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1 Introduction

A set X equipped with an increasing sequence {Jn} of topologies is called
an (ω)topological space [2]. It is denoted by (X, {Jn}) or, simply, by X if there
is no scope for confusion. Separation axioms, compactness and paracompact-
ness of (ω)topological spaces were studied in [2]. In [3], we proved Michael’s
theorem (Theorem 1, [10]) and Stone’s theorem [13] on paracompactness in
(ω)topological spaces. In [14], Thomas proved some results on maximal con-
nected spaces. Mathew [9] studied hyperconnected topological spaces (Steen
and Seebach [12]).

In this paper, we introduce (ω)connected and (ω)hyperconnected spaces. We
also introduce (ω)semiopen sets as an analogue of semiopen sets (Levine [7]).
Along with other results, we prove (i) a set lying between an (ω)connected set
and its (ω)closure is (ω)connected, (ii) if an (ω)topological space X is maximal
(ω)hyperconnected, then the class of all nonempty (ω)open sets is an ultrafilter.

The aim of studying (ω)topological spaces is to develop a framework for
studying an increasing (evolving) sequence of topologies on a set. In literature,
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we get occurrence of infinite sequence of evolving topologies and topological
spaces, a few examples are given below.

In (Datta and Roy Choudhuri [4]) and (Raut and Datta [11]) authors studied
a non-archimedean extension of the real number system R involving nontrivial
infinitesimally small elements which are modelled as hierarchically structured lo-
cal p-adic fields. This approach aims at offering a natural framework for dealing
with an infinite sequence of topologically distinct spaces in a complex evolu-
tionary process.

In digital topology and evolving infinite networks (Fan, Chen and Ko [5])
change of topologies with dynamical consequences are considered. Such topolog-
ical notions have applications in computer science, infinite graphs and related
areas. In dynamical system theory, emergence of chaos in a deterministic system
relates to an interplay of finite or infinite number of different topologies in the
underlying set.

Another motivation of (ω)topology is that if {Jn} be an increasing sequence
of topological spaces on X and J = ∪nJn then (X,J ) is not a topological
space and even it is not an Alexandroff space [1] which is a generalization of
a topological space requiring only countable union of open sets to be open. In
fact, an arbitrary (or countable) union of sets ∈ J may not belong to J . But
taking advantage of the topologies Jn we can, however, get many properties of
(X, {Jn})( [2], [3]), close to that of a topological space which is not necessarily
possessed by an Alexandroff space.

2 Preliminaries

For an (ω)topological space (X, {Jn}), a set G ∈ ∪nJn is called an (ω)open
set. A set F is (ω)closed if its complement F c = X − F is (ω)open. The union
and intersection of a finite number of (ω)open sets is (ω)open. However, the
countable union of (ω)open sets may not be (ω)open. These sets are called
(σω)open sets. Since the arbitrary union of (Jn)open sets is (Jn)open, the union
of an arbitrary number of (ω)open sets is also (σω)open. Similarly, (δω)closed
sets are defined as the intersection of a countable number of (ω)closed sets. The
intersection of all (ω)closed sets containing a set A is called the (ω)closure of A
and is denoted by (ω)clA. Obviously, it is a (δω)closed set.

It is clear that the class T of all (σω)open sets in X forms a topology.

3 (ω)connectedness

Definition 1. An (ω)topological space (X, {Jn}) is said to be (ω)connected,
if X cannot be expressed as the union of two disjoint nonempty (ω)open sets.
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Obviously, when Jn = J for all n, the space (X, {Jn}) is an (ω)connected
space iff the topological space (X,J ) is connected. Further, an (ω)topological
space (X, {Jn}) is (ω)connected iff (X,Jn) is connected for all n.

Definition 2. A subset Y of an (ω)topological space (X, {Jn}) is said to
be (ω)connected, if the (ω)topological space (Y, {Jn|Y }) is (ω)connected.

Theorem 1. If the space (X, T ) is connected, then the (ω)topological space
(X, {Jn}) is (ω)connected.

Proof. Since every (ω)open set is (σω)open, the result follows. QED

We now give an example to show that the converse of the theorem is not
true.

Example 1. Let P{1, 2, 3, . . . , n} denote the power set of the set {1, 2, 3,
. . . , n}. We define an increasing sequence {Tn} of topologies on N as follows:

Tn = {N} ∪ P{1, 2, 3, . . . , n}.

Then the (ω)topological space (N, {Tn}) is (ω)connected. However, the topology
of all (σω)open sets of the above (ω)topology is not connected. Since, the set
of all even positive integers and odd positive integers are two disjoint (σω)open
sets whose union is N .

If X is not (ω)connected, then there exist two disjoint nonempty (ω)open
sets A and B such that X = A∪B. In this case, X is said to be (ω)disconnected
and we write X = A|B. We call it an (ω)separation of X. Since the two (ω)open
sets A and B belong to some Jn, it is clear that if X is not (ω)connected then
for some n, the topological space (X,Jn) is not connected. As a consequence
we get the following theorem.

Theorem 2. If C is an (ω)connected subset of an (ω)topological space X
which has the (ω)separation X = A|B, then either C ⊂ A or C ⊂ B.

Corollary 1. If any two points of Y ⊂ X are contained in some (ω)connect-
ed subset of Y, then Y is (ω)connected.

Corollary 2. The union of a family of (ω)connected sets having nonempty
intersection is (ω)connected.

Corollary 3. If C is an (ω)connected set in X and C ⊂ E ⊂ (ω)clC, then
E is (ω)connected.

Proof. If E is not (ω)connected, then it has an (ω)separation E = A|B.
By Theorem 2, C ⊂ A or C ⊂ B. Let us assume C ⊂ A. Suppose A,B ∈ Jn|E.
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Then

B = B ∩ (ω)clC

⊂ B ∩ (Jn|E)clA

= φ (since A ∩B = φ).

This is a contradiction and so E is (ω)connected. QED

Definition 3. X is said to be an (ω)T0- space if for every pair of distinct
points x and y of X, there exists an (ω)open set G such that x ∈ G and y /∈ G.

Definition 4. X is said to be an (ω)T1- space if for every pair of distinct
points x and y of X, there exists a n such that for some U, V ∈ Jn, we have
x ∈ U, y ∈ V, y /∈ U and x /∈ V.

Definition 5. An (ω)topology {J �
n} on X is said to be stronger (resp.

weaker) than an (ω)topology {Jn} on X if ∪nJn ⊂ ∪nJ �
n(resp. ∪nJ �

n ⊂ ∪nJn).
If, in addition, ∪nJn �= ∪nJ �

n, then {J �
n} is said to be strictly stronger(resp.

strictly weaker) than {Jn}.
Definition 6. An (ω)topological space (X, {Jn}) with property P is said to

be maximal(resp. minimal) if for any other (ω)topology {J �
n} strictly stronger

(resp. strictly weaker) than {Jn}, the space (X, {J �
n}) cannot have this property.

Theorem 3. If X is maximal (ω)connected, then X is (ω)T0.

Proof. Suppose, if possibleX is not (ω)T0. Then there exist x, y ∈ X, x �= y
such that x ∈ (ω)cl{y} and y ∈ (ω)cl{x}. Let J �

n be the topology generated
by Jn ∪ {y}. Then the (ω)topological space (X, {J �

n}) is not (ω)connected.
Let X = A|B be an (ω)separation of (X, {J �

n}). Then either {x, y} ⊂ A or
{x, y} ⊂ B. Suppose {x, y} ⊂ A. Then there exists a set U ∈ Jn with x ∈ U.
But U also contains y. Since for any point z ∈ A with z �= y, there is a (Jn)open
neighborhood G ⊂ A of z, it follows that A ∈ Jn. Clearly B ∈ Jn. Thus A|B is
an (ω)separation of (X, {Jn}) which is a contradiction. QED

Below we provide examples to show that a maximal (ω)connected space may
or may not be (ω)T1.

Example 2. Let us consider the (ω)topological space defined in Example
1. Clearly (N, {Tn}) is (ω)T1. Also this space is (ω)connected and hence, can be
extended to a maximal (ω)connected space.

Example 3. Let us define an (ω)topological space (N, {Jn}) as follows:

Jn = {φ} ∪ {E ⊂ N | 1 ∈ E} for all n.

Then clearly (N, {Jn}) is a maximal (ω)connected space. However, (N, {Jn})
is not (ω)T1.
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Theorem 4. Let (X, {Jn}) be maximal (ω)connected and G be an (ω)open
(ω)connected subset of X. Then (G, {Jn|G}) is maximal (ω)connected.

Proof. If possible, suppose (G, {Jn|G}) is not maximal (ω)connected. Let
{Pn} be an (ω)topology on G strictly stronger than {Jn|G} and (G, {Pn}) is
(ω)connected. Let H ⊂ G be such that H ∈ Pn0 − Jn0 |G for some n0. If Qn

is a topology on G generated by (Jn|G) ∪ {H}, then {Qn} is an (ω)connected
(ω)topology on G. Also if Sn is the topology on X generated by Jn∪{H}, then
the (ω)topology {Sn} on X is strictly stronger than {Jn} and so (X, {Sn}) is
not (ω)connected. Let X = A|B be an (ω)separation of (X, {Sn}). Then either
G ⊂ A or G ⊂ B, since, otherwise, (G ∩ A)|(G ∩ B) is an (ω)separation of
(G, {Qn}). Suppose G ⊂ A. Since G ∈ ∪nJn, it follows that A ∈ ∪nJn. But
obviously B ∈ ∪nJn. Therefore X = A|B is an (ω)separation of (X, {Jn})
which is a contradiction. QED

Definition 7. Let x ∈ X. The component C(x) of x in X is the union of
all (ω)connected subsets of X containing x.

From Corollary 2, it follows that C(x) is (ω)connected.

Theorem 5. In an (ω)topological space (X, {Jn}), (i) each component C(x)
is a maximal (ω)connected set in X, (ii) the set of all distinct components in X
forms a partition of X, (iii) each C(x) is (δω)closed in X.

Proof. Straightforward. QED

4 (ω)hyperconnectedness

Definition 8. X is said to be (ω)hyperconnected if for any two nonempty
(ω)open sets U and V, U ∩ V �= φ.

Therefore for any nonempty (ω)open set U, (ω)clU = X, since otherwise
V1 = X − (ω)clU is a nonempty (σω)open set and U ∩ V1 = φ which implies
that for any nonempty (ω)open set V ⊂ V1, we have U ∩ V = φ.

Theorem 6. (X, {Jn}) is (ω)hyperconnected iff the topological space (X, T )
is hyperconnected.

Proof. Suppose (X, {Jn}) is (ω)hyperconnected. Let A and B be two
nonempty (T )open sets. Then A = ∪∞

i=1Ai, B = ∪∞
j=1Bj where Ai and Bj

are nonempty (ω)open sets. Now A ∩ B ⊃ Ai ∩ Bj �= φ. Thus (X, T ) is hyper-
connected.

Conversely, since each (ω)open set is (σω)open set. The hyperconnected-
ness of the space (X, T ), implies that the (ω)topological space (X, {Jn}) is
(ω)hyperconnected. QED
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Definition 9. A set A ⊂ X is said to be (ω)semiopen if there exists an n
such that for some U ∈ Jn, we have

U ⊂ A ⊂ (ω)clU.

Let SOω(X, {Jn}) or, simply, SOω(X) denote the set of all (ω)semiopen
sets. If some set A satisfies the above relation for some set U ∈ Jn, we say
that A is (Jn −ω)semiopen. The set of all (Jn −ω)semiopen sets is denoted by
(Jn)SOω(X). Thus

SOω(X) = ∪n(Jn)SOω(X).

Theorem 7. X is (ω)hyperconnected iff SOω(X)− {φ} is a filter.

Proof. Suppose X is (ω)hyperconnected. Let A,B ∈ SOω(X)−{φ}. Then
there exists a k ∈ N such that for some U and V with U, V ∈ Jk, we have

U ⊂ A ⊂ (ω)clU,

V ⊂ B ⊂ (ω)clV.

Since X is (ω)hyperconnected, U ∩ V �= φ and (ω)cl(U ∩ V ) = X. Therefore it
follows that A ∩B �= φ and

U ∩ V ⊂ A ∩B ⊂ (ω)cl(U ∩ V ).

Thus A ∩ B ∈ SOω(X) − {φ}. Again if B ⊃ A ∈ SOω(X) − {φ}, there exists,
for some k, a U ∈ Jk such that

U ⊂ A ⊂ (ω)clU and so

U ⊂ B ⊂ (ω)clU (since (ω)clU = X).

Hence B ∈ SOω(X)− {φ}. Therefore SOω(X)− {φ} is a filter.
Since every (ω)open set is (ω)semiopen, the converse follows. QED

It is easy to see that the union of an arbitrary number of (Jn −ω)semiopen
sets is (Jn −ω)semiopen. Also if X is (ω)hyperconnected, then the intersection
of a finite number of (Jn − ω)semiopen sets is (Jn − ω)semiopen. Thus if X is
(ω)hyperconnected, then the class (Jn)SOω(X) = Sn forms a topology on X
and Sn ⊂ Sn+1. Hence {Sn} is an (ω)topology on X.

From Theorem 7, we get the following result.

Theorem 8. If (X, {Jn}) is (ω)hyperconnected, then so is (X, {Sn}).
Corollary 4. If (X, {Jn}) is maximal (ω)hyperconnected, then ∪nJn =

∪nSn.

For any set A �∈ ∪nJn, let Jn(A) denote the simple extension (Levine [8])
of Jn. Then (X, {Jn(A)}) forms an (ω)topology on X and Jn ⊂ Jn(A) for all
n. We call {Jn(A)}, a simple extension of {Jn}.
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Theorem 9. If (X, {Jn}) is maximal (ω)hyperconnected, then SOω(X) −
{φ} is an ultrafilter.

Proof. Suppose (X, {Jn}) is maximal (ω)hyperconnected. For E ⊂ X,
suppose E �∈ SOω(X, {Jn})− {φ}. Then E �∈ ∪nJn. Let us consider the simple
extension {Jn(E)} of {Jn}. Since (X, {Jn}) is maximal (ω)hyperconnected,
(X, {Jn(E)}) is not (ω)hyperconnected. Therefore for some n, there exist two
nonempty sets G,H ∈ Jn(E) such that G ∩ H = φ. Let G = G1 ∪ (G2 ∩ E)
and H = H1 ∪ (H2 ∩ E) where G1, G2, H1, H2 ∈ Jn. Then G1 ∩H1 = φ. Since
(X, {Jn}) is (ω)hyperconnected, either G1 = φ or H1 = φ. Suppose G1 = φ.
If H1 = φ, then G2 �= φ and H2 �= φ, since G �= φ and H �= φ. Thus by
(ω)hyperconnectivity of (X, {Jn}), G2 ∩ H2 �= φ. Again since G ∩ H = φ, we
have G2 ∩ H2 ∩ E = φ. Hence G2 ∩ H2 ⊂ Ec, and therefore by Theorem 7,
Ec ∈ SOω(X, {Jn}) − {φ}. Now consider the case H1 �= φ. Since G �= φ, we
have G2 �= φ. Therefore G2 ∩H1 �= φ. From the relation G ∩H = φ, it follows
that (G2∩E)∩H1 = φ. Hence G2∩H1 ⊂ Ec, and so Ec ∈ SOω(X, {Jn})−{φ}.
Thus SOω(X)− {φ} is an ultrafilter. QED

Using Corollary 4, we get the following result.

Corollary 5. If (X, {Jn}) is maximal (ω)hyperconnected, then the class of
all nonempty (ω)open sets is an ultrafilter.

Definition 10. (X, {Jn}) is said to be an (ω)door space if for every subset
E of X, E ∈ Jn or Ec ∈ Jn for some n.

We now show that for an (ω)door space (X, {Jn}), the topological spaces
(X,Jn) need not be door (Kelley [6]).

Example 4. Let us define an (ω)topological space (N, {Jn}) as follows:
Jn = {φ, N} ∪ {E ⊂ {1, 2, . . . , n} | 1 ∈ E} for all n < 10, and

Jn = {φ} ∪ {E ⊂ N | 1 ∈ E} for all n ≥ 10.

Then clearly (N, {Jn}) is an (ω)door space. But for any n < 9, the topological
space (N,Jn) is not a door space.

Example 5. Taking X = [0, 1), let us define an (ω)topological space (X,
{Jn}) as follows:

Jn is the topology generated by the subbase {E | E ⊂ [0, 1 − 1
n+1) and

0 ∈ E} ∪ {φ, all the sets ⊂ X containing 0 and having 1 as a limit point}.
Then it is easy to see that (X, {Jn}) forms an (ω)door space. However,

(X,Jn) is not a door space for any n.

Definition 11. A property P of an (ω)topological space (X, {Jn}) is said
to be contractive(resp. expansive) if it is possessed by (ω)topological spaces
(X, {J �

n}) whenever it is possessed by (X, {Jn}), where the (ω)topologies {J �
n}

are weaker(resp. stronger) than {Jn}.
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It is clear that (ω)connectedness and (ω)hyperconnectedness are contractive
properties while (ω)doorness is an expansive property.

Theorem 10. (X, {Jn}) is an (ω)hyperconnected (ω)door space iff F =
(∪nJn)− {φ} is an ultrafilter.

Proof. Suppose (X, {Jn}) is an (ω)hyperconnected (ω)door space. Then
for A,B ∈ F , A ∩ B ∈ F . Now let B ⊃ A ∈ F . If B = X, then B ∈ F . If
B �= X, then Bc �∈ F , since otherwise A ∩ Bc �= φ. Therefore B ∈ F . Hence F
is a filter and so an ultrafilter.

The converse part is obvious. QED

Theorem 11. If (X, {Jn}) is (ω)hyperconnected and (ω)door, then (X,
{Jn}) is maximal (ω)hyperconnected and minimal (ω)door.

Proof. Let {J �
n} be an (ω)topology on X stronger than {Jn} such that

(X, {J �
n}) is (ω)hyperconnected. If possible, suppose G be a nonempty set with

G ∈ J �
m for some m and G �∈ ∪nJn. Since (X, {Jn}) is (ω)door, X − G ∈ Jl

for some l. Hence X − G ∈ ∪nJ �
n. This contradicts the fact that (X, {J �

n}) is
(ω)hyperconnected. Thus G ∈ ∪nJn. Therefore ∪nJ �

n = ∪nJn.

Again let (X, {J �
n}) be an (ω)door space such that ∪nJ �

n ⊂ ∪nJn. Suppose,
if possible, G is a nonempty set with G ∈ ∪nJn and G �∈ ∪nJ �

n. But then
X−G ∈ ∪nJ �

n. So X−G ∈ ∪nJn which contradicts the (ω)hyperconnectedness
of (X, {Jn}). Therefore ∪nJ �

n = ∪nJn. QED

Definition 12. A set E ⊂ X is said to be (ω)dense if (ω)clE = X.

Definition 13. X is said to be submaximal if every (ω)dense subset of X
is (ω)open.

Theorem 12. (X, {Jn}) is maximal (ω)hyperconnected iff it is submaximal
and (ω)hyperconnected.

Proof. Suppose (X, {Jn}) is maximal (ω)hyperconnected. Let E ⊂ X be
(ω)dense. By Corollary 5, (∪nJn) − {φ} is an ultrafilter. Therefore E must be
(ω)open. For, if E is not (ω)open, then Ec must be (ω)open, since (∪nJn)−{φ}
is an ultrafilter. Therefore E is (ω)closed and hence (ω)clE = E. Again since E
is (ω)dense, (ω)clE = X. Therefore E = X. Thus X is submaximal.

Conversely, suppose (X, {Jn}) is submaximal and (ω)hyperconnected. Let
(X, {J �

n}) be (ω)hyperconnected with ∪nJ �
n ⊃ ∪nJn. If G ∈ ∪nJ �

n be a nonemp-
ty set, then, since (X, {J �

n}) is (ω)hyperconnected, (ω)clG(the (ω)closure of
G in (X, {J �

n})) coincides with X. This implies that (ω)clG(the (ω)closure of
G in (X, {Jn}))= X(since (ω)clG(w.r.t (X, {Jn}))⊃ (ω)clG(w.r.t (X, {J �

n}))),
and so it follows that G is (ω)dense in (X, {Jn}). Hence G ∈ ∪nJn. Thus
∪nJ �

n = ∪nJn. QED
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