Note di Matematica 20, n. 2, 2000/2001, 1-13.

Stable cut loci on surfaces

Mu Yeol Park*

Department of Mathematics, Dong-A University, Sa-Ha, Pusan 604-714, South Korea, e978410@home.donga.ac.kr

Received: 5 March 1998; accepted: 7 September 1999.

Keywords: cut locus, parallel curves, boundary curves

MSC 2000 classification: primary 53C99, secondary 58C27, 58C28

Introduction

Let M be a 2-dimensional compact connected smooth manifold without boundary. Let $p \in M$ be fixed. Take a geodesic $g(t), 0 \leq t \leq \infty$, starting at p. Then the first point on this geodesic where the geodesic ceases to minimize distance from p is called the cut point of p along the geodesic q(t). The cut locus C(p) is the set of all cut points of p. Since M is compact, $C(p) \neq \emptyset$. The graph G is said to be smoothly embedded in M if for every point $q \in G$, there exists a smooth coordinate chart $\rho: V \to R^2$ where V is an open neighborhood of q in M, such that, for every edge e of G with $q \in e$, $\rho(e \cap V)$ is contained in a 1-dimensional affine subspace of R^2 . Suppose G is a connected finite graph which is smoothly embedded in M, and whose vertices have degree 1 or 3 only. Furthermore, suppose that for every vertex v of G of degree 3, the tangent vectors to M at v in the directions of the three edges of G incident to v are not contained in a closed half-space of $T_v M$. Also, suppose that the inclusion map $\iota: G \to M$ induces an isomorphism $\iota_*: H_1(G; \mathbb{Z}/2) \to H_1(M; \mathbb{Z}/2)$. In §1 - 3, with the preceding hypothesis, we construct a smooth Riemannian metric α on M and find a point $p \in M$ so that the cut locus $C(p, \alpha)$ of p with respect to α is G, and in §4, we show that the cut locus $C(p, \alpha)$ is stable for α .

1 Construction of the model curves

Let $\gamma: R \to R^2$ be a C^{∞} unit speed plane curve.

Then $\gamma'(t) = T_{\gamma}(t)$ and $T'_{\gamma}(t) = \kappa_{\gamma}(t)N_{\gamma}(t)$ where $T_{\gamma}(t)$ is the unit tangent vector of $\gamma(t)$, $N_{\gamma}(t)$ is the unit normal vector of $\gamma(t)$ such that $\{T_{\gamma}(t), N_{\gamma}(t)\}$ has the standard orientation and $\kappa_{\gamma}(t)$ is the signed curvature of $\gamma(t)$. The center

^{*}This work is partially supported by Korean Science Foundation Internship

of curvature of $\gamma(t)$ at $\gamma(t_0)$ is $\gamma(t_0) + \frac{N_{\gamma}(t_0)}{\kappa_{\gamma}(t_0)}$ where $\kappa_{\gamma}(t_0) \neq 0$. The evolute of $\gamma(t)$ is $\gamma(t) + \frac{N_{\gamma}(t)}{\kappa_{\gamma}(t)}$ where $\kappa_{\gamma}(t) \neq 0$. The parallel curve of $\gamma(t)$ at distance r is given by $\gamma(t) + rN_{\gamma}(t)$. The cut point of $\gamma(t_0)$ is the first point on the normal line at $\gamma(t_0)$ in the direction of $N_{\gamma}(t_0)$ where the normal line ceases to minimize its distance from γ . The cut locus of γ is the set of all cut points of $\gamma(t)$ (i. e. the cut locus of γ is the Maxwell set of the family of parallel curves of γ with the distance parameter). The cut point on the normal ray $\gamma(t) + uN_{\gamma}$, $u \geq 0$ cannot occur after the center of curvature of $\gamma(t)$. This is easy to prove. We also need the following generalization of the cut locus of the plane curve. Let $\gamma_i : [a_i, b_i] \to R^2$, $i = 1, 2, \ldots, n$ be a finite collection of smooth disjoint arcs. For $t_0 \in [a_i, b_i]$, the cut locus of $\gamma_i(t_0)$ with respect to $\gamma_1, \ldots, \gamma_n$ is the first point on the normal line ceases to minimize distance to the union of the arcs. The cut locus of $\{\gamma_1, \ldots, \gamma_n\}$ is the set of all such cut points.

Lemma 1. Let $g : [c, d] \to R$ be a C^{∞} function and $a, b \in R^2$ with ||b|| = 1. There exists a unique C^{∞} plane curve C in R^2 having parametrization f by arc length such that if $f : [c, d] \to R^2$ then f(c) = a, f'(c) = b, and $\kappa_f(t) = g(t)$ for every $t \in [c, d]$. In other words, a plane curve is determined up to a rigid motion, by its signed curvature.

The proof of Lemma 1 may be found in the standard Differential Geometry textbooks. Now, we are ready to construct three different types of model curves. Let θ be a variable angle such that $\frac{\pi}{2} > \theta > \frac{\pi}{3}$.

- (1) Construct a curve whose curvature function is constant, i. e. an arc of a circle with angle $2\theta \frac{2}{3}\pi$ starting from $(s_0 \cos(\frac{\pi}{2} \theta), l + s_0 \sin(\frac{\pi}{2} \theta))$ to $(\frac{\sqrt{3}}{2}l + s_0 \cos(\theta \frac{\pi}{6}), -\frac{l}{2} + s_0 \sin(\theta \frac{\pi}{6}))$, where *l* is the given positive number and $0 < s_0 < \frac{\sqrt{3}l\sqrt{1 + \tan(\frac{\pi}{2} \theta)}}{2(1 \sqrt{3}\tan(\frac{\pi}{2} \theta))}$.
- (2) Construct a curve γ satisfying the following conditions.
 - a. $\kappa_{\gamma}(t) > 0$ near t = 0, $\kappa'_{\gamma}(0) = 0$ and $\kappa''_{\gamma}(0) < 0$.
 - b. $\kappa_{\gamma}(-t) = \kappa_{\gamma}(t)$ and κ_{γ} is monotonically decreasing for t > 0.
 - c. If $\gamma(t) = (X(t), Y(t))$, then $\gamma(-t) = (-X(t), Y(t))$, $\gamma(0) = (0, -\delta)$, and X'(t), Y'(t) > 0 for t > 0 where $\delta > 0$.

The cut locus of γ is contained in Y-axis by some consideration. Finally, we'll show that the end-point of the cut locus is an ordinary cusp of the

evolute of γ . Let $F: R \times R^2 \to R$ be defined by

$$F(t, x) := (x - \gamma(t)) \cdot (x - \gamma(t)) - r^2 \text{ where } r > 0.$$

$$\frac{\partial F}{\partial t} = (x - \gamma(t)) \cdot T_{\gamma}(t) = 0 \text{ implies } x - \gamma(t) = \lambda N_{\gamma}(t) \text{ for some } \lambda$$

Also, F(t, x) = 0 implies that $\lambda = \pm r$.

$$\frac{\partial^2 F}{\partial t^2} = -2(-T_{\gamma}(t) \cdot T_{\gamma}(t) + (x - \gamma(t)) \cdot \kappa_{\gamma}(t)N_{\gamma}(t))$$
$$= -2(-1 + (x - \gamma(t)) \cdot \kappa_{\gamma}(t)N_{\gamma}(t))$$

 $F = \frac{\partial F}{\partial t} = \frac{\partial^2 F}{\partial t^2} = 0 \text{ implies } x = \gamma(t) + \frac{N_{\gamma}(t)}{\kappa_{\gamma}(t)}.$ Let $K : R \times R^2 \to R$ be given by

$$K(t, x) := (x - \gamma(t)) \cdot T_{\gamma}(t).$$

Then the discriminant set $\{\gamma(t) + \frac{N_{\gamma}(t)}{\kappa_{\gamma}(t)} | t \in (-\epsilon, \epsilon)\}$ of K is the evolute of γ . (The discriminant set of K is $\{x \in R^2; \text{ there exists } t \in R \text{ with } F(t, x) = \frac{\partial F}{\partial t}(t, x) = 0\}$)

$$\frac{\partial K}{\partial t} = \frac{\partial^2 K}{\partial t^2} = 0 \text{ at } t = 0 \text{ if and only if}$$

 $\kappa_{\gamma}(0) \neq 0, \ \kappa_{\gamma}'(0) = 0, \text{ and } x = \gamma(0) + \frac{N_{\gamma}(0)}{\kappa_{\gamma}(0)}],$

since $\frac{\partial^2 K}{\partial t^2} = \frac{\kappa'_{\gamma}(t)}{\kappa_{\gamma}(t)} = 0$ at t = 0 (because $\kappa'_{\gamma}(0) = 0$) To be an ordinary cusp of the evolute of γ , $\frac{\partial^3 K}{\partial t^3} \neq 0$ at t = 0. $\frac{\partial^3 K}{\partial t^3} = 0$

To be an ordinary cusp of the evolute of γ , $\frac{\partial t^3}{\partial t^3} \neq 0$ at t = 0. $\frac{\partial t^3}{\partial t^3} = \frac{\kappa_{\gamma}'(t)}{\kappa_{\gamma}(t)} \neq 0$ at t = 0 since $\kappa_{\gamma}''(0) \neq 0$. (see J. W. Bruce and P. J. Giblin [2])

- (3) Construct a curve γ satisfying the following conditions:
 - a. $\kappa_{\gamma}(t) > 0$ for all t, $\kappa'_{\gamma}(0) = 0$ and $\kappa''_{\gamma}(0) > 0$.
 - b. $\kappa_{\gamma}(-t) = \kappa_{\gamma}(t)$ and κ_{γ} is monotonically increasing for t > 0.
 - c. If $\gamma(t) = (X(t), Y(t))$, then $\gamma(-t) = (-X(t), Y(t))$, $\gamma(0) = (e, 0)$, and X'(t), Y'(t) > 0 for t > 0 where e > 0.

The initial point is $(-w + s_0 \sin \theta, s_0 \sin \theta)$ and initial vector is $(\cos(\frac{\pi}{2} - \theta), \sin(\frac{\pi}{2} - \theta))$. Also, we can construct another curve below the X-axis which is symmetric with respect to X-axis.

The parallel curves of these two curves at distance r intersect each other transversely for some r since the two normal lines of two curves intersect each other transversely at points of the X-axis between (-w, 0) and (w, 0) except (0, 0). The cut locus of these two curves is the straight line segment from (-w, 0) to (w, 0).

So we have finished the local construction of three different types of model curves.

2 Construction of the regular neighborhoods

Let q^1 be a vertex of G of degree 1. By definition of a smooth embedding, there exists a smooth coordinate chart $\rho: V_1 \to R^2$ where V_1 is an open neighborhood of q^1 in M, such that, for the unique edge e of G with $q^1 \in e$, $\rho(e \cap V_1)$ is contained in a ray from $\rho(q^1)$.

Let τ be a Euclidean motion (translation and rotation) of R^2 which takes $\rho(q^1)$ to the origin and R to the positive X-axis. Let $\xi_1 = \tau \circ \rho$, and let $U_1 = \xi_1(V_1)$. Choose $\delta_1 > 0$ such that $B_{\delta_1}(0) = \{ (x, y) \in R^2 \mid x^2 + y^2 < (\delta_1)^2 \} \subset U_1$, and $(\xi_1)^{-1}(B_{\delta_1}(0)) = V'_1 \subset V_1$.

Let q^3 be a vertex of degree 3. By definition of a smooth embedding and our assumption on the vertices of degree 3, there exists a smooth coordinate chart $\rho: V_3 \to R^2$ where V_3 is an open neighborhood of q^3 , such that $\rho(V_3 \cap G)$ is contained in three rays starting from $\rho(q^3)$ in $\rho(V_3)$ with angles which are all $< \pi$.

Lemma 2. Given three rays r_1, r_2 and r_3 from (0,0) all of whose intersection angles are less than π , there exists a non-singular linear transformation $L: R^2 \to R^2$ such that $L(r_1) = \{k(1,0)|k \ge 0\}, L(r_2) = \{k(-\frac{1}{2}, \frac{\sqrt{3}}{2})|k \ge 0\}$ and $L(r_3) = \{k(-\frac{1}{2}, -\frac{\sqrt{3}}{2})|k \ge 0\}.$

Lemma 2 is trivial since the projective group PGL(2, R) acts transitively on triple of points of the projective plane.

Next, we will define a coordinate chart for each open neighborhood of a edge of G. Let i = 1, 2, ..., the number of vertices of degree 1 and k = 1, 2, ..., the number of vertices of degree 3. For each i and k, we have δ_1^i and δ_3^k by the previous two constructions. Let $\delta := \min\{\delta_1^i, \delta_3^k, 1\}$. Thus we have coordinate chars $\xi_1^i: O_1^i \to B_{\delta}(0)$ and $\xi_3^k: O_3^k \to B_{\delta}(0)$ (i. e. $O_1^i = (\xi_1^i)^{-1}(B_{\delta}(0))$ and $O_3^k = (\xi_3^k)^{-1}(B_{\delta}(0))$.

Since the normal bundle of an edge \bar{e} is trivial, we have a diffeomorphism g from the normal bundle of \bar{e} to $[-2, 2] \times R$ where the interval [-2, 2] parametrizes \bar{e} .

By our previous construction of neighborhoods of vertices, we have coordinate charts $\xi_1^i: O_1^i \to B_{\delta}((2,0))$ (or $B_{\delta}((-2,0))$) and $\xi_3^k: O_3^k \to B_{\delta}((2,0))$ (or $B_{\delta}((-2,0)))$ where the chart $\tilde{\xi}_1^i$ (resp. $\tilde{\xi}_3^k$) is obtained from the above ξ_1^i (resp. ξ_3^k), by composition with Euclidean isometries. We choose the parametrization $[-2,2] \rightarrow \bar{e}$ so that it is equal to the inverse of the restriction of the given coordinate charts on $[-2, -2+\delta)$ and $(2-\delta, 2]$. On $\bigcup_{i,k} (O_1^i \cup O_3^k)$, there is the flat metric induced by the coordinate charts. If we consider the space of metrics on M as the space of sections of a fibre bundle with base M and fibre the set of positive definite $(n \times n)$ matrices (see M. Buchner [3, p. 203]), we can extend this flat metric together with the metric on \bar{e} induced by the given paremetrization to neighborhood of \bar{e} in M by the prolongation theorem for smooth sections.

Let exp: $[-2,2] \times R \to M$ be the composition of g^{-1} with the exponential map of the normal bundle of \bar{e} . Then by the tubular neighborhood theorem, exp restricts to a diffeomorphism h between an open neighborhood U_2 of the zero section in $[-2, 2] \times R$ and a neighborhood V_2 of \bar{e} . We define a new metric on V_2 as the flat metric induced by h; i. e. so that h is an isometry. Since h was already an isometry near the vertices of e, this new metric extends the flat metric defined near the vertices. Thus we obtain a flat metric on a neighborhood of G. Then there is a $\epsilon_0 > 0$ such that $[-2,2] \times (-\epsilon_0,\epsilon_0) \subset U_2$. Let $\epsilon' := \min\{\epsilon_0, \frac{\delta}{2}\}$ and $h^{-1}([-2.2] \times (-\epsilon', \epsilon') \subset V_2$. For any $n = 1, 2, \ldots$ the number of edges, there is ϵ'_n such that $(h_n)^{-1}([-2,2] \times (-\epsilon'_n, \epsilon'_n)) \subset V_2^n$. Let $\epsilon := \min\{\epsilon'_n\}$. Let us define subgraphs G_1^i, G_2^j , and G_3^k of the graph G as follows.

- (1) $G_1^i :=$ an edge e together with an incident vertex of degree 1 but without incident vertex of degree 3 where i = 1, 2, ..., number of vertices of degree 1.
- (2) G_2^j := an edge e without two incident vertices of degree 3 where j = $1, 2, \ldots$, number of edges with two incident vertices of degree 3.
- (3) $G_3^k := G \cap O_3^k$, where $k = 1, 2, \ldots$, number of vertices of degree 3

We want to construct the neighborhoods of G_1^i , G_2^j , and G_3^k .

On G_1^i , we can get a coordinate chart $\eta_1^i : J_1^i \to \mathcal{J}_\infty^{\flat}$ as follows. By our previous construction, we obtain $\mathcal{J}_{\infty}^{\flat} = (-\epsilon, 4) \times (-\epsilon, \epsilon)$. For $p \in O_1^i, \eta_1^i(p) =$ $\xi_1(p)$ and for $p \in O_2^j$, $\eta_1^i(p) = h(p) + (2,0)$ (Recall that $\delta \geq 2\epsilon > 0$). Let $J_1^i := (\eta_1^i)^{-1} (\mathcal{J}_\infty^{\flat}).$

On G_2^j , we just get a coordinate chart $\eta_2^j : J_2^j \to \mathcal{J}_{\in}^{\mid}$ by $\eta_2^j = h, \mathcal{J}_{\in}^{\mid} =$ $(-\epsilon,\epsilon) \times (-\epsilon,\epsilon)$ and $J_2^j := (\eta_2^j)^{-1}(\mathcal{J}_{\epsilon}^j).$

On G_3^k , we get a coordinate chart $\eta_3^k : J_3^k \to \mathcal{J}_{\ni}^{\parallel}$ by $\eta = \xi_3, \mathcal{J}_{\ni}^{\parallel} = \mathcal{B}_{\delta}(\prime)$ and $J_3^k:=(\eta_3^k)^{-1}(\mathcal{J}_{\ni}^{\parallel}).$

In J_1^i , J_2^j , and J_3^k , we get the flat metric induced by the coordinate charts η_1^i , η_2^j , and η_3^k . Also, if $J_1^i \cap J_2^j \neq \emptyset$, $(\eta_3^k)^{-1} \circ \eta_1^i$: $J_1^i \cap J_3^k \to J_1^i \cap J_3^k$ is an isometry, and if $J_2^j \cap J_3^k \neq \emptyset$, $(\eta_3^k)^{-1} \circ$ (Euclidean motions) $\circ \eta_2^j$: $J_2^j \cap J_3^k \to J_2^j \cap J_3^k$ is an isometry.

Let $J := \bigcup_{i,j,k} (J_1^i \cup J_2^j \cup J_3^k)$. So J is a regular neighborhood of G in M.

3 Construction of the metric α

By the construction of $\mathcal{J}_{\infty}^{\flat}$, $\mathcal{J}_{\in}^{\dagger}$, and $\mathcal{J}_{\ni}^{\parallel}$ in section 2, we have δ and ϵ with $\delta > 2\epsilon > 0$. Let $\delta' = \frac{3}{4}\delta$ and $s_0 = \frac{\epsilon}{\sin\theta}$.

In $\mathcal{J}_{\ni}^{\parallel}$, draw the circle with center (0,0) and radius δ' and three bands with width ϵ whose center line is the edge from (0,0) to $(\delta,0)$. We get the intersection points between this circle and the boundary of the bands, and two line segments from these points to a point on the edge with intersection angle Θ with the corresponding edge. The length of each of the line segments is s_0 . Denote the length from (0,0) to a point of the edge at which the line segments intersect by l. By construction (I) of §1, we can get the curve $\gamma : (-c,c) \to \mathcal{J}_{\infty}^{\flat}$ such that $\gamma(-c) = (4 - l - s_0 \cos \Theta, s_0 \sin \Theta)$ and $\gamma(0) = (-\frac{1}{\kappa_{\gamma}(0)}, 0)$.

In \mathcal{J}_{\in}^{\mid} , by construction (III) of §1, we get $\gamma : (-d, d) \to \mathcal{J}_{\in}^{\mid}$ such that $\gamma(-d) = (-2 + l - s_0 \cos \Theta, s_0 \sin \Theta)$ and $\gamma(0) = (0, A)$ for A > 0.

Then in $J_1^i \cap J_3^k$ or $J_2^j \cap J_3^k$, the inverse of these constructed arcs in $\mathcal{J}_{\infty}^{\rangle}$, $\mathcal{J}_{\in}^{|}$, and $\mathcal{J}_{\exists}^{||}$ under the coordinate charts fit smoothly by isometries since near their ends of the arcs have the same constant curvature.

Finally, in $J \subset M$, the union of the inverse of the constructed arcs under the coordinate charts are smooth curves by above reason. Let these curves be called Γ and J' the closed region bounded by Γ (including G). Obviously $G \subset \text{int}(J') \subset J' \subset J$. Consider the Mayer-Vietoris exact sequence of the pair $(J, \overline{M \setminus J'})$ with coefficients Z/2.

$$\cdots \to H_2(J \setminus \operatorname{int}(J')) \to H_2(J) \oplus H_2(\overline{M \setminus J'}) \to H_2(M) \to H_1(J \setminus \operatorname{int}(J')) \to H_1(J) \oplus H_1(\overline{M \setminus J'}) \to H_1(M) \to \tilde{H}_0(J \setminus \operatorname{int}(J')) \to \tilde{H}_0(J) \oplus \tilde{H}_0(\overline{M \setminus J'}) \to \tilde{H}_0(M) \to 0$$
(1)

Since M is a 2-dimensional compact connected manifold without boundary, $H_2(M) = Z/2$ and $\tilde{H}_0(M) = 0$. Since Γ is a deformation retract of $J \setminus \operatorname{int}(J')$, $H_2(J \setminus \operatorname{int}(J') = 0$. Since $\overline{M \setminus J'}$ is a surface with non-empty boundary and $\overline{M \setminus J'} \subset M$, $H_2(\overline{M \setminus J'}) = 0$. Since G is a deformation retract of J' and J' is homotopy equivalent to J, $H_2(J) = 0$ and $\tilde{H}_0(J) = 0$. Also, since the inclusion map $\iota : G \to M$ induces an isomorphism $\iota_* : H_1(G; Z/2) \to H_1(M; Z/2)$, Stable cut loci on surfaces

 $H_1(J) = H_1(M) = (Z/2)^m$ for some positive integer m. Since $J \setminus \operatorname{int}(J')$ is homotopy equivalent to Γ , the inclusion maps $J \setminus \operatorname{int}(J') \to J$ and $J \setminus \operatorname{int}(J') \to \overline{M \setminus J'}$ induce the zero homomorphisms. Thus $H_1(J \setminus \operatorname{int}(J')) = H_2(M) = Z/2$. Then Γ is connected, so $\tilde{H}_0(J \setminus \operatorname{int}(J')) = 0$. Now exactness of the Mayer-Vietoris sequence implies that $H_1(\overline{M \setminus J'}) = 0$. Also, $\tilde{H}_0(\overline{M \setminus J'}) = 0$. Thus $\overline{M \setminus J'}$ is diffeomorphic to a disk D^2 with Γ mapping to ∂D^2 .

Proposition 1. Let D be an n-disk embedded in C^{∞} manifold M. For any Riemannian metric on $M \setminus int(D)$, there is a Riemannian metric on M which agrees with the original metric on $M \setminus int(D)$ such that for some p in D, \exp_p is a diffeomorphism of unit disk about the origin in $T_p(M)$ onto M.

The proof of Proposition 3 can be found in Weinstein [8, Proposition C]. By Proposition 3, we can extend the flat metric constructed on the neighborhood J' of the graph G to a metric α on M such that for some $p \in M \setminus J'$, $\exp_p :$ $T_p(M) \to M$ is a diffeomorphism from the unit disk in $T_p(M)$ onto $\overline{M \setminus J'}$. In particular, the image of the unit circle in $T_p(M)$ is the curve Γ , and the geodesic rays from p are orthogonal to Γ . Thus, in the isometric coordinate neighborhoods $\mathcal{J}_{\infty}^{\rangle}, \mathcal{J}_{\in}^{|}$, and $\mathcal{J}_{\ni}^{||}$ constructed above, the geodesic rays from p are the normal lines to the model curves. Since the metric in J' is flat, the graph Gis the cut locus $C(p, \alpha)$.

4 Stability of $C(p, \alpha)$

In section 3, we have constructed a metric α such that $C(p, \alpha) = G$ for some $p \in M$. The cut locus $C(p, \alpha)$ is said to be stable for α if there is a neighborhood W of α in the space of all metrics on M with the Whitney C^{∞} -topology such that for each $\beta \in W$, there is a diffeomorphism $A(\beta) : M \to M$ with the property that $A(\beta)(C(p, \alpha) = C(p, \beta)$ (see M. Buchner [3, 4]). In this section, we want to prove that $C(p, \alpha)$ is stable for α . To do this, we use Looijenga's set-up (see Looijenga [5]). Let Γ , α , and $G \subset J' \subset J$ be as in the previous section, and let r_0 be the largest distance from a point of G to the curve Γ . From now on, we denote Γ as $\gamma : R \to M$ like a function. Let $\delta > 0$ and $U := \{(t, x, r) : x \in J', d_{\alpha}(x, \gamma(t)) < r_0 + \delta, -\delta < r < r_0 + \delta\}$ where d_{α} is the distance function on M corresponding to the metric α . The family $F : U \to R$ is defined by

$$F(t, x, r) := (d_{\alpha}(x, \gamma(t)))^2 - r^2$$

The deformation $H: U \to R \times J' \times (-\delta, r_0 + \delta)$ associated to the family F is defined by

$$H(t, x, r) := (F(t, x, r), x, r)$$

The deformation H is stable if for F' close to F (in the Whitney C^{∞} topology) there exist diffeomorphisms h, h', h'' such that the following diagram commutes

$$U \xrightarrow{H} R \times J' \times (-\delta, r_0 + \delta) \xrightarrow{\operatorname{Proj}} J' \times (-\delta, r_0 + \delta)$$

$$h \downarrow \qquad \qquad h' \downarrow \qquad \qquad h'' \downarrow$$

$$U \xrightarrow{H'} R \times J' \times (-\delta, r_0 + \delta) \xrightarrow{\operatorname{Proj}} J' \times (-\delta, r_0 + \delta)$$

where H'(t, x, r) = (F'(t, x, r), x, r) and h'(t, x, r) = (t, h''(x, r)) (see Looijenga [5]). Note that h'' is close to the identity map and the restriction of h to $J' \times (-\delta, r_0 + \delta)$ is also close to the identity map.

We consider the action of Diff(R) on $C^{\infty}(R)$ by $h \cdot f := f \circ h^{-1}$ where Diff(R) is the group of diffeomorphisms from R to R. Let $\Psi : J' \times (-\delta, r_0 + \delta) \to C^{\infty}(R)$ be defined by

$$(\Psi(x,r))(t) := (d_{\alpha}(x,\gamma(t)))^2 - r^2 (= F(t,x,r))$$

By the work of Thom, Mather, and Sergeraert, the deformation H is stable if and only if Ψ is transverse to all the Diff(R)-orbits in $C^{\infty}(R)$ (see Looijenga [5]).

The discriminant of the family F is the set

$$\mathcal{D}_F := \{(x, r) : \text{there exist} t \in R \text{such that} F(t, x, r) = 0,$$
$$\frac{\partial F}{\partial t}(t, x, r) = 0\}$$
$$= \{(x, r) : \text{there exist} t \in R \text{such that} \Psi(x, r)(t) = 0,$$
$$\frac{d}{dt}(\Psi(x, r)(t)) = 0\}$$

First, we show that if H is stable then $C(p, \alpha)$ is stable for α . Suppose that the deformation H is stable. The cut locus $G = C(p, \alpha)$ is the image by the projection $J' \times (-\delta, r_0 + \delta) \to J'$ of the closure \overline{G} of the double point curve of $\mathcal{D}_{\mathcal{F}}$. (To see this, consider $\mathcal{E}_F = \{(t, x, r) : F(t, x, r) = 0, \frac{\partial F}{\partial t}(t, x, r) = 0\}$, then \mathcal{E}_F is a smooth surface and the double point curve of $\mathcal{D}_{\mathcal{F}}$ means the double points of the projection of $\mathcal{E}_{\mathcal{F}}$ to (x, r)-space.) Now, if we perturb the metric of M, we obtain a new cut locus G', which is the projection of the cut locus $\overline{G'}$ of $\mathcal{D}_{\mathcal{F}'}$ corresponding to the perturbed family H'(t, x, r) = (F'(t, x, r), x, r) where F' is the corresponding perturbed family with respect to metrics. Since H is stable, there exist diffeomorphisms h, h' and h'' such that $H'(t, x, r) = (h' \circ H \circ$ $h^{-1})(t, x, r)$ and $\overline{G'} = h''(\overline{G})$. Thus $\overline{G'} = h''(\overline{G})$ where h'' is a diffeomorphism.

Since the projection $J' \times (-\delta, r_0 + \delta) \to J'$ restricts to a mapping $\overline{G} \to G$ and h'' is close to the identity, h'' induces a homeomorphism $\phi : G \to G'$ which extends to a diffeomorphism $\Phi: M \to M$. Thus the cut locus G of γ is stable with respect to perturbation of the metric α of M.

Next, we prove that Ψ is transverse to all Diff-orbits on $C^{\infty}(R)$. Before the proof, we need to know the Diff(R)-orbits in $C^{\infty}(R)$. The orbits of singularities in $C^{\infty}(R)$ are followings:

- (1) f has one critical point t_0 such that $f(t_0) = f'(t_0) = 0$ and $f''(t_0) \neq 0$.
- (2) f has one critical point t_0 such that $f(t_0) = f'(t_0) = f''(t_0) = 0$ and $f'''(t_0) \neq 0$.
- (3) f has one critical point t_0 such that $f(t_0) = f'(t_0) = f''(t_0) = f'''(t_0) = 0$ and $f^{(iv)}(t_0) \neq 0$.
- (4) f has two distinct critical points t_0 and t_1 such that $f(t_0) = f(t_1) = f'(t_0) = f'(t_1) = 0$, $f''(t_0) \neq 0$ and $f''(t_1) \neq 0$.
- (5) f has three distinct critical points t_0 , t_1 , and t_2 such that $f(t_0) = f(t_1) = f(t_2) = f'(t_0) = f'(t_1) = f'(t_2) = 0$, $f''(t_0) \neq 0$, $f''(t_1) \neq 0$, and $f''(t_2) \neq 0$.

The preimage of these orbits are the strata of the discriminant locus $\mathcal{D}_{\mathcal{F}} \subset \mathcal{J}' \times (-\delta, \nabla_{\ell} + \delta)$. Type(1) are smooth points of $\mathcal{D}_{\mathcal{F}}$, type(2) are cusp points of $\mathcal{D}_{\mathcal{F}}$, type(3) are swallowtail points of $\mathcal{D}_{\mathcal{F}}$, type(4) are double points of $\mathcal{D}_{\mathcal{F}}$, type(5) are triple points of $\mathcal{D}_{\mathcal{F}}$.

To prove that Ψ is transverse to all Diff(R)-orbits in $C^{\infty}(R)$, we use Mather's infinitesimal versality criterion, which we now describe (see [6]).

Consider an orbit $X \,\subset\, C^{\infty}(R)$ along which the function f has exactly s critical points t_0, \ldots, t_{s-1} such that $f(t_0) = \cdots = f(t_{s-1}) = 0$. Suppose that $\Psi(x_0, r_0) = f \in X$. To prove that Ψ is transverse to X at f, we just consider the germs of F(t, x, r) at $(t_i, x_0, r_0), i = 0, \ldots, s - 1$. For each i, let $f_i(t) \in R[[t]]$ be the Taylor series of f at t_i (so $f_i^{(n)}(0) = f^{(n)}(t_i)$). Let $\langle f'_i(t) \rangle$ be the ideal of R[[t]] generated by $f'_i(t)$, and consider the R-algebra

$$A = \frac{R[[t]]}{\langle f'_0(t) \rangle} \times \dots \times \frac{R[[t]]}{\langle f'_{s-1}(t) \rangle}.$$

Choose local coordinates x = (u, v) on M near x_0 and let F_u , F_v , F_r be the elements corresponding to the functions $\frac{\partial F}{\partial u}(t, u_0, v_0, r_0)$, $\frac{\partial F}{\partial v}(t, u_0, v_0, r_0)$, $\frac{\partial F}{\partial r}(t, u_0, v_0, r_0)$, respectively. Then Ψ is transverse to X at f if and only if F_u , F_v , F_r span A as a real vector space (Mather's infinitesimal criterion).

First, we consider the orbits of type(1)-(3) for which s = 1. Mather's criterion is easily checked for type(1). Furthermore, if $\Psi(t, x_0, r_0)$ has type(3) and Ψ is transverse to the orbits of type(3) at (x_0, r_0) , then Ψ is transverse to the orbit of type(2) for (x, r) sufficiently close to (x_0, r_0) . The proof that $C(p, \alpha)$ is stable if H is stable shows that we can replace J' by an arbitrary neighborhood of the cut locus $G = C(p, \alpha)$. Thus we need only check that Ψ is transverse to the orbit of type(3).

To check Mather's criterion for singularity of type(3), we can work in a coordinate patch J'_1 as constructed above. In these coordinates,

$$F(t, u, v, r) = ((u, v) - \gamma(t)) \cdot ((u, v) - \gamma(t)) - r^{2}$$

where γ is the model curve type (II)(in §1). By this construction, $\gamma(0) = (0,0)$ and $\gamma'(0) = (1,0)$. Thus we can parametrize γ as $(t, a_2t^2 + a_3t^3 + a_4t^4 + \cdots)$. Now, F has a singularity at $(0, 0, \frac{1}{\kappa_{\gamma}(0)}, \frac{1}{\kappa_{\gamma}(0)})$. Let $f(t) = F(t, 0, \frac{1}{\kappa_{\gamma}(0)}, \frac{1}{\kappa_{\gamma}(0)})$. By Mather's criterion, Ψ is transverse to the orbit of f in $C^{\infty}(R)$ if and only if $\frac{\partial F}{\partial u}|_{(u,v,r)=(0,1/\kappa_{\gamma}(0),1/\kappa_{\gamma}(0))}$ generate $\frac{R[[t]]}{\langle f'(t) \rangle}$ where R[[t]] is the ring of power series at 0.

$$F(t, u, v, r) = ((u, v) - \gamma(t)) \cdot ((u, v) - \gamma(t)) - r^{2}$$

= $u^{2} - 2ut + t^{2} + v^{2} - 2(a_{2}t^{2} + a_{3}t^{3} + a_{4}t^{4} + \cdots)v$
+ $(a_{2}t^{2} + a_{3}t^{3} + a_{4}t^{4} + \cdots)^{2} - r^{2}$

By the construction(II) of §1, $\kappa_{\gamma}(0) > 0$, $\kappa'_{\gamma}(0) = 0$, and $\kappa''_{\gamma}(0) \neq 0$.

$$\frac{\partial F}{\partial u}|_{(u,v,r)=(0,1/\kappa_{\gamma}(0),1/\kappa_{\gamma}(0))} = -2t$$

$$\frac{\partial F}{\partial v}|_{(u,v,r)=(0,1/\kappa_{\gamma}(0),1/\kappa_{\gamma}(0))} = \frac{2}{\kappa_{\gamma}(0)} - 2(a_{2}t^{2} + a_{3}t^{3} + a_{4}t^{4} + \cdots)$$

$$\frac{\partial F}{\partial r}|_{(u,v,r)=(0,1/\kappa_{\gamma}(0),1/\kappa_{\gamma}(0))} = -2r = -\frac{2}{\kappa_{\gamma}(0)} \neq 0$$

Also, $a_2 = \frac{\kappa_{\gamma}(0)}{2}$, $a_3 = 0$ and $a_4 = \frac{\kappa_{\gamma}^3(0)}{8}$ by basic calculation. Thus

$$f(t) = F(t, 0, \frac{1}{\kappa_{\gamma}(0)}, \frac{1}{\kappa_{\gamma}(0)})$$

$$= t^{2} - \frac{2}{\kappa_{\gamma}(0)} \cdot \left(\frac{\kappa_{\gamma}(0)}{2}t^{2} + \frac{\kappa_{\gamma}(0)}{8}t^{4} + \cdots\right)$$

$$+ \left(\frac{\kappa_{\gamma}(0)}{2}t^{2} + \frac{\kappa_{\gamma}(0)}{8}t^{4} + \cdots\right)^{2} + \cdots$$

$$= \frac{\kappa_{\gamma}(0)}{4}t^{4} + \cdots$$

$$f'(t) = \kappa_{\gamma}^{2}(0)t^{3} + \cdots$$

Stable cut loci on surfaces

It is true that $\{1, t, t^2\}$ spans $\frac{R[[t]]}{\langle t^3 \rangle}$. Thus Ψ is transverse to the orbit of f in $C^{\infty}(R)$.

Next, we consider the orbit of type(4), for which s = 2. Now, F has a type(4) singularity at (t_0, u_0, v_0, r_0) and (t_1, u_0, v_0, r_0) where $r_0 \neq 1/\kappa_{\gamma}(t_0)$, $r_0 \neq 1/\kappa_{\gamma}(t_1)$, $\kappa_{\gamma}(t_0) \neq 0$, and $\kappa_{\gamma}(t_1) \neq 0$. Let $g_0(t) = f(t_0 + t) = F(t_0 + t, u_0, v_0, r_0)$ and $g_1 = f(t_1 + t) = F(t_1 + t, u_0, v_0, r_0)$. By Mather's criterion, Ψ is transverse to the orbits of f in $C^{\infty}(R)$ if and only if $\frac{\partial F}{\partial u}|_{(u,v,r)=(0,1/\kappa_{\gamma}(0),1/\kappa_{\gamma}(0))}, \frac{\partial F}{\partial r}|_{(u,v,r)=(0,1/\kappa_{\gamma}(0),1/\kappa_{\gamma}(0))}, \frac{\partial F}{\partial r}|_{(u,v,r)=(0,1/\kappa_{\gamma}(0),1/\kappa_{\gamma}(0))}$ generate $\frac{R[[t]]}{\langle g'_0(t) \rangle} \times \frac{R[[t]]}{\langle g'_1(t) \rangle}$. Let

$$g_i(t) = f(t+t_i) = ((u_0, v_0) - \gamma(t+t_i)) \cdot ((u_0, v_0) - \gamma(t+t_i)) - r_0^2$$

for $i = 0, 1$.

Thus $g_0(0) = f(t_0) = 0$ and $g'_0(0) = f'(t_0) = 0$ since (u_0, v_0) is on the normal line at $\gamma(t_0)$. $g''_0(0) = f''(t_0) \neq 0$ since $\kappa_{\gamma}(t_0) \neq 0$ and $r_0 \neq \frac{1}{\kappa_{\gamma}(t_0)}$. Also, similarly $g_1(0) = f(t_1) = 0$, $g'_1(0) = f'(t_1) = 0$ and $g''_1(0) = f''(t_1) \neq 0$. So we have $g_0(t) = b_2 t^2 + \cdots (b_2 \neq 0)$ and $g_1(t) = c_2 t^2 + \cdots (c_2 \neq 0)$. Thus $\langle g'_0(t) \rangle = \langle g'_1(t) \rangle = \langle t \rangle$. dim $(\frac{R[[t]]}{\langle g'_0(t) \rangle}) = \dim(\frac{R[[t]]}{\langle g'_1(t) \rangle}) = 1$. It is enough to show that

$$(\frac{\partial F}{\partial u}|_{(t_0, u_0, v_0, r_0)}, \frac{\partial F}{\partial u}|_{(t_1, u_0, v_0, r_0)}) = (A, 0) (\frac{\partial F}{\partial v}|_{(t_0, u_0, v_0, r_0)}, \frac{\partial F}{\partial v}|_{(t_1, u_0, v_0, r_0)}) = (0, B)$$

for non-zero constant A, B since

$$\left(\frac{\partial F}{\partial r}\Big|_{(t_0,u_0,v_0,r_0)},\frac{\partial F}{\partial r}\Big|_{(t_1,u_0,v_0,r_0)}\right) = (-2r_0,-2r_0).$$

To do this, we change (u, v)-coordinate to (τ, η) -coordinate where the level curves of τ are the parallel curves of γ and the level curves of η are the parallel curves of γ near $\gamma(t_0)$. Also, we assume that $(\tau, \eta) = (0, 0)$ at $(u, v) = (u_0, v_0)$. Thus

$$\frac{\partial F}{\partial \tau}|_{(t_0,0,0,r_0)} \neq 0 \quad \text{and} \quad \frac{\partial F}{\partial \eta}|_{(t_0,0,0,r_0)} = 0$$

since the arc of the circle through (u_0, v_0) with center $\gamma(t_0)$ is tangent to the η -axis and is transverse to the τ -axis. Similarly,

$$\frac{\partial F}{\partial \tau}|_{(t_1,0,0,r_0)} = 0 \quad \text{and} \quad \frac{\partial F}{\partial \eta}|_{(t_1,0,0,r_0)} \neq 0$$

and Mather's criterion holds. Also, we have another case of type(4) singularity at (t_0, u_0, v_0, r_0) and (t_1, u_0, v_0, r_0) where $r_0 \neq 1/\kappa_{\gamma}(t_0)$, $r_0 \neq 1/\kappa_{\gamma}(t_1)$, $\kappa_{\gamma}(t_0) \neq 0$ and $\kappa_{\gamma}(t_1) \neq 0$. To check Mather's criterion with same set-up above, we change (u, v)-coordinate to (τ, η) -coordinate where the curve $\tau = 0$ is tangent to the parallel curves of γ at (u_0, v_0) and the curve $\eta = 0$ is orthogonal to the curve $\tau = 0$ at (u_0, v_0) . We can assume $(\tau, \eta) = (0, 0)$ at $(u, v) = (u_0, v_0)$. Then

$$\begin{aligned} \frac{\partial F}{\partial \tau}|_{(t_0,0,0,r_0)} \neq 0, & \frac{\partial F}{\partial \eta}|_{(t_0,0,0,r_0)} = 0\\ \frac{\partial F}{\partial \tau}|_{(t_1,0,0,r_0)} \neq 0, & \frac{\partial F}{\partial \eta}|_{(t_1,0,0,r_0)} = 0\\ \frac{\partial F}{\partial r}|_{(t_0,0,0,r_0)} \neq 0, & \frac{\partial F}{\partial r}|_{(t_1,0,0,r_0)} \neq 0 \end{aligned}$$

since the arcs of the circles through (u_0, v_0) with center $\gamma(t_0)$ and $\gamma(t_1)$ are tangential to the η -axis and are transverse to the τ -axis. Thus Mather's criterion holds. Similarly, we can check the orbits of type(5) for which s = 3. Thus Ψ is transverse to all Diff(R)-orbits in $C^{\infty}(R)$. This implies that H is stable, so the cut locus $C(p, \alpha)$ is stable for α . Thus we have the following theorem.

Theorem 1. Let M be a compact connected 2-dimensional C^{∞} -manifold without boundary. Suppose that G is a connected finite graph which is smoothly embedded in M, and whose vertices have degree 1 or 3 only. Furthermore, suppose that for every vertex v of G of degree 3, the tangent vectors to M at v in the directions of the three edges of G incident to v are not contained in a closed half-space of T_vM . Also, suppose that the inclusion map $\iota : G \to M$ induces an isomorphism $\iota_* : H_1(G; Z/2) \to H_1(M; Z/2)$. Then there exist a smooth metric α on M and a point $p \in M$ so that $G = C(p, \alpha)$ and the cut locus $C(p, \alpha)$ is stable for α .

Acknowledgements. I would like to thank to Dr. Clint McCrory for advising and encouraging me when I wrote this paper.

References

- J. W. BRUCE: Wavefronts and Parallels in Euclidean Spaces Math. Proc. Camb. Phil. Soc., 93 (1983) 323–333.
- [2] J. W. BRUCE, P. J. GIBLIN: Curves and Singularities (2nd ed.), Cambridge University Press, 1992.
- [3] M. BUCHNER: Stability of the Cut Locus in Dimension Less Than or Equal to 6, Inventiones Math., 43 (1977) 199–231.

- [4] M. BUCHNER: The Structure of the Cut Locus in Dimension Less Than or Equal to 6 Compositio mathematica, 37 (1978) 103-117.
- [5] E. LOOIJENGA: Structural Stability of Families of C^{∞} Functions and the Canonical Stratification of C^{∞} , I.H.E.S. 1974.
- [6] J. MATHER: Stability of C^{∞} mappings V, Advances in Math. 4 (1970) 301–336.
- [7] M. PARK: Classification of Stable Cut Loci on Surfaces, Ph. D. dissertation (U. of Georgia-Athens), 1997.
- [8] A. WEINSTEIN: The cut locus and conjugate locus of a Riemannian manifold Ann. of Math. 87 (1968) 29-41.

NOTE: proofs not corrected by the author.