Note di Matematica Note Mat. **31** (2011) n. 2, 93–101.

(ω) topological connectedness and hyperconnectedness

M. K. Bose

Department of Mathematics University of North Bengal Siliguri, W. Bengal - 734013, India manojkumarbose@yahoo.com

R. Tiwari

Department of Mathematics St. Joseph's College Darjeeling, W. Bengal - 734104, India tiwarirupesh1@yahoo.co.in

Received: 04/12/2009; accepted: 03/10/2011.

Abstract. In this paper, the notions of connectedness and hyperconnectedness in (ω) topological spaces are introduced and studied.

Keywords: connected spaces, hyperconnected spaces, door spaces, (ω) topological spaces.

MSC 2000 classification: primary 54A10

1 Introduction

A set X equipped with an increasing sequence $\{\mathcal{J}_n\}$ of topologies is called an (ω) topological space [2]. It is denoted by $(X, \{\mathcal{J}_n\})$ or, simply, by X if there is no scope for confusion. Separation axioms, compactness and paracompactness of (ω) topological spaces were studied in [2]. In [3], we proved Michael's theorem (Theorem 1, [10]) and Stone's theorem [13] on paracompactness in (ω) topological spaces. In [14], Thomas proved some results on maximal connected spaces. Mathew [9] studied hyperconnected topological spaces (Steen and Seebach [12]).

In this paper, we introduce (ω) connected and (ω) hyperconnected spaces. We also introduce (ω) semiopen sets as an analogue of semiopen sets (Levine [7]). Along with other results, we prove (i) a set lying between an (ω) connected set and its (ω) closure is (ω) connected, (ii) if an (ω) topological space X is maximal (ω) hyperconnected, then the class of all nonempty (ω) open sets is an ultrafilter.

The aim of studying (ω) topological spaces is to develop a framework for studying an increasing (evolving) sequence of topologies on a set. In literature,

http://siba-ese.unisalento.it/ (Ĉ) 2011 Università del Salento

we get occurrence of infinite sequence of evolving topologies and topological spaces, a few examples are given below.

In (Datta and Roy Choudhuri [4]) and (Raut and Datta [11]) authors studied a non-archimedean extension of the real number system R involving nontrivial infinitesimally small elements which are modelled as hierarchically structured local p-adic fields. This approach aims at offering a natural framework for dealing with an infinite sequence of topologically distinct spaces in a complex evolutionary process.

In digital topology and evolving infinite networks (Fan, Chen and Ko [5]) change of topologies with dynamical consequences are considered. Such topological notions have applications in computer science, infinite graphs and related areas. In dynamical system theory, emergence of chaos in a deterministic system relates to an interplay of finite or infinite number of different topologies in the underlying set.

Another motivation of (ω) topology is that if $\{\mathcal{J}_n\}$ be an increasing sequence of topological spaces on X and $\mathcal{J} = \bigcup_n \mathcal{J}_n$ then (X, \mathcal{J}) is not a topological space and even it is not an Alexandroff space [1] which is a generalization of a topological space requiring only countable union of open sets to be open. In fact, an arbitrary (or countable) union of sets $\in \mathcal{J}$ may not belong to \mathcal{J} . But taking advantage of the topologies \mathcal{J}_n we can, however, get many properties of $(X, \{\mathcal{J}_n\})([2], [3])$, close to that of a topological space which is not necessarily possessed by an Alexandroff space.

2 Preliminaries

For an (ω) topological space $(X, \{\mathcal{J}_n\})$, a set $G \in \bigcup_n \mathcal{J}_n$ is called an (ω) open set. A set F is (ω) closed if its complement $F^c = X - F$ is (ω) open. The union and intersection of a finite number of (ω) open sets is (ω) open. However, the countable union of (ω) open sets may not be (ω) open. These sets are called $(\sigma\omega)$ open sets. Since the arbitrary union of (\mathcal{J}_n) open sets is (\mathcal{J}_n) open, the union of an arbitrary number of (ω) open sets is also $(\sigma\omega)$ open. Similarly, $(\delta\omega)$ closed sets are defined as the intersection of a countable number of (ω) closed sets. The intersection of all (ω) closed sets containing a set A is called the (ω) closure of Aand is denoted by $(\omega)clA$. Obviously, it is a $(\delta\omega)$ closed set.

It is clear that the class \mathcal{T} of all $(\sigma \omega)$ open sets in X forms a topology.

3 (ω) connectedness

Definition 1. An (ω) topological space $(X, \{\mathcal{J}_n\})$ is said to be (ω) connected, if X cannot be expressed as the union of two disjoint nonempty (ω) open sets.

Obviously, when $\mathcal{J}_n = \mathcal{J}$ for all n, the space $(X, \{\mathcal{J}_n\})$ is an (ω) connected space iff the topological space (X, \mathcal{J}) is connected. Further, an (ω) topological space $(X, \{\mathcal{J}_n\})$ is (ω) connected iff (X, \mathcal{J}_n) is connected for all n.

Definition 2. A subset Y of an (ω) topological space $(X, \{\mathcal{J}_n\})$ is said to be (ω) connected, if the (ω) topological space $(Y, \{\mathcal{J}_n|Y\})$ is (ω) connected.

Theorem 1. If the space (X, \mathcal{T}) is connected, then the (ω) topological space $(X, \{\mathcal{J}_n\})$ is (ω) connected.

PROOF. Since every (ω) open set is $(\sigma \omega)$ open, the result follows. QED

We now give an example to show that the converse of the theorem is not true.

Example 1. Let $P\{1, 2, 3, ..., n\}$ denote the power set of the set $\{1, 2, 3, ..., n\}$. We define an increasing sequence $\{\mathcal{T}_n\}$ of topologies on N as follows:

$$\mathcal{T}_n = \{N\} \cup P\{1, 2, 3, \dots, n\}.$$

Then the (ω) topological space $(N, \{\mathcal{T}_n\})$ is (ω) connected. However, the topology of all $(\sigma\omega)$ open sets of the above (ω) topology is not connected. Since, the set of all even positive integers and odd positive integers are two disjoint $(\sigma\omega)$ open sets whose union is N.

If X is not (ω) connected, then there exist two disjoint nonempty (ω) open sets A and B such that $X = A \cup B$. In this case, X is said to be (ω) disconnected and we write X = A | B. We call it an (ω) separation of X. Since the two (ω) open sets A and B belong to some \mathcal{J}_n , it is clear that if X is not (ω) connected then for some n, the topological space (X, \mathcal{J}_n) is not connected. As a consequence we get the following theorem.

Theorem 2. If C is an (ω) connected subset of an (ω) topological space X which has the (ω) separation X = A|B, then either $C \subset A$ or $C \subset B$.

Corollary 1. If any two points of $Y \subset X$ are contained in some (ω) connected subset of Y, then Y is (ω) connected.

Corollary 2. The union of a family of (ω) connected sets having nonempty intersection is (ω) connected.

Corollary 3. If C is an (ω) connected set in X and $C \subset E \subset (\omega)clC$, then E is (ω) connected.

PROOF. If E is not (ω) connected, then it has an (ω) separation E = A|B. By Theorem 2, $C \subset A$ or $C \subset B$. Let us assume $C \subset A$. Suppose $A, B \in \mathcal{J}_n|E$.

M. K. Bose, R. Tiwari

Then

$$B = B \cap (\omega)clC$$

$$\subset B \cap (\mathcal{J}_n|E)clA$$

$$= \phi \text{ (since } A \cap B = \phi \text{).}$$

This is a contradiction and so E is (ω) connected.

Definition 3. X is said to be an $(\omega)T_0$ - space if for every pair of distinct points x and y of X, there exists an (ω) open set G such that $x \in G$ and $y \notin G$.

Definition 4. X is said to be an $(\omega)T_1$ - space if for every pair of distinct points x and y of X, there exists a n such that for some $U, V \in \mathcal{J}_n$, we have $x \in U, y \in V, y \notin U$ and $x \notin V$.

Definition 5. An (ω) topology $\{\mathcal{J}'_n\}$ on X is said to be stronger (resp. weaker) than an (ω) topology $\{\mathcal{J}_n\}$ on X if $\cup_n \mathcal{J}_n \subset \cup_n \mathcal{J}'_n$ (resp. $\cup_n \mathcal{J}'_n \subset \cup_n \mathcal{J}_n$). If, in addition, $\cup_n \mathcal{J}_n \neq \cup_n \mathcal{J}'_n$, then $\{\mathcal{J}'_n\}$ is said to be strictly stronger (resp. strictly weaker) than $\{\mathcal{J}_n\}$.

Definition 6. An (ω) topological space $(X, \{\mathcal{J}_n\})$ with property P is said to be maximal(resp. minimal) if for any other (ω) topology $\{\mathcal{J}'_n\}$ strictly stronger (resp. strictly weaker) than $\{\mathcal{J}_n\}$, the space $(X, \{\mathcal{J}'_n\})$ cannot have this property.

Theorem 3. If X is maximal (ω) connected, then X is $(\omega)T_0$.

PROOF. Suppose, if possible X is not $(\omega)T_0$. Then there exist $x, y \in X, x \neq y$ such that $x \in (\omega)cl\{y\}$ and $y \in (\omega)cl\{x\}$. Let \mathcal{J}'_n be the topology generated by $\mathcal{J}_n \cup \{y\}$. Then the (ω) topological space $(X, \{\mathcal{J}'_n\})$ is not (ω) connected. Let X = A|B be an (ω) separation of $(X, \{\mathcal{J}'_n\})$. Then either $\{x, y\} \subset A$ or $\{x, y\} \subset B$. Suppose $\{x, y\} \subset A$. Then there exists a set $U \in \mathcal{J}_n$ with $x \in U$. But U also contains y. Since for any point $z \in A$ with $z \neq y$, there is a (\mathcal{J}_n) open neighborhood $G \subset A$ of z, it follows that $A \in \mathcal{J}_n$. Clearly $B \in \mathcal{J}_n$. Thus A|B is an (ω) separation of $(X, \{\mathcal{J}_n\})$ which is a contradiction.

Below we provide examples to show that a maximal (ω) connected space may or may not be $(\omega)T_1$.

Example 2. Let us consider the (ω) topological space defined in Example 1. Clearly $(N, \{\mathcal{T}_n\})$ is $(\omega)T_1$. Also this space is (ω) connected and hence, can be extended to a maximal (ω) connected space.

Example 3. Let us define an (ω) topological space $(N, \{\mathcal{J}_n\})$ as follows:

$$\mathcal{J}_n = \{\phi\} \cup \{E \subset N \mid 1 \in E\} \text{ for all } n.$$

Then clearly $(N, \{\mathcal{J}_n\})$ is a maximal (ω) connected space. However, $(N, \{\mathcal{J}_n\})$ is not $(\omega)T_1$.

96

QED

Theorem 4. Let $(X, \{\mathcal{J}_n\})$ be maximal (ω) connected and G be an (ω) open (ω) connected subset of X. Then $(G, \{\mathcal{J}_n | G\})$ is maximal (ω) connected.

PROOF. If possible, suppose $(G, \{\mathcal{J}_n|G\})$ is not maximal (ω) connected. Let $\{\mathcal{P}_n\}$ be an (ω) topology on G strictly stronger than $\{\mathcal{J}_n|G\}$ and $(G, \{\mathcal{P}_n\})$ is (ω) connected. Let $H \subset G$ be such that $H \in \mathcal{P}_{n_0} - \mathcal{J}_{n_0}|G$ for some n_0 . If \mathcal{Q}_n is a topology on G generated by $(\mathcal{J}_n|G) \cup \{H\}$, then $\{\mathcal{Q}_n\}$ is an (ω) connected (ω) topology on G. Also if \mathcal{S}_n is the topology on X generated by $\mathcal{J}_n \cup \{H\}$, then the (ω) topology $\{\mathcal{S}_n\}$ on X is strictly stronger than $\{\mathcal{J}_n\}$ and so $(X, \{\mathcal{S}_n\})$ is not (ω) connected. Let X = A|B be an (ω) separation of $(X, \{\mathcal{S}_n\})$. Then either $G \subset A$ or $G \subset B$, since, otherwise, $(G \cap A)|(G \cap B)$ is an (ω) separation of $(G, \{\mathcal{Q}_n\})$. Suppose $G \subset A$. Since $G \in \bigcup_n \mathcal{J}_n$, it follows that $A \in \bigcup_n \mathcal{J}_n$. But obviously $B \in \bigcup_n \mathcal{J}_n$. Therefore X = A|B is an (ω) separation of $(X, \{\mathcal{J}_n\})$ which is a contradiction.

Definition 7. Let $x \in X$. The component C(x) of x in X is the union of all (ω) connected subsets of X containing x.

From Corollary 2, it follows that C(x) is (ω) connected.

Theorem 5. In an (ω) topological space $(X, \{\mathcal{J}_n\})$, (i) each component C(x) is a maximal (ω) connected set in X, (ii) the set of all distinct components in X forms a partition of X, (iii) each C(x) is $(\delta\omega)$ closed in X.

PROOF. Straightforward.

4 (ω) hyperconnectedness

Definition 8. X is said to be (ω) hyperconnected if for any two nonempty (ω) open sets U and V, $U \cap V \neq \phi$.

Therefore for any nonempty (ω) open set U, $(\omega)clU = X$, since otherwise $V_1 = X - (\omega)clU$ is a nonempty $(\sigma\omega)$ open set and $U \cap V_1 = \phi$ which implies that for any nonempty (ω) open set $V \subset V_1$, we have $U \cap V = \phi$.

Theorem 6. $(X, \{\mathcal{J}_n\})$ is (ω) hyperconnected iff the topological space (X, \mathcal{T}) is hyperconnected.

PROOF. Suppose $(X, \{\mathcal{J}_n\})$ is (ω) hyperconnected. Let A and B be two nonempty (\mathcal{T}) open sets. Then $A = \bigcup_{i=1}^{\infty} A_i$, $B = \bigcup_{j=1}^{\infty} B_j$ where A_i and B_j are nonempty (ω) open sets. Now $A \cap B \supset A_i \cap B_j \neq \phi$. Thus (X, \mathcal{T}) is hyperconnected.

Conversely, since each (ω) open set is $(\sigma\omega)$ open set. The hyperconnectedness of the space (X, \mathcal{T}) , implies that the (ω) topological space $(X, \{\mathcal{J}_n\})$ is (ω) hyperconnected.

QED

Definition 9. A set $A \subset X$ is said to be (ω) semiopen if there exists an n such that for some $U \in \mathcal{J}_n$, we have

$$U \subset A \subset (\omega) clU$$

Let $SO_{\omega}(X, \{\mathcal{J}_n\})$ or, simply, $SO_{\omega}(X)$ denote the set of all (ω) semiopen sets. If some set A satisfies the above relation for some set $U \in \mathcal{J}_n$, we say that A is $(\mathcal{J}_n - \omega)$ semiopen. The set of all $(\mathcal{J}_n - \omega)$ semiopen sets is denoted by $(\mathcal{J}_n)SO_{\omega}(X)$. Thus

$$SO_{\omega}(X) = \bigcup_n (\mathcal{J}_n) SO_{\omega}(X).$$

Theorem 7. X is (ω) hyperconnected iff $SO_{\omega}(X) - \{\phi\}$ is a filter.

PROOF. Suppose X is (ω) hyperconnected. Let $A, B \in SO_{\omega}(X) - \{\phi\}$. Then there exists a $k \in N$ such that for some U and V with $U, V \in \mathcal{J}_k$, we have

$$U \subset A \subset (\omega)clU,$$

$$V \subset B \subset (\omega)clV.$$

Since X is (ω) hyperconnected, $U \cap V \neq \phi$ and $(\omega)cl(U \cap V) = X$. Therefore it follows that $A \cap B \neq \phi$ and

$$U \cap V \subset A \cap B \subset (\omega)cl(U \cap V).$$

Thus $A \cap B \in SO_{\omega}(X) - \{\phi\}$. Again if $B \supset A \in SO_{\omega}(X) - \{\phi\}$, there exists, for some k, a $U \in \mathcal{J}_k$ such that

$$U \subset A \subset (\omega) clU \text{ and so}$$
$$U \subset B \subset (\omega) clU \text{ (since } (\omega) clU = X).$$

Hence $B \in SO_{\omega}(X) - \{\phi\}$. Therefore $SO_{\omega}(X) - \{\phi\}$ is a filter. Since every (ω) open set is (ω) semiopen, the converse follows.

QED

It is easy to see that the union of an arbitrary number of $(\mathcal{J}_n - \omega)$ semiopen sets is $(\mathcal{J}_n - \omega)$ semiopen. Also if X is (ω) hyperconnected, then the intersection of a finite number of $(\mathcal{J}_n - \omega)$ semiopen sets is $(\mathcal{J}_n - \omega)$ semiopen. Thus if X is (ω) hyperconnected, then the class $(\mathcal{J}_n)SO_{\omega}(X) = S_n$ forms a topology on X and $S_n \subset S_{n+1}$. Hence $\{S_n\}$ is an (ω) topology on X.

From Theorem 7, we get the following result.

Theorem 8. If $(X, \{\mathcal{J}_n\})$ is (ω) hyperconnected, then so is $(X, \{S_n\})$.

Corollary 4. If $(X, \{\mathcal{J}_n\})$ is maximal (ω) hyperconnected, then $\cup_n \mathcal{J}_n = \cup_n S_n$.

For any set $A \notin \bigcup_n \mathcal{J}_n$, let $\mathcal{J}_n(A)$ denote the simple extension (Levine [8]) of \mathcal{J}_n . Then $(X, \{\mathcal{J}_n(A)\})$ forms an (ω) topology on X and $\mathcal{J}_n \subset \mathcal{J}_n(A)$ for all n. We call $\{\mathcal{J}_n(A)\}$, a simple extension of $\{\mathcal{J}_n\}$. **Theorem 9.** If $(X, \{\mathcal{J}_n\})$ is maximal (ω) hyperconnected, then $SO_{\omega}(X) - \{\phi\}$ is an ultrafilter.

PROOF. Suppose $(X, \{\mathcal{J}_n\})$ is maximal (ω) hyperconnected. For $E \subset X$, suppose $E \notin SO_{\omega}(X, \{\mathcal{J}_n\}) - \{\phi\}$. Then $E \notin \cup_n \mathcal{J}_n$. Let us consider the simple extension $\{\mathcal{J}_n(E)\}$ of $\{\mathcal{J}_n\}$. Since $(X, \{\mathcal{J}_n\})$ is maximal (ω) hyperconnected, $(X, \{\mathcal{J}_n(E)\})$ is not (ω) hyperconnected. Therefore for some n, there exist two nonempty sets $G, H \in \mathcal{J}_n(E)$ such that $G \cap H = \phi$. Let $G = G_1 \cup (G_2 \cap E)$ and $H = H_1 \cup (H_2 \cap E)$ where $G_1, G_2, H_1, H_2 \in \mathcal{J}_n$. Then $G_1 \cap H_1 = \phi$. Since $(X, \{\mathcal{J}_n\})$ is (ω) hyperconnected, either $G_1 = \phi$ or $H_1 = \phi$. Suppose $G_1 = \phi$. If $H_1 = \phi$, then $G_2 \neq \phi$ and $H_2 \neq \phi$, since $G \neq \phi$ and $H \neq \phi$. Thus by (ω) hyperconnectivity of $(X, \{\mathcal{J}_n\}), G_2 \cap H_2 \neq \phi$. Again since $G \cap H = \phi$, we have $G_2 \cap H_2 \cap E = \phi$. Hence $G_2 \cap H_2 \subset E^c$, and therefore by Theorem 7, $E^c \in SO_{\omega}(X, \{\mathcal{J}_n\}) - \{\phi\}$. Now consider the case $H_1 \neq \phi$. Since $G \neq \phi$, we have $G_2 \neq \phi$. Therefore $G_2 \cap H_1 \neq \phi$. From the relation $G \cap H = \phi$, it follows that $(G_2 \cap E) \cap H_1 = \phi$. Hence $G_2 \cap H_1 \subset E^c$, and so $E^c \in SO_{\omega}(X, \{\mathcal{J}_n\}) - \{\phi\}$. Thus $SO_{\omega}(X) - \{\phi\}$ is an ultrafilter.

Using Corollary 4, we get the following result.

Corollary 5. If $(X, \{\mathcal{J}_n\})$ is maximal (ω) hyperconnected, then the class of all nonempty (ω) open sets is an ultrafilter.

Definition 10. $(X, \{\mathcal{J}_n\})$ is said to be an (ω) door space if for every subset E of $X, E \in \mathcal{J}_n$ or $E^c \in \mathcal{J}_n$ for some n.

We now show that for an (ω) door space $(X, \{\mathcal{J}_n\})$, the topological spaces (X, \mathcal{J}_n) need not be door (Kelley [6]).

Example 4. Let us define an (ω) topological space $(N, \{\mathcal{J}_n\})$ as follows:

$$\mathcal{J}_n = \{\phi, N\} \cup \{E \subset \{1, 2, \dots, n\} \mid 1 \in E\} \text{ for all } n < 10, \text{ and}$$
$$\mathcal{J}_n = \{\phi\} \cup \{E \subset N \mid 1 \in E\} \text{ for all } n \ge 10.$$

Then clearly $(N, \{\mathcal{J}_n\})$ is an (ω) door space. But for any n < 9, the topological space (N, \mathcal{J}_n) is not a door space.

Example 5. Taking X = [0, 1), let us define an (ω) topological space $(X, \{\mathcal{J}_n\})$ as follows:

 \mathcal{J}_n is the topology generated by the subbase $\{E \mid E \subset [0, 1 - \frac{1}{n+1})$ and $0 \in E\} \cup \{\phi, \text{ all the sets } \subset X \text{ containing } 0 \text{ and having } 1 \text{ as a limit point}\}.$

Then it is easy to see that $(X, \{\mathcal{J}_n\})$ forms an (ω) door space. However, (X, \mathcal{J}_n) is not a door space for any n.

Definition 11. A property P of an (ω) topological space $(X, \{\mathcal{J}_n\})$ is said to be contractive(resp. expansive) if it is possessed by (ω) topological spaces $(X, \{\mathcal{J}'_n\})$ whenever it is possessed by $(X, \{\mathcal{J}_n\})$, where the (ω) topologies $\{\mathcal{J}'_n\}$ are weaker(resp. stronger) than $\{\mathcal{J}_n\}$. It is clear that (ω) connectedness and (ω) hyperconnectedness are contractive properties while (ω) doorness is an expansive property.

Theorem 10. $(X, \{\mathcal{J}_n\})$ is an (ω) hyperconnected (ω) door space iff $\mathcal{F} = (\bigcup_n \mathcal{J}_n) - \{\phi\}$ is an ultrafilter.

PROOF. Suppose $(X, \{\mathcal{J}_n\})$ is an (ω) hyperconnected (ω) door space. Then for $A, B \in \mathcal{F}, A \cap B \in \mathcal{F}$. Now let $B \supset A \in \mathcal{F}$. If B = X, then $B \in \mathcal{F}$. If $B \neq X$, then $B^c \notin \mathcal{F}$, since otherwise $A \cap B^c \neq \phi$. Therefore $B \in \mathcal{F}$. Hence \mathcal{F} is a filter and so an ultrafilter.

The converse part is obvious.

QED

Theorem 11. If $(X, \{\mathcal{J}_n\})$ is (ω) hyperconnected and (ω) door, then $(X, \{\mathcal{J}_n\})$ is maximal (ω) hyperconnected and minimal (ω) door.

PROOF. Let $\{\mathcal{J}'_n\}$ be an (ω) topology on X stronger than $\{\mathcal{J}_n\}$ such that $(X, \{\mathcal{J}'_n\})$ is (ω) hyperconnected. If possible, suppose G be a nonempty set with $G \in \mathcal{J}'_m$ for some m and $G \notin \bigcup_n \mathcal{J}_n$. Since $(X, \{\mathcal{J}_n\})$ is (ω) door, $X - G \in \mathcal{J}_l$ for some l. Hence $X - G \in \bigcup_n \mathcal{J}'_n$. This contradicts the fact that $(X, \{\mathcal{J}'_n\})$ is (ω) hyperconnected. Thus $G \in \bigcup_n \mathcal{J}_n$. Therefore $\bigcup_n \mathcal{J}'_n = \bigcup_n \mathcal{J}_n$.

Again let $(X, \{\mathcal{J}'_n\})$ be an (ω) door space such that $\cup_n \mathcal{J}'_n \subset \cup_n \mathcal{J}_n$. Suppose, if possible, G is a nonempty set with $G \in \cup_n \mathcal{J}_n$ and $G \notin \cup_n \mathcal{J}'_n$. But then $X - G \in \cup_n \mathcal{J}'_n$. So $X - G \in \cup_n \mathcal{J}_n$ which contradicts the (ω) hyperconnectedness of $(X, \{\mathcal{J}_n\})$. Therefore $\cup_n \mathcal{J}'_n = \cup_n \mathcal{J}_n$.

Definition 12. A set $E \subset X$ is said to be (ω) dense if $(\omega)clE = X$.

Definition 13. X is said to be submaximal if every (ω) dense subset of X is (ω) open.

Theorem 12. $(X, \{\mathcal{J}_n\})$ is maximal (ω) hyperconnected iff it is submaximal and (ω) hyperconnected.

PROOF. Suppose $(X, \{\mathcal{J}_n\})$ is maximal (ω) hyperconnected. Let $E \subset X$ be (ω) dense. By Corollary 5, $(\bigcup_n \mathcal{J}_n) - \{\phi\}$ is an ultrafilter. Therefore E must be (ω) open. For, if E is not (ω) open, then E^c must be (ω) open, since $(\bigcup_n \mathcal{J}_n) - \{\phi\}$ is an ultrafilter. Therefore E is (ω) closed and hence $(\omega)clE = E$. Again since E is (ω) dense, $(\omega)clE = X$. Therefore E = X. Thus X is submaximal.

Conversely, suppose $(X, \{\mathcal{J}_n\})$ is submaximal and (ω) hyperconnected. Let $(X, \{\mathcal{J}'_n\})$ be (ω) hyperconnected with $\cup_n \mathcal{J}'_n \supset \cup_n \mathcal{J}_n$. If $G \in \cup_n \mathcal{J}'_n$ be a nonempty set, then, since $(X, \{\mathcal{J}'_n\})$ is (ω) hyperconnected, $(\omega)clG$ (the $(\omega)closure$ of G in $(X, \{\mathcal{J}'_n\})$) coincides with X. This implies that $(\omega)clG$ (the $(\omega)closure$ of G in $(X, \{\mathcal{J}_n\})) = X$ (since $(\omega)clG$ (w.r.t $(X, \{\mathcal{J}_n\})) \supset (\omega)clG$ (w.r.t $(X, \{\mathcal{J}'_n\}))$), and so it follows that G is (ω) dense in $(X, \{\mathcal{J}_n\})$. Hence $G \in \cup_n \mathcal{J}_n$. Thus $\cup_n \mathcal{J}'_n = \cup_n \mathcal{J}_n$.

100

 (ω) topological connectedness and hyperconnectedness

References

- A. D. ALEXANDROFF: Additive set functions in abstract spaces, Mat. Sb. (N.S) (8) 50 (1940), 307–348.
- [2] M. K. BOSE, R. TIWARI: On increasing sequences of topologies on a set, Riv. Mat. Univ. Parma, (7) 7 (2007), 173–183.
- [3] M. K. BOSE, R. TIWARI: On (ω) topological spaces, Riv. Mat. Univ. Parma, (7) 9 (2008), 125–132.
- [4] D.P. DATTA, A. ROY CHOUDHURI: Scale free analysis and the prime number theorem, Fractals, 18 (2010), 171–184.
- [5] Z. FAN, G. CHEN, K. T. KO: Evolving networks: from topology to dynamics, Journal of Control Theory and Applications 2 (2004), 60–64.
- [6] J. L. KELLEY: General Topology, Van Nostrand, New York, 1955.
- [7] N. LEVINE: Semi-open sets and semi- continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [8] N. LEVINE: Simple extensions of topologies, Amer. Math. Monthly, 71 (1964), 22–25.
- [9] P. M. MATHEW: On hyperconnected spaces, Indian J. Pure appl. Math., 19 (12) (1988), 1180–1184.
- [10] E. MICHAEL: A note on paracompactness, Proc. Amer. Math. Soc., 4 (1953), 831-838.
- [11] S. RAUT, D.P. DATTA: Nonarchimedean scale invariance and Cantor sets, Fractals, 18 (2010), 111–118.
- [12] L. A. STEEN, J. A. SEEBACH (JR) : Counterexamples in topology, Holt, Rinehart and Winston, New York, 1970.
- [13] A. H. STONE: Paracompactness and product spaces, Bull. Amer. Math. Soc., 54 (1948), 977–982.
- [14] J. P. THOMAS: Maximal connected topologies, J. Austral. Math. Soc., 8 (1968), 700–705.