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Abstract. In this paper, we establish the sharp maximal function estimates for the commu-
tators associated with the Riesz transforms of Schrodinger operators. As an application, we
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Introduction

As the development of singular integral operators(see [8][19]), their commu-
tators have been well studied. In [5][16][17], the authors prove that the com-
mutators generated by the singular integral operators and BM O functions are
bounded on LP(R™) for 1 < p < oo. Chanillo (see [1]) proves a similar re-
sult when singular integral operators are replaced by the fractional integral
operators. In [2][10][13], the boundedness for the commutators generated by
the singular integral operators and Lipschitz functions on Triebel-Lizorkin and
LP(R™)(1 < p < o0) spaces are obtained. In [18], some Schrodinger type oper-
ators with certain potentials are introduced, and the boundedness for the op-
erators and their commutators generated by BMO functions are obtained(see
[9][20]). Our works are motivated by these papers. In this paper, we will study
the commutators associated with the Riesz transforms of Schrodinger operators
and the Lipschitz functions.
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1 Notations and Lemmas

First, let us introduce some notations. Throughout this paper, Q will denote
a cube of R™ with sides parallel to the axes. For any locally integrable function
f, the sharp maximal function of f is defined by

#
M7(f)(x) = %1;2|Q,/\f — foldy,

where, and in what follows, fo = |Q|™! fQ x)dx. It is well-known that (see
[8](19])

M)~ s ind o | 170) el

Let

M{f)w) = Z‘;E\Qr/f )ldy.

For 1> 0, let My (f)(w) = M(|f|")/"(x).
ForO<n<land1l<r < oo, set

1 1/r
My (1)(0) = s (e [ IS0 dy)

A non-negative locally L4 integrable function V' on R" is said to belong to
By(1 < g < 0), if

(@ /Q V(w)qu> v c(@ /Q V(x)dm)

holds for every cube @ in R™.
The A, weight is defined by (see [8])

to= ey (i) (g o)

<ool, 1<p<oo,

and
Ay ={we L} (R"): M(w)(z) < Cw(z),a.c.}.

For 8 > 0 and p > 1, let FI’,B’OO(Rn) be the homogeneous Triebel-Lizorkin
space(see [13]).
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For 8 > 0, the Lipschitz space Lipg(R"™) is the space of functions f such
that
|f(z) = f (W)l

Li — Su —_—— < X0
Hf” pg z,yeg” |$_y|5
zH#Y
Definition 1. Let ¢ be a positive, increasing function on R™ and there

exists a constant D > 0 such that
©(2t) < Dp(t) for t>0.

Let f be a locally integrable function on R". Set, for 1 < p < oo,

1 1/p
o = sup — Pd ,
Illire = _sm M(@(d) L., 1wl y)

where Q(x,d) = {y € R" : [t —y| < d}. The generalized Morrey space is defined
by
LP#(R") = {f € Lige(R") : [|fllLr.e < o0}

If o(d) = d°, 6 > 0, then LP¥(R") = LP(R™), which is the classical Morrey
spaces (see [14][15]). If ¢(d) = 1, then LP?(R"™) = LP(R"), which is the Lebesgue
spaces (see [3]).

As the Morrey space may be considered as an extension of the Lebesgue
space, it is natural and important to study the boundedness of the operator on
the Morrey spaces (see [3][6][7][11][12]).

In this paper, we will study the commutators associated with the Riesz
transforms of Schrodinger operator as following(see [9]).

Let P = —A + V(z) be the Schrédinger differential operator on R"™ with
n > 3. V(z) is a non-negative potential belongs to B, for some ¢ > n/2. Let
Tj(j = 1,2,3) be the Riesz transforms associated to Schrodinger operators,
namely, 1 = (~A+ V)WV, Ty = (~A+ V) Y2V2 and T3 = (A4 V)12V,
We know that Tj is associated with a kernel Kj(x,y)(j = 1,2,3), that is (see
[91[18])

T(f)(x) = . Kj(z,y)f(y)dy(j = 1,2,3).
Let b be a locally integrable function on R"™. The commutators related to T;(j =
1,2, 3) are defined by

[0, T3] (f)(x) = b(2)T;(f)(x) = T3(bf)(2)(5 = 1,2,3).

It is well known that commutators are of great interest in harmonic analysis
and have been widely studied by many authors (see [16][17]). The main purpose
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of this paper is to prove the sharp maximal inequalities for the commutators.
As application, we obtain the LP-norm inequality, Morrey and Triebel-Lizorkin
spaces boundedness for the commutators.

Lemma 1. [see [9]]
Let V € By, ¢ > n/2. Then

(a) Ty is bounded on LP(R"™) for ¢ <p < co.
(b) Ty is bounded on LP(R™) for (2q) < p < co.
(¢c) T3 is bounded on LP(R™) for py <p < oo and 1/py=1/q—1/n.

Lemma 2. [see [13]] For0 < f<1,1<p< oo and w € A, we have

1l =

1
?BPW /Q |f(z) = foldx

Lp

~
~

1
supinf/ |f(x) — c|dx

Lemma 3. [see [8]] Let 0 < p < 00 and w € Ui<y<ooAr. Then, for any
smooth function f for which the left-hand side is finite,

M(f)@Pw(@)de < C [ M*(f)(@)Pw(x)dr.
R" R"

Lemma 4. [see [1]] Suppose that 0 < n < n, 1 < s < p < n/n and
1/¢g=1/p—mn/n. Then

|| My,s(F)llza < ClIf]]Le-

Lemma 5. Let 1 <p < oo, 0 <D < 2™ Then, for any smooth function f
for which the left-hand side is finite,

1M (f)l|zre < ClIMP(f)||re-

PRrROOF. For any cube Q = Q(zo,d) in R", we know M (xq) € A; for any
cube @ = Q(z,d) by [4]. Noticing that M (xg) < 1 and M(xg)(z) < d"/(|x —
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xo| — d)" if x € Q°, by Lemma 4, we have, for f € LP¥(R"),
[ M@)@rds= [ M(H@Pxos
Q R’IL

<C | M(f)(=)"M(xq)(z)dx

R™

<C o M#(f)(@)[P M (xq)(x)dx

:c</QM#(f)( )PM (x@)( dm+2/k+1@\2k@
P g Q
o (/Q M# dx+2/k+1Q\2kQ () |2k’+1‘Q’dm>
M w)(x
c (/ M*(f pd$+2/k+l@ 275(;{1(1))0133)

(/ M#*(f pdm+2/k T)P2~ ’“”dy>
2k+1Q

SCHM# LPLPZ2 kn 2k+1d

IN

IN

| /\

e}

<C|[M*(F)Ifp Y (27" D) o(d)

k=0
< CIIMF ()00 0(d),

thus

1/p 1/p
L X p i L # T D T
<‘P(d) /Q(xo,d) M) ) =¢ (@(d) /Q(zo,d)M (f)(@)"d )

and
(|M(f)||poe < ClIMF(f)|| 1o

This finishes the proof. QED
Lemma 6. Let 0 < D < 2",V € B, and ¢ > n/2. Then

(a) If ¢ <p < o0,
T ()||zee < C|If||Lre-

(b) If(29)" < p < oo,
NT2(N)lLre < CllfllLre-
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(¢c) Ifpy <p< oo with1/py=1/q—1/n,
NT3()l|oe < CllfllLre-
Lemma 7. Let 0 < D < 2", 1<s<p<mn/nand 1/g=1/p—n/n. Then

HMmS(f)HLqW < C||f||Lp,</>.

The proofs of two Lemmas are similar to that of Lemma 5 by Lemma 1 and
3, we omit the details.

Lemma 8. [see [9]] Let m(x, V)™t = sup{r > 0:r>™" fB(z v V(y)dy <1},
VeBy qg>n/2,d>0 and x,x0 € R" with |z — x| < d. Then there exists
d > 0 such that for any integer k >0, 0 < h < |z — y|/16,

(a) If ¢ <p < <,

C ho
|K1(z + h,y) — Ki(z,y)| <

S Tam@ Ve —g)F ey’ W

[e’e] 1/‘1
P CAKES (/m<| g K1 (,y) — Kl(a?o,y)\qdy> <C.
Slro—y|<

(b) If (29)" <p < o,

T
I

C ho 172

K. h — K. < :
‘ 2(£L'+ ,y) 2($7y)’_ (1—|—m(:c,V)|x—y|)k ‘x_y’n_l-i-dv(y

Y

[e%s) 1/2q
> (@Fay e / |Ka(z,y) — Ka(zo,y)Mdy | < C.
pt 2kd<|zg—y|<2k+1d

(c) If pl <p < oo and 1/py =1/q —1/n,
‘K3($ + hay) - K3<$7y)’ <

- C ho
T (A +mz, V)|z—y)k |z -yt

. / V(Z) dz+|aj—y\_1 ,
B(a,jo—y|) 1Y — 2|

o0 1/p0
S (@)l / Ks(ay) — Ka(aop)Pdy | < C.
=1 2kd<|zo—y|<2k+1d
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2 Theorems and Proofs

We shall prove the following theorems.

Theorem 1. Let 0 < 8 <1,V € By, ¢ > n/2 and b € Lipg(R"). Then
there exists a constant C > 0 such that, for any f € C§°(R") and & € R",

(a) If ¢ < s < o0,

M*([b, T1)())(&) < OllbllLips (Mp,s(f)(&) + Ma,s(T1(f))(@)) -
(b) If (29)' < s < 0,

M#([0, o) (f))(&) < Cl[bllLips (Mp,s(£)(E) + Mp,s(T2(f))(Z)) -
(c) If py < s < o0 with 1/po = 1/q —1/n,

M#([0, T5])(f))(&) < Ol[bllLips (Mp,s(£)(E) + Mp,s(T3(f))(2)) -

Theorem 2. Let 0 < f < min(1,6), V € By, ¢ > n/2 and b € Lipg(R"™).
Then there exists a constant C > 0 such that, for any f € C§°(R") and & € R",

(a) If ¢ < s < o0,
s ez | [T @) Colda
< Clbllaip, (M(1)(@) + Mo(T2(F))(@).
(b) If (24) <5 < o,
P |Q|1+B/n/ b To}(f) () = Col dr
< Clblluip, (Ma(£)(@) + My(To())(3) .

(c) If pyp < s < oo with 1/pg =1/q—1/n,

sup g [, Ib () () ~ Gl do
< Ol[bl|Lipy (Ms(f)(Z) + Ms(T3(f))(T)) -

Theorem 3. Let 0 < f < 1,V € By, ¢ > n/2, 1/r = 1/p — /n and
b€ Lipg(R"). Then
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(a) [b,T1] is bounded from LP(R™) to L"(R"™) for ¢ <p<n/p.

(b) [b,Ts] is bounded from LP(R™) to L"(R™) for (2q)' <p <n/p.

(c) [b,T3] is bounded from LP(R™) to L"(R"™) for py < p < n/B and 1/py =
1/q —1/n.

Theorem 4. Let0 < D <2",0<8<1,VeBy,q>n/2,1/r=1/p—B/n
and b € Lipg(R™). Then

(a) [b,Ty] is bounded from LP¥(R"™) to L™?(R"™) for ¢ <p <mn/p.
(b) [b,Tz] is bounded from LP?(R™) to L™?(R™) for (2q) <p <n/B.

(c) [b,T3] is bounded from LP¥(R™) to L"%(R") forpy <p <mn/p and 1/py =
1/q—1/n.

Theorem 5. Let 0 < f < min(1,6), V € By, ¢ > n/2 and b € Lipg(R"™).
Then

(a) [b,T1] is bounded from LP(R™) to Fpﬂ’oo(R”) for¢d <p<n/B.

(b) [b,T5] is bounded from LP(R™) to Ff’oo(R”) for (2q) <p<n/pB.

(c) [b,T5] is bounded from LP(R™) to Ff’OO(R”) forpy <p<n/B and 1/py =
1/q—1/n.

To prove the theorems, we need the following lemmas.

Main Lemma 1. Letm>1 0<5<1 m’ <s<ooandb€Lipg(R”)
Suppose that the operator T'(f = [pn K (y)dy is bounded on LP(R™)
for every m’ < p < oo, and K E H (m), namely, there exists a constant C' > 0
such that for any d > 0, z,z9 € R™ with |z — x¢| < d, there is

00 1/m
S @k / K(e.y) - K(zoy)"dy |  <C,
2kd<|zo—y|<2kt+1d

k=1

where 1/m + 1/m’ = 1. Then there exists a constant C' > 0 such that, for any
feCge(R") and T € R™,

M (b, TI(f)() < CllbllLips (Mp,s(f)(@) + Mp,s(T(£)(&))-

Proor. It suffices to prove for f € C§°(R") and some constant Cp, the
following inequality holds:

ol / 16, T)(f) () — Col dz < Cl[bll1ip, (Mao(£)(@) + M o(T(£))(F)-
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Fix a cube Q = Q(wo,d) and 7 € Q. Write, for fi = fx2q and fa = fx20)e
[0, T](f)(x) = (b(x) — ba)T(f)(x) — T((b — b2q) f1)(x) — T((b— b2) f2) ().

Then

\Q!/ 15, T( T'((bag — b) f2)(z0)| d

< |Q!/‘ —ba)T(f)(z )dm—i—‘Q’/ IT((b— bag) f1)(x)|dx
+\Q|/Q’T (b—bag) f2)(z) — T((b— bag) f2)(x0)|d

= h+DL+Is.

For Iy, by Holder’s inequality and Lemma 2, we obtain
I <

1/s
|Q‘|rbumrzc2|ﬂ/"\@rl 1/s ( / T @) dx)

1/s
Clblasl@*1QI 101 (ot [ 2@l
< Clbllin, My o(T(H)E)

IN

For I, by the boundedness of T', we get

(!él /Rn T((b— sz)fl)(w)’de> 1/s

1 ) 1/s
< (g [ 100 - o) p@wr)

1 1/s
ClQI™*(1bl|ips 12Q1 7™ [2Q|/*~ /7 (/ !f(ﬂf)lsdaf)
Ps |2Q|1—sﬁ/n 20
Cbl| Lipy Mp,s(f)(2)-

Iy

IN

IN

For I3, recalling that s > m/, we have

ho< & / /2@ y) — bao|lf W) 1K (2,9) — K (0, ) |dyda

/ / K (21) — K (20, 9)][b(y) — byroro)
1Q] Q i Jora<iy—aol<2t+1d
) s

IN
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1 o
o2 Lo a0 = K00l = g
k=1 >|Y—To

|f(y)|dydx

C 00 1/m
< S /y / K (2,y) — K (z0,y)|"dy

QI Jq &= \J2ka<|y—no|<2t+1d

1/m/
xmh@M%mW"Q/ U@W”@) da
2k+1Q

<

1/m
/Z2k dym / |K (2,y) — K(zo,y)[™dy dx
[Ql Jo 2k d<|y—zo|<2F+1d

k=1

1 ) 1/s
16| Lipg <‘2k+1Q|1_55/n /2k+1Q ()l dy>
< Ol[bllLips Mp s()(Z).

These complete the proof of the lemma. QED

Main Lemma 2. Letm>1 O<B<1 m’ <3<ooandb€Lip5(R”)
Suppose that the operator T'(f = Jpn K (y)dy is bounded on LP(R™)
for every m’ < p < co and K € H ( ,B), namely, there exists a constant C > 0
such that for any d > 0, z,zo € R™ with |z — x¢| < d, there is

() 1/m
> 2kay (/ |K(z,y) — K(fﬁo,y)!mdy> <C,
2k d<|zo—y|<2k+1d

k=1

where 1/m + 1/m’ = 1. Then there exists a constant C' > 0 such that, for any
feCe(R") and T € R,

“pMWWm/”T’ (2) = Col dx < ClIb||za, (M(/)(E) + Mu(T())()).

ProoF. It suffices to prove for f € C§°(R") and some constant Cp, the
following inequality holds:

|W@m4mfwwm4mmsmwmﬂMumwaﬂM@»
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Fix a cube Q = Q(wo,d) and 7 € Q. Write, for fi = fx2q and fa = fx20)e

W [ 710 @) - T = D) o) o

IN

1
@w/n / (4a) = ba) T() @)l + 5 /Q IT((b — bag) 1) (@)l

g [, ITUb = b)) = T(0 = b)) o)l
= I4—|—I5—|—I6.

By using the same argument as in the proof of Main Lemma 1, we get

c B/n||1-1/ e
IS Pl 20 @) (/ ()l
1/s
< C|bHsz5<Q|/|T \dx)
< OBl iy Mo(T () (2),
1/s
1-1/s _ s
;< |Q|H5/n|@r ([ 17 t)@pa)
0 ([ 0@ = b ha) )
- |Q|1+’8/" R Q0
1/s
1-1/s B/n 1/s
< G Wl P01 (G [l
< Cllbllaip, My ()(3),
1 o0
I g/ / K(z,y) — K(z0,y)|[b(y) — bort1
‘ Q1 +8/m kal 2kd§\y—xo\<2k+1d| (@9) (0, 9)[[by) = barsigl
)l dyde
cany
o K(x,y) — K(zg,y)||b —-b
QI Q; ity ooty )~ K (@0 9)llbareiq = bagl
()l dyd
o oo 1/m
N K(z,y) — K(zo,y)|"dy
|Q’1+6/n/62];</2kd<yxo<2’“+1d‘ (®:9) (#0,9) )

1/m/
<[] 2iny [2°Q1/7 ( [ dy) dx
2k+1Q
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IN

C ok /
- E 9 ﬁ(gkd)N/m
Ql Jo =

1/m
(/ | K (z,y) — K (o, y)lmdy> du
2kd< |y—zo| <2 +1d

1 1/s
X |[b]] Lips <M /ZWQ \f(y)\sdy>
< Clbl|Lips Ms(f) ().

This completes the proof of the Lemma. QED
PROOF OF THEOREM 1. By Lemma 10, we know K; € H(q), Ko € H(2q)
and K3 € H(po), thus Theorem 1 follows from Main Lemma 1.

PROOF OF THEOREM 2. If ¢’ < s < oo, by [11], we know

1/q 7
K - K 1 <c—%
(/de<|xo—y|<2k+1d () 10w y) = (2ka)dtn/a”

by Lemma 10 and notice 0 < § < 4, we get

0 1/q
> 2P kay e (/ K (z,y) — K (o, y)\qdy>
2k d<|wo—y|<2k+1d

k=1
[ee] , d6
kB ok 1\n/q
< C;Q (2%d) T

< oY 20 <
k=1

thus Ky € H(q,p). Similarly, Ky € H(2q,3) and K3 € H(pg, 3). Theorem 2

follows from Main Lemma 2. QED

PROOF OF THEOREM 3. Choose ¢’ < s < p for T1, (2q) < s < p for Tp,
po < s < p for T3 in Theorem 1, we have, by Lemma 1, 3 and 4, for j = 1,2, 3,

116, T3] () e < [M([b, T31()) | Lr
CIM* ([0, T5)())] -

Clbl Lips (I1Mps(T(f))|r + [Mp,s(f)]zr)
Clbl Lips (1Ms(T(f))|r + [Mp,s(f)|zr)
Clbl| Lips IT () + [ f]r)
ClIbl|zips | f|r-

This completes the proof of Theorem 3. QED

IN A

IN A



Sharp Maximal Function Inequalities 65

PROOF OF THEOREM 4. Choose ¢ < s < p for T1, (2q) < s < p for Th,
po < s < p for T3 in Theorem 1, then, by Lemma 5-7, for j =1, 2, 3,

[|[b, T3 ()] e

[ M ([, T5](f))|Lre

CIMP ([, T3] () e

Cl1bl|Lipy ([Mp,s(T(f)|Lre + |Mp,s(f)Lre)
Cl1bl|Lipy ([Mp,s(T(f)|Lre + |Mp,s(f)Lre)
Cl1bl| Lips (1T ()| Lre + | flrre)
C|b]| Lips | f | Lrwe -

AN IA A

IA A

This completes the proof of Theorem 4. QED

PROOF OF THEOREM 5. Choose ¢ < s < p for T1, (2q) < s < p for Th,
po < s < p for Ty in Theorem 2, then, by using Lemma 2, we obtain, for
J=12,3,

1 T .

1
< Ol oz [ T ~T(ag ~ ) wo)ldo .
< ClIbl[Lipg ([Ms(T(f)) e + [Ms(f)|Lr)
Cl1bl] Lips ([Ms(T(f))Lr + [Ms(f)]Lr)

< ClIbl[Lips (1T(f) e + | f]r)

< ClIbl[Lipg | f]|zr-
This completes the proof of the theorem. QED
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