Postulation of double lines and associated objects in the range of quadrics

E. Ballicoⁱ

Department of Mathematics, University of Trento 38123 Trento, Italy ballico@science.unitn.it

Received: 05/07/2010; accepted: 29/06/2011.

Abstract. Fix a closed subscheme $U \subset \mathbb{P}^n$. Here we study the integer $h^0(\mathcal{I}_U(2)) - h^0(\mathcal{I}_{U \cup Y}(2))$ when Y is a general double line, a general reducible conic, a general chain of lines or some unreduced structure associated to double structures on linear subspaces.

Keywords: postulation; Hilbert function; unreduced schemes; double lines; quadric hypersurfaces

MSC 2000 classification: primary 14N05

Introduction and Notation

Starting from [6] many papers studied the postulation of general disjoint unions inside \mathbb{P}^n of certain natural objects, e.g. linear spaces ([2], [3], [4]). As a tool even in [6], Example 2.1.1, and in the papers influenced by [6] some unreduced schemes were used (sundials in [4]). Here we propose the study of other related unreduced schemes. Following [2] we work out the cohomological properties of their general disjoint unions in the range of quadrics, i.e. for the linear system $|\mathcal{O}_{\mathbb{P}^n}(2)|$. We work over an algebraically closed base field \mathbb{K} such that $\operatorname{char}(\mathbb{K}) = 0$. We use very much this assumption, not only to quote [2], but at several places. Call *n* the dimension of the ambient projective space. The interested reader may extend the proofs to the case $\operatorname{char}(\mathbb{K}) \gg n$ (it is sufficient to assume $\operatorname{char}(\mathbb{K}) > 2^n$).

For any scheme M and any $P \in M_{reg}$ let $\chi_M(P)$ denote the first infinitesimal neighborhood of P in M, i.e., the closed subscheme of M with $(\mathcal{I}_P)^2$ as its ideal sheaf. The scheme $\chi_M(P)$ is zero-dimensional, $(\chi_M(P))_{red} = \{P\}$ and $\deg(\chi_M(P)) = m + 1$, where m is the dimension of M at its smooth point P.

We only consider very particular double structures on a line. For general double structures on a line, see [5], pp. 32–34, [7] and [1]. Let $C \subset \mathbb{P}^n$, $n \geq 3$,

ⁱThis work is partially supported by MIUR and GNSAGA of INDAM (Italy)

http://siba-ese.unisalento.it/ © 2011 Università del Salento

be a closed subscheme. We will say that C is a *double line* if there is a 3dimensional linear subspace $M \subseteq \mathbb{P}^n$ and a smooth quadric surface $Q \subset M$ such that C is a divisor of type (2,0) or (0,2) on Q and it is not reduced. Notice that C is a flat degeneration inside Q and hence inside \mathbb{P}^n of a family of pairs of disjoint lines. Hence if C is a double line, then its Hilbert polynomial p_C satisfies $p_C(t) = 2t + 2$ for all $t \in \mathbb{Z}$. We will say that C is an unreduced conic if C_{red} is a line and there is a plane $N \subset \mathbb{P}^n$ such that $C \subset N$ and C is a degree 2 Cartier divisor of C. In this case we have $p_C(t) = 2t + 1$ for all $t \in \mathbb{Z}$. We will say that C is a pointed unreduced conic if there are a plane N, a tridimensional linear subspace $M \subset \mathbb{P}^n$ containing N, an unreduced conic $B \subset N$ and $P \in B_{red}$ such that $C = B \cup \chi_M(P)$. In this case we have $p_C(t) = 2t + 2$ for all t. Notice that $C_{red} = B_{red}$ is a line, $C \subset M$ and C is uniquely determined by the flag $P \in B_{red} \subset N \subset M$. Hence any two pointed unreduced conics of \mathbb{P}^n are projectively equivalent. It is easy to see that any pointed unreduced conic $C \subset M$ is the flat limit inside M and hence inside \mathbb{P}^n of a family of disjoint unions of 2 lines. Here we will prove the stronger statement that any pointed unreduced conic is a flat limit of a flat family of double lines (see Lemma 1). Let $C \subset \mathbb{P}^n$ be a double line. Take a general plane $N \subset \mathbb{P}^n$ containing the line $A := C_{red}$. The scheme $N \cap C$ will be called a *pointed line* (see Lemmas 2 and 4 and Remark 2 for more).

We generalize the notion of pointed line in \mathbb{P}^n in the following way. Fix an integer t such that $1 \leq t \leq n-2$. A pointed t-plane or a pointed linear subspace of dimension t of \mathbb{P}^n is a scheme $T \cup \chi_N(P)$ with T a t-dimensional linear subspace of \mathbb{P}^n , N a (t + 1)-dimensional linear subspace of \mathbb{P}^n and $P \in T \subset N$. Any pointed t-plane is uniquely determined by the flag (P, T, N) and the converse holds. A pointed linear subspace of \mathbb{P}^n is a pointed t-plane for some (uniquely determined) integer $t \in \{1, \ldots, n-2\}$. In section 1 we will prove the following result, which generalize [2], theorem 4.3. Its proof will easily follow from the statement of [2], theorem 4.3. We prove the needed reduction in an abstract setting (see Proposition 4).

Theorem 1. Fix integers $n \geq 3$, $a \geq 0$, $b \geq 0$, $m_1 \geq \cdots \geq m_a > 0$, $t_1 \geq \cdots \geq t_b > 0$. Assume $m_1 + m_2 < n$ (if $a \geq 2$) $m_1 + t_1 < n$ (if a > 0 and b > 0) and $t_1 + t_2 < n$ (if $b \geq 2$). Let $X \subset \mathbb{P}^n$ be a general union of a linear subspaces of dimension m_1, \ldots, m_a and b pointed linear subspaces of dimension t_1, \ldots, t_b . Then $h^0(\mathcal{I}_X(2)) = \max\{0, \binom{n+2}{2} - \sum_{i=1}^a \binom{m_i+2}{2} - \sum_{i=1}^b \binom{t_i+2}{2} - b\}$ and $h^1(\mathcal{I}_X(2)) = \max\{0, \sum_{i=1}^a \binom{m_i+2}{2} + \sum_{i=1}^b \binom{t_i+2}{2} + b - \binom{n+2}{2}\}$.

Remark 1. In the set-up of Theorem 1 set $Y := X_{red}$. Notice that $Y \subset \mathbb{P}^r$ is a general union of a + b linear subspaces of dimension $m_1, \ldots, m_a, t_1, \ldots, t_b$. Our assumptions on m_i and t_j imply that Y has a + b connected components of dimension $m_1, \ldots, m_a, t_1, \ldots, t_b$. The case b = 0 of Theorem 1 is just [2], theorem

4.3. The explicit computation in [2], theorem 4.3, gives the corresponding one in the case b > 0, because $h^0(X, \mathcal{O}_X(2)) = h^0(Y, \mathcal{O}_Y(2)) + b$ and $h^1(X, \mathcal{O}_X(2)) = 0$ (see Lemma 4).

We also prove several results on the Hilbert function in the range of quadrics of the union of an arbitrary closed subscheme and a general pointed t-linear subspace (Proposition 1), a general line (Propositions 2 and 4), a plane unreduced conic (Proposition 5) and some other reducible union of lines (Propositions 7 and 8).

Let Π be a linear subspace of the projective space $|\mathcal{O}_{\mathbb{P}^n}(2)|$ of all quadric hypersurfaces of \mathbb{P}^n . For any subscheme $Z \subset \mathbb{P}^n$ set $\Pi(-Z) := \{Q \in \Pi : Z \subset Q\}$. If $\Pi \neq \emptyset$ and B is its base-locus, then Π induces a morphism $\psi : \mathbb{P}^n \setminus B \to \mathbb{P}^m$, $m := \dim(\Pi)$. Set $\rho(\Pi) := \dim(\operatorname{Im}(\psi(\mathbb{P}^n \setminus B)))$. Since $\operatorname{char}(\mathbb{K}) = 0$, ψ is separable and hence $\rho(\Pi)$ is the rank of the differential $d\psi(P)$ of ψ at a general $P \in \mathbb{P}^n \setminus B$.

As a consequence of the results proved in section 2 we get the following result.

Theorem 2. Fix a closed subscheme $U \subset \mathbb{P}^n$, $n \geq 3$. Assume that the base locus of $|\mathcal{I}_U(2)|$ contains no hyperplane and that $\rho(|\mathcal{I}_U(2)|) \geq 4$. Let $C \subset \mathbb{P}^n$ be a general double line and $E \subset \mathbb{P}^n$ a general pointed unreduced conic. Then $h^0(\mathcal{I}_{U\cup C}(2)) = h^0(\mathcal{I}_{U\cup E}(2)) = h^0(\mathcal{I}_U(2)) - 6$ and $h^1(\mathcal{I}_{U\cup C}(2)) = h^1(\mathcal{I}_{U\cup E}(2)) =$ $h^1(\mathcal{I}_U(2))$.

In the set-up of Theorem 2 notice that $h^0(\mathcal{O}_C(2)) = h^0(\mathcal{O}_E(2)) = 6$.

We thank the referee for several simplifications, corrections and useful remarks.

1 Preliminary Lemmas and the proof of Theorem 1

For any sheaf \mathcal{F} on \mathbb{P}^n we write $H^i(\mathcal{F})$ or $h^i(\mathcal{F})$ instead of $H^i(\mathbb{P}^n, \mathcal{F})$ or $h^i(\mathbb{P}^n, \mathcal{F})$. Let G(x, n) denote the Grassmannian of all x-dimensional linear subspaces of \mathbb{P}^n .

Lemma 1. Let $C \subset \mathbb{P}^n$, $n \geq 3$, be a pointed unreduced conic. Fix a 3dimensional linear subspace $M \subset \mathbb{P}^n$ such that $C \subset M$. Then C is in the closure \overline{E} (in the Hilbert scheme Hilb(M) of M) of the set of all double lines of M.

PROOF. Since any two pointed unreduced conics of M are projectively equivalent, it is sufficient to prove that \overline{E} contains at least one pointed unreduced conic. Assume that $M = \operatorname{Proj}(\mathbb{K}[x, y, z, w])$. Take the family $\{Z_t\}_{t \in \mathbb{K} \setminus \{0\}}$ of double lines defined by the homogeneous ideal $(x^2, xy, y^2, yz + tzw), t \in \mathbb{K} \setminus \{0\}$. The flat limit for $t \to 0$ of this family is the pointed unreduced conic defined by $(x^2, y) \cap (x, y, z)^2$. We recall that for any projective scheme W, every closed subscheme Z of W and every effective divisor H of W the residual scheme $\operatorname{Res}_H(Z)$ of Z with respect to H is the closed subscheme of W with $\mathcal{I}_Z : \mathcal{I}_H$ as its ideal sheaf. To apply Horace method as in [6] it is important to control the residual schemes of our unreduced objects with respect to hyperplanes.

Remark 2. We call any scheme $T \cup \chi_N(P)$ with T a line, N a plane and $P \in T \subset N$ a pointed line or the pointed line associated to the flag (P, T, N). Indeed, $T \cup \chi_N(P)$ is uniquely determined by the flag (P, T, N), while any such flag gives a unique pointed scheme. The scheme $T \cup \chi_N(P)$ is a flat degeneration inside N of a family $\{T \cup \{P_\lambda\}\}$ with $P_\lambda \in N \setminus T$.

Lemma 2. Let $H \subset \mathbb{P}^n$, $n \geq 4$, be a hyperplane and $B \subset \mathbb{P}^n$ a double line such that $T := B_{red} \subset H$ and $B \notin H$. Then $\operatorname{Res}_H(B) = T$ and $B \cap H = T \cup \chi_N(P)$ for some $P \in T$ and some plane $N \subset H$ (scheme-theoretic intersection). Conversely, for any hyperplane H, any line $T \subset H$, any $P \in T$ and any plane N such that $T \subset N \subset H$ there is a double line D such that $D_{red} = T$ and $D \cap H = T \cup \chi_N(P)$.

PROOF. Let $M := \langle B \rangle \subset \mathbb{P}^n$ be the 3-dimensional linear subspace defining *B*. Let $Q \subset M$ be a smooth quadric such that $B \subset Q$. Choose homogeneous coordinates x_0, \ldots, x_n such that *M* has equations $x_i = 0$ for all $i \ge 4$, *Q* has equations $x_0x_1 + x_2x_3 = 0$, $x_i = 0$ for all $i \ge 4$, and *T* has equations $x_1 = x_2 = 0$ inside *M*. Hence $N := H \cap M$ has the equation $ax_1 + bx_2 = 0$ for some $(a, b) \ne (0, 0)$, say $a \ne 0$, inside *M*. Hence *N* has the equation $x_1 = cx_2$, c := -b/a, inside *M*. The scheme *B* has equations $x_1^2 = x_1x_2 = x_2^2 = x_0x_1 + x_2x_3 = 0$ inside *M*. Hence $B \cap H = B \cap N$ has equations $c^2x_2^2 = cx_2^2 = x_2^2 = cx_0x_2 + x_2x_3 = x_1 - cx_2 = 0$ inside *M*, i.e. it has equations $x_2^2 = x_2(cx_0 + x_3) = x_1 - cx_2 = 0$. Write $z_i = x_i$, for all $i \notin \{1,3\}$, $z_1 = x_1 - cx_2$ and $z_3 = cx_0 + x_3$. Hence $\operatorname{Res}_H(B) = T$ and $B \cap H = B \cap N$ has equations $z_2^2 = z_2z_3 = z_1 = 0$, i.e. the equations of $T \cup \chi_N(P)$.

The converse part follows from the following observation. For a fixed pair (T, H), any two planes N, N' containing T and contained in H and any automorphism $h: H \to H$ such that h(P) = P, h(T) = T and h(N) = N' the morphism h maps $T \cup \chi_N(P)$ isomorphically onto $T \cup \chi_{N'}(P)$.

The proof of Lemma 2 gives the following result, which justifies the introduction of *t*-pointed linear subspaces.

Lemma 3. Fix integers n, t such that $1 \le t \le n-2$, $N \in G(t,n)$ and $H \in G(n-1,n)$ such that $H \supset N$. Let M be a general (t+1)-dimensional linear subspace of \mathbb{P}^n containing N. Let $Z \subset M$ the degree 2 Cartier divisor with N as its support. Then $\operatorname{Res}_H(Z) = N$ and $Z \cap H$ is a general t-pointed linear subspace of H with N as its support.

We may change the previous statement first fixing M containing N and then taking H general among the hyperplanes containing N.

Lemma 4. Let $Z \subset \mathbb{P}^n$ be any pointed linear subspace. Set $T := Z_{red}$. We have $h^0(Z, \mathcal{O}_Z(y)) = h^0(T, \mathcal{O}_T(y)) + 1$ and $h^i(Z, \mathcal{O}_Z(y)) = 0$ for every integer $y \ge 0$ and every integer i > 0.

PROOF. Since $\chi(\mathcal{O}_Z(x)) = \chi(\mathcal{O}_T(x)) + 1$ for all $x \in \mathbb{Z}$, it is sufficient to prove $h^i(Z, \mathcal{O}_Z(y)) = 0$ for all $i \geq 1$ and all $y \geq 0$. Let η be the kernel of the surjection $\mathcal{O}_Z(y) \to \mathcal{O}_T(y)$ induced by the closed embedding $T \hookrightarrow Z$ (for y = 0it is the nilradical of \mathcal{O}_Z). The sheaf η is a 1-dimensional vector space supported by the non-reduced point of Z. Hence $h^j(Z, \eta) = 0$ for all $j \geq 1$. Use the exact sequence

$$0 \to \eta \to \mathcal{O}_Z(y) \to \mathcal{O}_T(y) \to 0 \tag{1}$$

and that $h^i(T, \mathcal{O}_T(y)) = 0$ for all $y \ge 0$, and $i \ge 1$.

Proposition 1. Fix integers $n \ge t+2 \ge 3$, a closed subscheme $U \subset \mathbb{P}^n$ and $T \in G(t,n)$ such that $T \nsubseteq U$. Let $Z \subset \mathbb{P}^n$ be a general pointed t-linear subspace such that $Z_{red} = T$.

(i) If every quadric hypersurface $Q \in |\mathcal{I}_{U\cup T}(2)|$ is a cone with vertex containing T, then $h^0(\mathcal{I}_{U\cup Z}(2)) = h^0(\mathcal{I}_{U\cup T}(2))$.

(ii) If some quadric hypersurface $Q \in |\mathcal{I}_{U \cup T}(2)|$ is not a cone with vertex containing T, then $h^0(\mathcal{I}_{U \cup Z}(2)) = h^0(\mathcal{I}_{U \cup T}(2)) - 1$.

PROOF. If $h^0(\mathcal{I}_{U\cup T}(2)) = 0$, then part (i) is obvious, while the assumption of part (ii) is not satisfied. Hence we may assume $h^0(\mathcal{I}_{U\cup T}(2)) > 0$. Since T is not contained in the scheme U, a general $P \in T$ is not contained in U_{red} . Fix a pointed t-linear space Z' with T as its reduction and associated to a point $P' \in T \setminus T \cap U_{red}$. As in (1) call η the kernel of the surjection $\mathcal{O}_{U \cup Z'}(2) \to \mathcal{O}_{U \cup Z'}(2)$ $\mathcal{O}_{U\cup T}(2)$. As in the proof of Lemma 1 we get $h^0(U\cup Z', \mathcal{O}_{U\cup Z'}(2)) = h^0(U\cup$ $T, \mathcal{O}_{U\cup T}(2)) + 1$. The coherent sheaf $\mathcal{I}_{U\cup T}(2)/\mathcal{I}_{U\cup Z'}(2)$ is supported by P' and $h^{0}(\mathbb{P}^{n}, \mathcal{I}_{U\cup T}(2)/\mathcal{I}_{U\cup Z'}(2)) = 1.$ Hence either $h^{0}(\mathcal{I}_{U\cup Z'}(2)) = h^{0}(\mathcal{I}_{U\cup T}(2))$ or $h^0(\mathcal{I}_{U\cup Z'}(2)) = h^0(\mathcal{I}_{U\cup T}(2)) - 1$. Fix any $Q \in |\mathcal{I}_{U\cup T}(2)|$. The quadric Q is a cone with vertex containing $O \in \mathbb{P}^n$ if and only if $\chi_{\mathbb{P}^n}(O) \subset Q$. Notice that $\chi_{\mathbb{P}^n}(O) \cup T$ contains any pointed linear subspace with T as its reduction and O as the support of its nilpotent subsheaf. Hence we get (i). Now assume that Q is not a cone with vertex containing T and fix $P \in T \setminus U_{red}$ such that Q is smooth at P. Since the tangent space T_PQ of Q at P is a hyperplane of \mathbb{P}^n , there is a (t+1)-dimensional linear subspace N of \mathbb{P}^n containing T, but not contained in T_PQ . Set $Z_1 := T \cup \chi_N(P)$. Since $Q \notin |\mathcal{I}_{U \cup Z_1}(2)|$, we get $h^0(\mathcal{I}_{U\cup Z_1}(2)) = h^0(\mathcal{I}_{U\cup T}(2)) - 1$. The set of all schemes Z_1 as above covers a non-empty open subset of the set of all pointed linear spaces with T as their QEDreduction. Hence we get part (ii) for a general Z.

QED

Lemma 5. Let Π be a linear subspace of the projective space $|\mathcal{O}_{\mathbb{P}^n}(2)|$ of all quadric hypersurfaces of \mathbb{P}^n . Set $m := \dim(\Pi)$.

(i) There is no integer x such that $x \ge 0$, $\binom{x+2}{2} \le m-1$ and every $Q \in \Pi(-T)$ is a cone with vertex containing T for a general $T \in G(x, n)$.

(ii) Assume $m \leq {y+2 \choose 2}$ for some integer y > 0 and that $\Pi(-A) \neq \emptyset$ for a general $A \in G(y, n)$. Then for a general $A \in G(y, n)$ the general $Q \in \Pi(-A)$ is not a cone with vertex containing A.

PROOF. Take the set-up of (i). Assume the existence of such an integer x. Fix a general x-dimensional linear subspace $T \subset \mathbb{P}^n$ and a general $Q \in \Pi(-T)$. By assumption Q is a cone with vertex containing T. First assume that Q is integral. Let Q_x be the set of all x-dimensional linear subspaces of Q. Let Γ be any irreducible component of Q_x containing T. Fix a general $T' \in \Gamma$. Since T'(as a deformation of T) may be seen as a general x-dimensional linear subspace of \mathbb{P}^n and $Q \in \Pi(-T')$, Q is a cone with vertex containing T'. Since we may find $T' \in \Gamma$ passing through a general point of Q, we get that Q is the double of a hyperplane, contradiction. Now assume that Q is reduced, but not integral, say $Q = H \cup M$ with H and M hyperplanes and $H \neq M$. Since $H \cap M \subseteq \text{Sing}(Q)$, Q is general and we work in characteristic zero, $H \cap M$ is contained in the base locus of Π . Since $T \subseteq \text{Sing}(Q)$, we have $T \subseteq H \cap M$. Take as Γ the family of all xdimensional linear subspaces of H. Since Γ is irreducible, a general $T' \in \Gamma$ is not contained in $H \cap M$ and $H \cap M$ is the vertex of Q, we get a contradiction. Now assume that Q is the double of a hyperplane. Since we work in characteristic $\neq 2$, this implies m = 0, contradicting the inequality $\binom{x+2}{2} \leq m-1$ even when x = 0.

In the set-up of (ii) we use that we may move $A \in G(y, n)$ preserving the non-emptiness of $\Pi(-A)$.

Proof of Theorem 1. Our assumptions on n, m_i, t_j imply the existence inside \mathbb{P}^n of a disjoint union of a disjoint linear spaces of dimension m_1, \ldots, m_a and b pointed linear spaces of dimension t_1, \ldots, t_b .

Fix integers u_1, \ldots, u_x for which \mathbb{P}^n contains a disjoint union of x linear spaces of dimension u_1, \ldots, u_x , i.e., assume $u_i + u_j < n$ for all $i \neq j$ and $u_1 \leq n$. Let $E \subset \mathbb{P}^n$ be a general union of x linear spaces of dimension u_1, \ldots, u_x . Hence E has x connected components. Since $\chi(\mathcal{O}_E(2)) = h^0(E, \mathcal{O}_E(2)) = \sum_{i=1}^x {u_i+2 \choose 2}$, [2], Theorem 4.3, says that either $h^0(\mathcal{I}_E(2)) = 0$ (case $\sum_{i=1}^x {u_i+2 \choose 2} \geq {n+2 \choose 2}$) or $h^1(\mathcal{I}_E(2)) = 0$ (case $\sum_{i=1}^x {u_i+2 \choose 2} \leq {n+2 \choose 2}$).

Let $F \subset \mathbb{P}^n$ be any disjoint union of linear subspaces and of pointed linear spaces. Call y the number of the unreduced components of F. We have $h^i(F, \mathcal{O}_F(2)) = 0$ for all i > 0 and $\chi(\mathcal{O}_F(2)) = h^0(F, \mathcal{O}_F(2)) = h^0(F_{red}, \mathcal{O}_{F_{red}}(2)) + y$ (Lemma 4). Hence $h^0(\mathcal{I}_F(2)) - h^1(\mathcal{I}_F(2)) = \binom{n+2}{2} - \chi(\mathcal{O}_F(2))$. Hence if we

know y and the dimension of the connected components of F_{red} , then knowing $h^0(\mathcal{I}_F(2))$ is equivalent to knowing $h^1(\mathcal{I}_F(2))$.

Since the case b = 0 is true ([2], Theorem 4.3) we may prove Theorem 1 by induction on b. Assume b > 0 and that the result is true for the integer b' := b - 1 and all integers $a' \ge 0$. Let $U \subset \mathbb{P}^n$ be a general union of a linear spaces and b - 1 pointed linear spaces of dimension t_1, \ldots, t_{b-1} . Let $T \subset \mathbb{P}^n$ be a general t_b -dimensional linear subspace. Notice that both U and $U \cup T$ have b-1 unreduced components. By the inductive assumption we know the integers $h^0(\mathcal{I}_U(2))$ and $h^0(\mathcal{I}_{U\cup T}(2))$. If $h^0(\mathcal{I}_{U\cup T}(2)) = 0$, then $h^0(\mathcal{I}_{U\cup Z}(2)) = 0$ for any pointed t_b -linear subspace with T as its reduction. Since $U \cup Z$ is a general union X of a linear subspaces of dimension m_1, \ldots, m_a and b pointed linear subspaces of dimension t_1, \ldots, t_b , we get $h^0(\mathcal{I}_X(2)) = 0$.

Now assume $h^0(\mathcal{I}_{U\cup T}(2)) > 0$. Since T and Z are general, the support of the nilpotent sheaf of U does not intersect T and the support of the nilpotent sheaf of Z is not a point of U_{red} . Hence the proof of Lemma 4 gives that the coherent sheaf $\mathcal{I}_{U\cup T}(2)/\mathcal{I}_{U\cup Z}(2)$ is supported by a point, that $h^0(\mathbb{P}^m, \mathcal{I}_{U\cup T}/\mathcal{I}_{U\cup Z}(2)) = 1$, and that $h^0(U\cup Z, \mathcal{O}_{U\cup Z}(2)) = h^0(U\cup T, \mathcal{O}_{U\cup T}(2)) + 1$. Hence either $h^0(\mathcal{I}_{U\cup Z}(2)) = h^0(\mathcal{I}_{U\cup T}(2)) - 1$. To prove Theorem 1 for the integer b it is sufficient to prove $h^0(\mathcal{I}_{U\cup Z}(2)) < h^0(\mathcal{I}_{U\cup T}(2))$. By Proposition 1 it is sufficient to prove that not every element of $|\mathcal{I}_{U\cup T}(2)|$ is a cone with vertex containing T. Since T is taken general after fixing U, we may apply Lemma 5.

Since $h^0(U \cup Z, \mathcal{O}_{U \cup Z}(2)) = h^0((U \cup Z)_{red}, \mathcal{O}_{(U \cup Z)_{red}}(2)) + b$, we get the explicit values of $h^i(\mathcal{I}_X(2)), i = 0, 1$.

2 The other results

Proposition 2. Fix a closed subscheme $U \subset \mathbb{P}^n$. Let E be the base locus of the linear system $|\mathcal{I}_U(2)|$. Let $A \subset \mathbb{P}^n$ be a general line.

- (i) If E contains a hyperplane, then $h^0(\mathcal{I}_{U\cup A}(2)) = \max\{h^0(\mathcal{I}_U(2)) 2, 0\}$.
- (ii) Assume that E does not contain a hyperplane. Then $h^0(\mathcal{I}_{U\cup A}(2)) = \max\{h^0(\mathcal{I}_U(2)) 3, 0\}$ and $h^1(\mathcal{I}_{U\cup A}(2)) = h^1(\mathcal{I}_U(2)) + \max\{0, 3 h^0(\mathcal{I}_U(2))\}.$

PROOF. We have $h^0(\mathcal{I}_U(2)) = h^0(\mathcal{I}_E(2))$ and $h^0(\mathcal{I}_{U\cup A}(2)) = h^0(\mathcal{I}_{E\cup A}(2))$.

Since any 2 points of \mathbb{P}^n are contained in a line, the inequality $h^0(\mathcal{I}_{U\cup A}(2)) \leq \max\{h^0(\mathcal{I}_U(2)) - 2, 0\}$ is obvious. Hence we may assume $h^0(\mathcal{I}_U(2)) \geq 3$. Since any quadric hypersurface containing 3 points of A contains A, we have $h^0(\mathcal{I}_{E\cup A}(2)) \geq h^0(\mathcal{I}_{E\cup A}(2)) - 3$.

(a) Here we assume dim(E) = n - 1. In this case the (n - 1)-dimensional part of the scheme E must be a hyperplane, because $h^0(\mathcal{I}_E(2)) \ge 2$. Since

 $\dim(E) \ge n-1$, we have $E \cap A \ne \emptyset$. Taking a point of $E_{red} \cap A$ and two general points of A we see that $h^0(\mathcal{I}_{E\cup A}(2)) \ge h^0(\mathcal{I}_E(2)) - 2$. Hence (i) is true.

(b) Here we assume dim $(E) \leq n-2$. We may assume $h^0(\mathcal{I}_{E\cup A}(2)) \geq 3$ and we need to prove $h^0(\mathcal{I}_{E\cup A}(2)) \leq h^0(\mathcal{I}_E(2)) - 3$. Since A is general, we have $E \cap A = \emptyset$. Hence $h^0(E \cup A, \mathcal{O}_{E\cup A}(2)) = h^0(E, \mathcal{O}_E(2)) + 3$. Hence $h^0(\mathcal{I}_{U\cup A}(2)) - h^0(\mathcal{I}_U(2)) + 3 = h^1(\mathcal{I}_{U\cup A}(2)) - h^1(\mathcal{I}_U(2))$. Since $h^0(\mathcal{I}_{E\cup A}(2)) \geq h^0(\mathcal{I}_E(2)) - 3$, it is sufficient to prove $h^0(\mathcal{I}_{U\cup A}(2)) \leq$ $h^0(\mathcal{I}_U(2)) - 3$. Fix a general $P \in \mathbb{P}^n$. Hence $P \notin E_{red}$. Hence $h^0(\mathcal{I}_{E\cup\{P\}}(2))$ $= h^0(\mathcal{I}_E(2)) - 1$. Fix a general $Q \in |\mathcal{I}_{E\cup\{P\}}(2)|$. The case x = 0 of Lemma 5 gives that Q is not a cone with vertex containing P. It is also obvious that Q is irreducible. Hence a general $P' \in Q$ is not in the base locus of $|\mathcal{I}_{U\cup\{P\}}(2)|$. Hence $h^0(\mathcal{I}_{U\cup\{P,P'\}}(2)) = h^0(\mathcal{I}_U(2)) - 2$. Let A be the line spanned by P and P'. Since Q is not a cone with vertex P and P' is general in $Q, A \notin Q$. Hence $h^0(\mathcal{I}_{U\cup A}(2)) \leq h^0(\mathcal{I}_{U\cup\{P,P'\}}(2)) - 1 = h^0(\mathcal{I}_U(2)) - 3$. Since $H^0(U \cup A, \mathcal{O}_{U\cup A}(2)) \cong H^0(U, \mathcal{O}_U(2)) \oplus H^0(A, \mathcal{O}_A(2))$, we also get $h^1(\mathcal{I}_{U\cup A}(2)) = h^1(\mathcal{I}_U(2)) + \max\{0, 3 - h^0(\mathcal{I}_U(2))\}$.

QED

Proposition 3. Fix a closed subscheme $U \subset \mathbb{P}^n$ such that the base locus E of the linear system $|\mathcal{I}_U(2)|$ does not contain a hyperplane. Let $T \subset \mathbb{P}^n$ be a general reducible conic. If $h^0(\mathcal{I}_U(2)) \leq 5$, then $h^0(\mathcal{I}_{U\cup T}(2)) = 0$. If $h^0(\mathcal{I}_U(2)) \geq 5$, then $h^0(\mathcal{I}_{U\cup T}(2)) = h^0(\mathcal{I}_U(2)) - 5$ and $h^1(\mathcal{I}_{U\cup T}(2)) = h^1(\mathcal{I}_U(2))$.

PROOF. We have $h^0(T, \mathcal{O}_T(2)) = 5$. We may assume $h^0(\mathcal{I}_E(2)) = h^0(\mathcal{I}_U(2))$ ≥ 2 . Hence the assumption on E implies $\dim(E) \leq n-2$. Hence for a general T we have $T \cap E = \emptyset$. Hence $T \cap U = \emptyset$. Hence $H^0(U \cup T, \mathcal{O}_{U \cup T}(2)) \cong$ $H^0(U, \mathcal{O}_U(2)) \oplus H^0(T, \mathcal{O}_T(2))$. Hence $h^0(\mathcal{I}_{U \cup T}(2)) \geq h^0(\mathcal{I}_U(2)) - 5$ and $h^1(\mathcal{I}_{U \cup T}(2)) = h^1(\mathcal{I}_U(2)) + 5 - h^0(\mathcal{I}_U(2)) + h^0(\mathcal{I}_{U \cup T}(2))$.

Let $A \subset \mathbb{P}^n$ be a general line. Proposition 2 implies $h^0(\mathcal{I}_{U\cup A}(2)) = \max \{h^0(\mathcal{I}_U(2)) - 3, 0\}$. We may take as T the union of A and a general line A' intersecting A. We may take such a line with the additional condition that A' contains a general point of \mathbb{P}^n . Hence $h^0(\mathcal{I}_{U\cup A\cup A'}(2)) \leq \max\{0, h^0(\mathcal{I}_{U\cup A}(2)) - 1\}$. Hence the lemma is true if $h^0(\mathcal{I}_U(2)) \leq 4$. Now assume $h^0(\mathcal{I}_U(2)) \geq 5$. Hence $h^0(\mathcal{I}_{U\cup A}(2)) = h^0(\mathcal{I}_U(2)) - 3 \geq 2$. Fix a general $Q \in |\mathcal{I}_{U\cup A}(2)|$. First assume that Q is not a cone with vertex containing A. Since $h^0(\mathcal{I}_{U\cup A}(2)) \geq 2$, a general $P \in Q$ is not in the base locus of $|\mathcal{I}_{U\cup A'}(2)|$. Hence $h^0(\mathcal{I}_{U\cup A}(2)) \geq 2$, a deneral $P \in Q$ is not in the base locus of $|\mathcal{I}_{U\cup A'}(2)|$. Hence $h^0(\mathcal{I}_{U\cup A\cup \{P\}}(2)) = h^0(\mathcal{I}_{U\cup A}(2)) - 1 > 0$. Since Q is not a cone with vertex containing A and P is general in Q, there is a line $A' \subset \mathbb{P}^n$ such that $P \in A'$, $A' \cap A \neq \emptyset$ and $A' \notin Q$. Since $Q \in |\mathcal{I}_{U\cup A\cup \{P\}}(2)|$, but $Q \notin |\mathcal{I}_{U\cup A}(2)|$, we have $h^0(\mathcal{I}_{U\cup A\cup A'}(2)) \leq h^0(\mathcal{I}_U(2)) - 5$. We may take $A \cup A'$ as T.

Now assume that Q is a cone with vertex containing A. The case x = 1 of Lemma 5 gives a contradiction.

Remark 3. For any closed subscheme $M \subset \mathbb{P}^n$ let $M^{(1)}$ denote the first infinitesimal neighborhood of M in \mathbb{P}^n , i.e. the closed subscheme of \mathbb{P}^n with $(\mathcal{I}_M)^2$ as its ideal sheaf. If M is smooth, then for all integers $d \geq 2$ the projective space $|\mathcal{I}_{M^{(1)}}(d)\rangle|$ parametrizes all degree d hypersurfaces whose singular locus contains M. Hence $|\mathcal{I}_{M^{(1)}}(2)|$ parametrizes all quadric hypersurfaces whose vertex contains the linear space $\langle M \rangle$ spanned by M. Assume $M \neq \emptyset$ and set $x := \dim(\langle M \rangle)$. We get $h^0(\mathcal{I}_{M^{(1)}}(2)) = \binom{n-x+2}{2}$. Hence if n - x = 2 (resp. $n - x \leq 1$), then $h^0(\mathcal{I}_{M^{(1)}}(2)) = 6$ (resp. $h^0(\mathcal{I}_{M^{(1)}}(2)) \leq 3$).

Example 1. Fix an integer $n \geq 3$ and an (n-3)-dimensional linear subspace M of \mathbb{P}^n . Remark 3 gives $h^0(\mathcal{I}_{M^{(1)}}(2)) = 6$. Let $A \subset \mathbb{P}^n$ be a general line. Fix any $Q \in |\mathcal{I}_{M^{(1)}}(2)|$. Since Q has rank at most 3, every line contained in Q intersects the vertex of Q. Hence for a general line $A \subset \mathbb{P}^n$ every element of $|\mathcal{I}_{M^{(1)} \cup A}(2)|$ is singular at some point of A.

Proposition 3, Remark 3 and Remark 1 give the following improvement of the case x = 1 of Lemma 4.

Proposition 4. Fix a closed subscheme $U \subset \mathbb{P}^n$. Let B (resp. D) denote the set-theoretic (resp. scheme-theoretic) base locus of the linear system $|\mathcal{I}_U(2)|$. Assume $h^0(\mathcal{I}_U(2)) \geq 5$ and that B does not contains a hyperplane. Let $A \subset \mathbb{P}^n$ be a general line. A general element of $|\mathcal{I}_{U\cup A}(2)|$ is smooth at every point of A if and only if there is no (n-3)-dimensional linear subspace $M \subset \mathbb{P}^n$ such that either $D = M^{(1)}$ (case $h^0(\mathcal{I}_U(2)) = 6$) or $D = M^{(1)} \cup L$ for a uniquely determined line $L \subset \mathbb{P}^n$ such that $L \cap M \neq \emptyset$, $L \nsubseteq M$ (case $h^0(\mathcal{I}_U(2)) = 5$).

PROOF. Notice that $U_{red} \subseteq B$, $U \subseteq D$ and that the inclusion $U \hookrightarrow D$ induces an isomorphism $H^0(\mathcal{I}_D(2)) \to H^0(\mathcal{I}_U(2))$. Set $\Gamma := |\mathcal{I}_U(2)|$ and $\gamma :=$ dim(Γ). Proposition 2 gives dim($\Gamma(-A)$) = $\gamma - 3$ for a general $A \in G(1, n)$. Set $\Delta := \{A \in G(1, n) : \dim(\Gamma(-A)) = \gamma - 3\}$. By semicontinuity Δ is a non-empty open subset of the Grassmannian G(1, n). Let Σ_1 be the closure of $\cup_{A \in \Delta} \Gamma(-A)$. Assume that for general A the general element of $\Gamma(-A)$ is singular at some point of A. Since $\gamma \geq 3$, a general $F \in G(1, n)$ is contained in some $Q \in \Gamma$. Fix any such Q and call Θ any irreducible component of the set of all lines in Q. A general $F' \in \Theta$ may be seen as a deformation of F and hence $F' \in \Delta$. Hence Q must be singular at some point of F'. Hence every element of Θ intersects the vertex of Q. This is true if and only if Q has rank at most 3. Hence every element of Γ has rank at most 3, i.e., its singular locus has dimension at least n - 3. By Bertini's theorem the intersection M of all the vertices of $Q \in \Gamma$ is contained in B. Notice that M is a linear space. We got dim $(M) \geq n - 3$. Since $h^0(\mathcal{I}_U(2)) \geq 5$, Remark 3 gives dim(M) = n - 3 and that either $H^0(\mathcal{I}_U(2))$ is a hyperplane of $H^0(\mathcal{I}_{M^{(1)}}(2))$ and $h^0(\mathcal{I}_U(2)) = 5$ or $H^0(\mathcal{I}_U(2)) = H^0(\mathcal{I}_{M^{(1)}}(2))$ and $h^0(\mathcal{I}_U(2)) = 6$. Hence if $h^0(\mathcal{I}_U(2)) \ge 6$, then $D = M^{(1)}$ and hence $h^0(\mathcal{I}_U(2)) = 6$. Now assume $h^0(\mathcal{I}_U(2)) = 5$, i.e. $h^0(\mathcal{I}_D(2)) = 5$. Since $M^{(1)} \subseteq D$ and $h^0(\mathcal{I}_{M^{(1)}}(2)) = 6$, we have $M^{(1)} \subsetneq D$. Since $|\mathcal{I}_{M^{(1)}}(2)|$ is the set of all quadric cones with vertex containing $M, M^{(1)} \subsetneq D$ and D is the scheme-theoretic base locus of $|\mathcal{I}_D(2)|$, there is a unique line $L \subset \mathbb{P}^n$ such that $L \cap M \neq \emptyset, L \nsubseteq M$ and $D = M^{(1)} \cup L$.

In the last sentence of the statement of Proposition 4 we cannot use U instead of D, because too many schemes U have the same scheme-theoretic base locus (3 collinear points or a line have the same scheme-theoretic base locus; the union of 4 general lines of a 3-dimensional subspace N or N give the same scheme-theoretic base locus, and so on).

Proposition 5. Fix a closed subscheme $U \subset \mathbb{P}^n$. Let B denote the settheoretic base locus of the linear system $|\mathcal{I}_U(2)|$. Assume $h^0(\mathcal{I}_U(2)) \geq 5$ and that B does not contain a hyperplane. Let $C \subset \mathbb{P}^n$ be a general unreduced conic. Then $h^0(\mathcal{I}_{U\cup C}(2)) = h^0(\mathcal{I}_U(2)) - 5$.

PROOF. Set $\Gamma := |\mathcal{I}_U(2)|$ and $\dim(\Gamma) = \gamma$. It is sufficient to prove the inequality $\dim(\Gamma(-C)) \leq \gamma - 5$. Set $A := C_{red}$. Proposition 2 gives $\dim(\Gamma(-A)) = \gamma - 3$. Let $A' \subset \mathbb{P}^n$ be a general line intersecting A. Proposition 4 gives dim $(\Gamma(-(A \cup A')) = \gamma - 5$. Set $M := \langle A \cup A' \rangle$. Since M is a plane containing $A \cup A'$, either $\Gamma(-M) = \Gamma(-(A \cup A'))$ or $\dim(\Gamma(-M)) = \gamma - 6$. If $\dim(\Gamma(-M)) = \gamma - 6$, then $\dim(\Gamma(-E)) = \gamma - 5$ for any conic $E \subset M$. In this case we may take as C any unreduced conic of M. Now assume $\Gamma(-M) = \Gamma(-(A \cup A'))$, i.e., assume that Γ induces a 4-dimensional linear subspace Π of $|\mathcal{O}_M(2)|$. Since $\operatorname{char}(\mathbb{K}) \neq 2$, $|\mathcal{O}_M(2)|$ is spanned by the unreduced conics of M. Hence there is $C \in |\mathcal{O}_M(2)| \setminus \Pi$. Fix any such unreduced conic C. Since C imposes 5 independent conditions to Π , we have $\dim(\Gamma(-C)) \leq \gamma - 5$.

Proposition 6. Fix any closed subscheme $U \subset \mathbb{P}^n$ and any unreduced conic T. Let Z be a general pointed conic containing T.

- (i) If every $Q \in |\mathcal{I}_{U\cup T}(2)|$ is a cone with vertex containing the line T_{red} , then $h^0(\mathcal{I}_{U\cup Z}(2)) = h^0(\mathcal{I}_{U\cup T}(2)).$
- (ii) If some $Q \in |\mathcal{I}_{U \cup T}(2)|$ is not a cone with vertex containing the line T_{red} , then $h^0(\mathcal{I}_{U \cup Z}(2)) = h^0(\mathcal{I}_{U \cup T}(2)) - 1$.

PROOF. Since the singular locus of a quadric hypersurface is its vertex, some $Q \in |\mathcal{I}_{U \cup T}(2)|$ is not a cone with vertex containing the line T_{red} if and only if

$$h^0(\mathcal{I}_{U\cup T\cup\chi_{\mathbb{P}^n}(P)}(2)) < h^0(\mathcal{I}_{U\cup T}(2))$$

for a general $P \in T_{red}$. Since $Z = T \cup \chi_M(P)$ with P general in T_{red} and M a general 3-dimensional linear subspace of \mathbb{P}^n containing the plane $\langle T \rangle$ and $h^0(Z, \mathcal{O}_Z(2)) = h^0(T, \mathcal{O}_T(2)) + 1$, we get both parts of Proposition 6. QED

Definition 1. Fix an integer $x \ge 1$. A chain of x lines in \mathbb{P}^n is a connected and nodal curve $Y \subset \mathbb{P}^n$ such that Y has x irreducible components, each irreducible component is a line, and there is an ordering A_1, \ldots, A_x of the irreducible components of Y such that $A_i \cap A_j \neq \emptyset$ if and only if $|i - j| \le 1$. Any such ordering of the irreducible components of Y is called a good ordering. Since Y is assumed to be nodal, its Hilbert polynomial satisfies $p_Y(t) = xt + 1$ for all $t \in \mathbb{Z}$. Now assume $2 \le x \le n$. A brush of x lines in \mathbb{P}^n is a reduced and connected curve $X \subset \mathbb{P}^n$ which is the union of x lines, it has a unique singular point and it spans a linear space of dimension x. The latter assumption implies that the singular point of X is a seminormal singularity, that $p_a(X) = 0$ and that $p_X(t) = xt + 1$ for all $t \in \mathbb{Z}$. A nodal tree of z lines, $z \ge 1$, is a nodal and connected curve $E \subset \mathbb{P}^n$ with z irreducible components, each of them being a line, and with arithmetic genus 0.

Notice that for a fixed x the set of all chains of x lines (resp. brushes of x lines) in \mathbb{P}^n is parametrized by an integral variety. Hence it makes sense to use the words "general chain of x lines" (resp. "general brush of x lines") in \mathbb{P}^n . If $z \ge 4$, then the set of all nodal trees of z lines in \mathbb{P}^n is parametrized by an equidimensional variety of dimension 2nz with several irreducible components. To specify each irreducible component it is sufficient to consider instead of nodal trees triples $(E, <, \tau)$, where $E \subset \mathbb{P}^n$ is a nodal tree of z lines, < is a total ordering of the irreducible components of E and $\tau : \{2, \ldots, z\} \to \{1, \ldots, z-1\}$ is a map such that $\tau(i) < i$ for all $i \in \{2, \ldots, z\}$. Indeed, if we use the total ordering < to call A_1, \ldots, A_z the irreducible components of E, then associated to τ there is the set of nodal trees of z lines $A_1 \cup \cdots \cup A_z \subset \mathbb{P}^n$ such that $A_i, i \in \{2, \ldots, z\}$, intersects $A_j, j < i$, if and only if $j = \tau(i)$. With any such ordering A_1, \ldots, A_z and any integer $x \in \{1, \ldots, z\}$ the curve $A_1 \cup \cdots \cup A_x$ is connected and hence it is a degree x nodal tree.

Proposition 7. Fix an integer $x \ge 2$ and a closed subscheme $U \subset \mathbb{P}^n$ such that the base locus of the linear system $|\mathcal{I}_U(2)|$ does not contain a hyperplane and $h^0(\mathcal{I}_U(2)) \ge 2x + 1$. Let $Y \subset \mathbb{P}^n$ be a general chain of x lines. Then $h^0(\mathcal{I}_{U\cup Y}(2)) = h^0(\mathcal{I}_U(2)) - 2x - 1$ and $h^1(\mathcal{I}_{U\cup Y}(2)) = h^1(\mathcal{I}_U(2))$.

PROOF. Since $h^0(Y, \mathcal{O}_Y(2)) = 2x + 1$ and $Y \cap U = \emptyset$, the two assertions (on h^0 and on h^1) are equivalent. Hence it is sufficient to prove the first one. We use induction on x, the case x = 2, being true by Proposition 3. Now assume $x \ge 3$. Take a good ordering A_1, \ldots, A_x of the irreducible components of Y. Hence $A_1 \cup \cdots \cup A_{x-1}$ is a chain of x - 1 lines. The inductive assumption gives $h^0(\mathcal{I}_{U\cup A_1\cup\cdots A_{x-1}}(2)) = h^0(\mathcal{I}_U(2)) - 2x + 1$. Then we repeat the proof of Proposition 3 taking A_{x-1} instead of A and A_x instead of A', except that we need to do again the case in which a general $Q \in |\mathcal{I}_{U \cup A_1 \cup \cdots A_{x-1}}(2)|$ is a cone with vertex containing A_{x-1} . To get from $A_1 \cup \cdots A_{x-1}$ a chain of x lines we may also take a general line intersecting A_1 . Hence we conclude, unless Q is a cone with vertex containing $\langle A_1 \cup A_{x-1} \rangle$. The proof below is a variation of the case x = 1 of Lemma 5, because the line A_{x-1} which we are adding to $A_1 \cup \cdots \cup A_{x-2}$ is not general, but it is general among the lines which intersects A_{x-2} . Set $\Pi := |\mathcal{I}_{U \cup A_1 \cup \cdots \cup A_{x-2}}(2)|$. Notice that every $Q \in \Pi$ contains A_{x-2} . Fix a general line $T \subset \mathbb{P}^n$ intersecting A_{x-2} and a general $Q \in \Pi(-T)$. By assumption Q is a cone with vertex containing T. First assume that the vertex of Q has dimension at most n-4 (it may be empty). In this case a general line contained in Q is contained in Q_{reg} . Hence we may deform A_{x-2} inside Q until it is contained in Q_{reg} . We may simultaneously deform A_{x-3} in a family preserving the condition $A_{x-2} \cap A_{x-3} \neq \emptyset$. If $x \ge 5$ we do that simultaneously for all lines of the chain $A_1 \cup \cdots \cup A_{x-2}$ preserving the condition that two components with consecutive indices meet. Since $T \cap A_{x-2} \neq \emptyset$, $A_{x-2} \subset Q_{reg}$ and $T \subseteq \operatorname{Sing}(Q)$, we get a contradiction. Now assume that the vertex V_Q of Q has dimension n-3. Let $R, R' \subset Q$ be lines such that $R \neq R'$ and $R \cap R' \neq \emptyset$. Then every chain $A_1 \cup \cdots \cup A_{x-1}$ of $x-1 \geq 3$ lines has the property that $A_2 \cup \cdots \cup A_{x-3} \subset V_Q$. We assumed $A_1 \cup A_{x-1} \subset V_Q$. Hence $A_1 \cup \cdots \cup A_{x-1} \subset V_Q$. We may deform $A_1 \cup \cdots \cup A_{x-1}$ to a chain $A'_1 \cup \cdots \cup A'_{x-1}$ with $A'_i = A_i$ if $i \in \{2, \ldots, x-2\}$, while A'_1 and A'_{x-1} intersects V_Q only at one point. With the new chain $A'_1 \cup \cdots \cup A'_{x-1}$ some $Q \in |\mathcal{I}_{U \cup A'_1 \cup \cdots A'_{x-1}}(2)|$ is not singular at a general point of A'_{x-1} , contradiction. Now assume that the vertex V_Q of Q has dimension n-2, i.e. assume that Q is not integral. By assumption $A_1 \cup A_{x-1} \subset V_Q$. But again we may move A_{x-1} outside V_Q moving $A_1 \cup \cdots \cup A_{x-2}$ QEDinside the codimension two linear space V_Q , contradiction.

Remark 4. A nodal tree $Y \subset \mathbb{P}^n$, $n \geq 3$, of x lines is a flat degeneration of a family of smooth degree x rational curves. Hence Proposition 7 gives the corresponding result taking as Y a general smooth degree x rational curve. However, if reducible curves are only used as a tool to prove something concerning smooth rational curves, then it is often easier to work with arbitrary nodal trees of lines, instead of using only chains of lines.

Proposition 8. Let Π be a linear subspace of $|\mathcal{O}_{\mathbb{P}^n}(2)|$. Fix an integer x such that $2 \leq x \leq n$ and assume $m := \dim(\Pi) \geq 2x + 1$. Let $Y \subset \mathbb{P}^n$ a general brush of x lines.

- (i) If $\rho(\Pi) < x$, then $\dim(\Pi(-Y)) \ge m x 1 \rho(\Pi) \ge m 2x$.
- (ii) Assume $\Pi = |\mathcal{I}_U(2)|$ with U a closed subscheme of \mathbb{P}^n . Then dim $(\Pi(-Y))$

= m - 2x - 1 if and only if $\rho(\Pi) \ge x$ and the base locus of Π does not contain a hyperplane.

PROOF. Let B the base locus of Π and $\psi : \mathbb{P}^n \setminus B \to \mathbb{P}^m$ the morphism associated to Π . Set $\{P\} := \operatorname{Sing}(Y)$. Let $M := \langle Y \rangle$ be the x-dimensional linear subspace of \mathbb{P}^n spanned by Y. Let A_1, \ldots, A_x be the irreducible components of Y. Notice that $\chi_M(P) \subset Y$ and that from the point of view of the postulation with respect to any linear system of quadrics we may substitute Y with $\chi_M(P) \cup$ $\{P_1,\ldots,P_x\}$, where each P_i is an arbitrary point of $A_i \setminus \{P\}$. For general Y the point P is a general point of \mathbb{P}^n and M is a general x-dimensional linear subspace containing it. Since $P \notin B$, the integer $m - \dim(\Pi(-\chi_M(P))) - 1$ is (up to the addendum -1 coming from dim $(\Pi(-P)) - m$) the rank of the restriction to M of the differential $d\psi(P)$ of ψ at P. The generality of P and M gives $\dim(\Pi(-\chi_M(P))) = m - 1 - \min\{x, \rho(\Pi)\}$. Hence we get part (i) and one half of the "only if" part of (ii). Assume $\Pi = |\mathcal{I}_U(2)|$. If B contains a hyperplane, then it is easy to check that $\dim(\Pi(-Y)) = m - \min\{\rho(\Pi), x\}$. Hence we get the other half of the "only if" part of (ii). Now assume $\rho(\Pi) \ge x$ and that B does not contain a hyperplane. We saw that $\dim(\Pi(-\chi_M(P))) = m - x - 1$. Hence it is sufficient to prove dim $(\Pi(-(\chi_M(P)\cup\{P_1,\ldots,P_x\}))) = \dim(\Pi(-\chi_M(P))) - x.$ Now we fix P and M, but take as Y a general brush spanning M and with Pas its singular point. Hence A_1, \ldots, A_x are x general lines of M passing through P. Since dim(M) = x, for general Y the set $\{P_1, \ldots, P_x\}$ is a general subset of M with cardinality x. Hence it is sufficient to prove $\dim(\Pi(-M)) \leq m - 2x - 1$. This is true for instance because we may take as M the linear span of a general chain of x lines and we may apply Proposition 7. QED

PROOF OF THEOREM 2. By semicontinuity and Lemma 2 it is sufficient to prove Theorem 2 for a general pointed unreduced conic E. Let T be the unreduced conic associated to E. Proposition 5 gives $h^0(\mathcal{I}_{U\cup T}(2)) = h^0(\mathcal{I}_U(2)) - h^0(\mathcal{I}_U(2))$ 5. By Proposition 6 to prove Theorem 2 it is sufficient to prove that a general element of $|\mathcal{I}_{U\cup T}(2)|$ is not a cone with vertex containing the line $A := T_{red}$. Assume that this is the case. We have $h^0(\mathcal{I}_{U\cup A}(2)) = h^0(\mathcal{I}_U(2)) - 3$. We get $h^0(\mathcal{I}_{U \sqcup A^{(1)}}(2)) = h^0(\mathcal{I}_U(2)) - 5$. Let B denote the base locus of $\Pi := |\mathcal{I}_U(2)|$ and $\psi: \mathbb{P}^n \setminus B \to \mathbb{P}^m, \ m:=h^0(\mathcal{I}_U(2))-1$, the morphism associated to Π . Set m:=dim(II). Fix a general $P \in \mathbb{P}^n$. Hence $P \notin B$ and $d\psi(P)$ has rank $\rho(\Pi) \geq 4$. Fix a general 3-dimensional linear subspace M of \mathbb{P}^n containing P. Since M is general, as in the proof of Proposition 7 we get $\dim(\Pi(-\chi_M(P))) = m - 4$. Since $m \ge 5$, $\Pi(-\chi_M(P))$ is a non-constant linear system and hence $\rho(\Pi(-\chi_M(P))) \geq 1$. Hence for a general $P_1 \in \mathbb{P}^n$ and a general tangent vector ν to \mathbb{P}^n at P_1 we have $\dim(\Pi(-\chi_M(P))(-\nu)) = \dim(\Pi(-\chi_M(P))) - 2$, i.e., $\dim(\Pi(-(\chi_M(P) \cup \nu))) =$ m-6. Since the pair (P, P_1) is general, the line A spanned by $\{P, P_1\}$ is general. Since $\chi_M(P) \cup \nu \subseteq A^{(1)}$, we obtained a contradiction. QED

References

- D. BAYER, D. EISENBUD: Ribbons and their canonical embeddings, Trans. Amer. Math. Soc. no. 3, 347 (1995), 719–756.
- [2] E. CARLINI, M. V. CATALISANO, A. V. GERAMITA: Subspace arrangements, configurations of linear spaces and quadrics containing them, arXiv:0909.3802 v2[math.AG].
- [3] E. CARLINI, M. V. CATALISANO, A. V. GERAMITA: Bipolynomial Hilbert functions, J. Algebra no. 4, 324 (2010), 758–781.
- [4] E. CARLINI, M. V. CATALISANO, A. V. GERAMITA: 3-dimensional sundials, Cent. Eur. J. Math. no. 5, 9 (2011), 949–971.
- [5] J. HARRIS: Curves in projective space. With the collaboration of David Eisenbud, Séminaire de Mathématiques Supèrieures 85. Presses de l'Université de Montréal, Montreal, Que., 1982.
- [6] R. HARTSHORNE, A. HIRSCHOWITZ: Droites en position générale dans ℙⁿ, Algebraic Geometry, Proceedings, La Rábida 1981, 169–188, Lect. Notes in Math. 961, Springer, Berlin, 1982.
- [7] J. MIGLIORE: On linking double lines, Trans. Amer. Math. no. 1, Soc. 294 (1986), 177– 185.

92