frac{2}{\kappa_{\gamma}(0)} \cdot\left(\frac{\kappa_{\gamma}(0)}{2} t^{2}+\frac{\kappa_{\gamma}(0)}{8} t^{4}+\cdots\right) \\
& +\left(\frac{\kappa_{\gamma}(0)}{2} t^{2}+\frac{\kappa_{\gamma}(0)}{8} t^{4}+\cdots\right)^{2}+\cdots \\
= & \frac{\kappa_{\gamma}(0)}{4} t^{4}+\cdots \\
f^{\prime}(t)= & \kappa_{\gamma}^{2}(0) t^{3}+\cdots
\end{aligned}
$$

It is true that $\left\{1, t, t^{2}\right\}$ spans $\frac{R[t]]}{\left\langle t^{3}\right\rangle}$. Thus Ψ is transverse to the orbit of f in $C^{\infty}(R)$.

Next, we consider the orbit of type(4), for which $s=2$. Now, F has a type(4) singularity at $\left(t_{0}, u_{0}, v_{0}, r_{0}\right)$ and $\left(t_{1}, u_{0}, v_{0}, r_{0}\right)$ where $r_{0} \neq 1 / \kappa_{\gamma}\left(t_{0}\right)$, $r_{0} \neq 1 / \kappa_{\gamma}\left(t_{1}\right), \kappa_{\gamma}\left(t_{0}\right) \neq 0$, and $\kappa_{\gamma}\left(t_{1}\right) \neq 0$. Let $g_{0}(t)=f\left(t_{0}+t\right)=F\left(t_{0}+\right.$ $\left.t, u_{0}, v_{0}, r_{0}\right)$ and $g_{1}=f\left(t_{1}+t\right)=F\left(t_{1}+t, u_{0}, v_{0}, r_{0}\right)$. By Mather's criterion, Ψ is transverse to the orbits of f in $C^{\infty}(R)$ if and only if $\left.\frac{\partial F}{\partial u}\right|_{(u, v, r)=\left(0,1 / \kappa_{\gamma}(0), 1 / \kappa_{\gamma}(0)\right),}$ $\left.\frac{\partial F}{\partial v}\right|_{(u, v, r)=\left(0,1 / \kappa_{\gamma}(0), 1 / \kappa_{\gamma}(0)\right)},\left.\frac{\partial F}{\partial r}\right|_{(u, v, r)=\left(0,1 / \kappa_{\gamma}(0), 1 / \kappa_{\gamma}(0)\right)}$ generate $\frac{R[t]]}{\left\langle g_{0}^{\prime}(t)\right\rangle} \times \frac{R[t]]}{\left\langle g_{1}^{\prime}(t)\right\rangle}$. Let

$$
\begin{array}{r}
g_{i}(t)=f\left(t+t_{i}\right)=\left(\left(u_{0}, v_{0}\right)-\gamma\left(t+t_{i}\right)\right) \cdot\left(\left(u_{0}, v_{0}\right)-\gamma\left(t+t_{i}\right)\right)-r_{0}^{2} \\
\text { for } i=0,1 .
\end{array}
$$

Thus $g_{0}(0)=f\left(t_{0}\right)=0$ and $g_{0}^{\prime}(0)=f^{\prime}\left(t_{0}\right)=0$ since $\left(u_{0}, v_{0}\right)$ is on the normal line at $\gamma\left(t_{0}\right)$. $g_{0}^{\prime \prime}(0)=f^{\prime \prime}\left(t_{0}\right) \neq 0$ since $\kappa_{\gamma}\left(t_{0}\right) \neq 0$ and $r_{0} \neq \frac{1}{\kappa_{\gamma}\left(t_{0}\right)}$. Also, similarly $g_{1}(0)=f\left(t_{1}\right)=0, g_{1}^{\prime}(0)=f^{\prime}\left(t_{1}\right)=0$ and $g_{1}^{\prime \prime}(0)=f^{\prime \prime}\left(t_{1}\right) \neq 0$. So we have $g_{0}(t)=b_{2} t^{2}+\cdots\left(b_{2} \neq 0\right)$ and $g_{1}(t)=c_{2} t^{2}+\cdots\left(c_{2} \neq 0\right)$. Thus $<g_{0}^{\prime}(t)>=<$ $g_{1}^{\prime}(t)>=\left\langle t>\cdot \operatorname{dim}\left(\frac{R[t t]]}{\left\langle g_{0}^{\prime}(t)\right\rangle}\right)=\operatorname{dim}\left(\frac{R[t t]]}{\left\langle g_{1}^{\prime}(t)\right\rangle}\right)=1\right.$. It is enough to show that

$$
\begin{aligned}
& \left(\left.\frac{\partial F}{\partial u}\right|_{\left(t_{0}, u_{0}, v_{0}, r_{0}\right)},\left.\frac{\partial F}{\partial u}\right|_{\left(t_{1}, u_{0}, v_{0}, r_{0}\right)}\right)=(A, 0) \\
& \left(\left.\frac{\partial F}{\partial v}\right|_{\left(t_{0}, u_{0}, v_{0}, r_{0}\right)},\left.\frac{\partial F}{\partial v}\right|_{\left(t_{1}, u_{0}, v_{0}, r_{0}\right)}\right)=(0, B)
\end{aligned}
$$

for non-zero constant A, B since

$$
\left(\left.\frac{\partial F}{\partial r}\right|_{\left(t_{0}, u_{0}, v_{0}, r_{0}\right)},\left.\frac{\partial F}{\partial r}\right|_{\left(t_{1}, u_{0}, v_{0}, r_{0}\right)}\right)=\left(-2 r_{0},-2 r_{0}\right) .
$$

To do this, we change (u, v)-coordinate to (τ, η)-coordinate where the level curves of τ are the parallel curves of γ and the level curves of η are the parallel curves of γ near $\gamma\left(t_{0}\right)$. Also, we assume that $(\tau, \eta)=(0,0)$ at $(u, v)=\left(u_{0}, v_{0}\right)$. Thus

$$
\left.\frac{\partial F}{\partial \tau}\right|_{\left(t_{0}, 0,0, r_{0}\right)} \neq 0 \quad \text { and }\left.\quad \frac{\partial F}{\partial \eta}\right|_{\left(t_{0}, 0,0, r_{0}\right)}=0
$$

since the arc of the circle through $\left(u_{0}, v_{0}\right)$ with center $\gamma\left(t_{0}\right)$ is tangent to the η-axis and is transverse to the τ-axis. Similarly,

$$
\left.\frac{\partial F}{\partial \tau}\right|_{\left(t_{1}, 0,0, r_{0}\right)}=0 \quad \text { and }\left.\quad \frac{\partial F}{\partial \eta}\right|_{\left(t_{1}, 0,0, r_{0}\right)} \neq 0
$$

and Mather's criterion holds. Also, we have another case of type(4) singularity at $\left(t_{0}, u_{0}, v_{0}, r_{0}\right)$ and $\left(t_{1}, u_{0}, v_{0}, r_{0}\right)$ where $r_{0} \neq 1 / \kappa_{\gamma}\left(t_{0}\right), r_{0} \neq 1 / \kappa_{\gamma}\left(t_{1}\right), \kappa_{\gamma}\left(t_{0}\right) \neq 0$ and $\kappa_{\gamma}\left(t_{1}\right) \neq 0$. To check Mather's criterion with same set-up above, we change (u, v)-coordinate to (τ, η)-coordinate where the curve $\tau=0$ is tangent to the parallel curves of γ at (u_{0}, v_{0}) and the curve $\eta=0$ is orthogonal to the curve $\tau=0$ at $\left(u_{0}, v_{0}\right)$. We can assume $(\tau, \eta)=(0,0)$ at $(u, v)=\left(u_{0}, v_{0}\right)$. Then

$$
\begin{aligned}
& \left.\frac{\partial F}{\partial \tau}\right|_{\left(t_{0}, 0,0, r_{0}\right)} \neq 0,\left.\frac{\partial F}{\partial \eta}\right|_{\left(t_{0}, 0,0, r_{0}\right)}=0 \\
& \left.\frac{\partial F}{\partial \tau}\right|_{\left(t_{1}, 0,0, r_{0}\right)} \neq 0,\left.\frac{\partial F}{\partial \eta}\right|_{\left(t_{1}, 0,0, r_{0}\right)}=0 \\
& \left.\frac{\partial F}{\partial r}\right|_{\left(t_{0}, 0,0, r_{0}\right)} \neq 0,\left.\frac{\partial F}{\partial r}\right|_{\left(t_{1}, 0,0, r_{0}\right)} \neq 0
\end{aligned}
$$

since the arcs of the circles through $\left(u_{0}, v_{0}\right)$ with center $\gamma\left(t_{0}\right)$ and $\gamma\left(t_{1}\right)$ are tangential to the η-axis and are transverse to the τ-axis. Thus Mather's criterion holds. Similarly, we can check the orbits of type(5) for which $s=3$. Thus Ψ is transverse to all $\operatorname{Diff}(R)$-orbits in $C^{\infty}(R)$. This implies that H is stable, so the cut locus $C(p, \alpha)$ is stable for α. Thus we have the following theorem.

Theorem 1. Let M be a compact connected 2-dimensional C^{∞}-manifold without boundary. Suppose that G is a connected finite graph which is smoothly embedded in M, and whose vertices have degree 1 or 3 only. Furthermore, suppose that for every vertex v of G of degree 3, the tangent vectors to M at v in the directions of the three edges of G incident to v are not contained in a closed half-space of $T_{v} M$. Also, suppose that the inclusion map $\iota: G \rightarrow M$ induces an isomorphism $\iota_{*}: H_{1}(G ; Z / 2) \rightarrow H_{1}(M ; Z / 2)$. Then there exist a smooth metric α on M and a point $p \in M$ so that $G=C(p, \alpha)$ and the cut locus $C(p, \alpha)$ is stable for α.

Acknowledgements. I would like to thank to Dr. Clint McCrory for advising and encouraging me when I wrote this paper.

References

[1] J. W. Bruce: Wavefronts and Parallels in Euclidean Spaces Math. Proc. Camb. Phil. Soc., 93 (1983) 323-333.
[2] J. W. Bruce, P. J. Giblin: Curves and Singularities (2nd ed.), Cambridge University Press, 1992.
[3] M. Buchner: Stability of the Cut Locus in Dimension Less Than or Equal to 6, Inventiones Math., 43 (1977) 199-231.
[4] M. Buchner: The Structure of the Cut Locus in Dimension Less Than or Equal to 6 Compositio mathematica, 37 (1978) 103-117.
[5] E. Looljenga: Structural Stability of Families of C^{∞} Functions and the Canonical Stratification of C^{∞}, I.H.E.S. 1974.
[6] J. Mather: Stability of C^{∞} mappings V, Advances in Math. 4 (1970) 301-336.
[7] M. Park: Classification of Stable Cut Loci on Surfaces, Ph. D. dissertation (U. of GeorgiaAthens), 1997.
[8] A. Weinstein: The cut locus and conjugate locus of a Riemannian manifold Ann. of Math. 87 (1968) 29-41.

NOTE: proofs not corrected by the author.

[^0]: *This work is partially supported by Korean Science Foundation Internship

