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Abstract. In this paper, we establish the sharp maximal function estimates for the commu-
tators associated with the Riesz transforms of Schrödinger operators. As an application, we
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Introduction

As the development of singular integral operators(see [8][19]), their commu-
tators have been well studied. In [5][16][17], the authors prove that the com-
mutators generated by the singular integral operators and BMO functions are
bounded on Lp(Rn) for 1 < p < ∞. Chanillo (see [1]) proves a similar re-
sult when singular integral operators are replaced by the fractional integral
operators. In [2][10][13], the boundedness for the commutators generated by
the singular integral operators and Lipschitz functions on Triebel-Lizorkin and
Lp(Rn)(1 < p < ∞) spaces are obtained. In [18], some Schrödinger type oper-
ators with certain potentials are introduced, and the boundedness for the op-
erators and their commutators generated by BMO functions are obtained(see
[9][20]). Our works are motivated by these papers. In this paper, we will study
the commutators associated with the Riesz transforms of Schrödinger operators
and the Lipschitz functions.

http://siba-ese.unisalento.it/ © 2011 Università del Salento
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1 Notations and Lemmas

First, let us introduce some notations. Throughout this paper, Q will denote
a cube of Rn with sides parallel to the axes. For any locally integrable function
f , the sharp maximal function of f is defined by

M#(f)(x) = sup
Q�x

1

|Q|

�

Q

|f(y)− fQ|dy,

where, and in what follows, fQ = |Q|−1
�
Q
f(x)dx. It is well-known that (see

[8][19])

M#(f)(x) ≈ sup
Q�x

inf
c∈C

1

|Q|

�

Q

|f(y)− c|dy.

Let

M(f)(x) = sup
Q�x

1

|Q|

�

Q

|f(y)|dy.

For η > 0, let Mη(f)(x) = M(|f |η)1/η(x).
For 0 < η < 1 and 1 ≤ r < ∞, set

Mη,r(f)(x) = sup
Q�x

�
1

|Q|1−rη/n

�

Q

|f(y)|rdy
�1/r

.

A non-negative locally Lq integrable function V on Rn is said to belong to
Bq(1 < q < ∞), if

�
1

|Q|

�

Q

V (x)qdx

�1/q

≤ C

�
1

|Q|

�

Q

V (x)dx

�

holds for every cube Q in Rn.
The Ap weight is defined by (see [8])

Ap =

�
w ∈ L1

loc
(Rn) : sup

Q

�
1

|Q|

�

Q

w(x)dx

��
1

|Q|

�

Q

w(x)−1/(p−1)dx

�p−1

< ∞} , 1 < p < ∞,

and
A1 = {w ∈ Lp

loc
(Rn) : M(w)(x) ≤ Cw(x), a.e.}.

For β > 0 and p > 1, let Ḟ β,∞
p (Rn) be the homogeneous Triebel-Lizorkin

space(see [13]).
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For β > 0, the Lipschitz space Lipβ(Rn) is the space of functions f such
that

||f ||Lipβ = sup
x,y∈Rn

x �=y

|f(x)− f(y)|
|x− y|β < ∞.

Definition 1. Let ϕ be a positive, increasing function on R+ and there
exists a constant D > 0 such that

ϕ(2t) ≤ Dϕ(t) for t ≥ 0.

Let f be a locally integrable function on Rn. Set, for 1 ≤ p < ∞,

||f ||Lp,ϕ = sup
x∈Rn, d>0

�
1

ϕ(d)

�

Q(x,d)
|f(y)|pdy

�1/p

,

where Q(x, d) = {y ∈ Rn : |x−y| < d}. The generalized Morrey space is defined
by

Lp,ϕ(Rn) = {f ∈ L1
loc
(Rn) : ||f ||Lp,ϕ < ∞}.

If ϕ(d) = dδ, δ > 0, then Lp,ϕ(Rn) = Lp,δ(Rn), which is the classical Morrey
spaces (see [14][15]). If ϕ(d) = 1, then Lp,ϕ(Rn) = Lp(Rn), which is the Lebesgue
spaces (see [3]).

As the Morrey space may be considered as an extension of the Lebesgue
space, it is natural and important to study the boundedness of the operator on
the Morrey spaces (see [3][6][7][11][12]).

In this paper, we will study the commutators associated with the Riesz
transforms of Schrödinger operator as following(see [9]).

Let P = −∆ + V (x) be the Schrödinger differential operator on Rn with
n ≥ 3. V (x) is a non-negative potential belongs to Bq for some q > n/2. Let
Tj(j = 1, 2, 3) be the Riesz transforms associated to Schrödinger operators,
namely, T1 = (−∆+V )−1V, T2 = (−∆+V )−1/2V 1/2 and T3 = (−∆+V )−1/2∇.
We know that Tj is associated with a kernel Kj(x, y)(j = 1, 2, 3), that is (see
[9][18])

Tj(f)(x) =

�

Rn
Kj(x, y)f(y)dy(j = 1, 2, 3).

Let b be a locally integrable function on Rn. The commutators related to Tj(j =
1, 2, 3) are defined by

[b, Tj ](f)(x) = b(x)Tj(f)(x)− Tj(bf)(x)(j = 1, 2, 3).

It is well known that commutators are of great interest in harmonic analysis
and have been widely studied by many authors (see [16][17]). The main purpose
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of this paper is to prove the sharp maximal inequalities for the commutators.
As application, we obtain the Lp-norm inequality, Morrey and Triebel-Lizorkin
spaces boundedness for the commutators.

Lemma 1. [see [9]]

Let V ∈ Bq, q ≥ n/2. Then

(a) T1 is bounded on Lp(Rn) for q� ≤ p < ∞.

(b) T2 is bounded on Lp(Rn) for (2q)� ≤ p < ∞.

(c) T3 is bounded on Lp(Rn) for p�0 ≤ p < ∞ and 1/p0 = 1/q − 1/n.

Lemma 2. [see [13]] For 0 < β < 1, 1 < p < ∞ and w ∈ A∞, we have

||f ||
Ḟ

β,∞
p

≈
�����

�����supQ�·

1

|Q|1+β/n

�

Q

|f(x)− fQ|dx
�����

�����
Lp

≈
�����

�����supQ�·

inf
c

1

|Q|1+β/n

�

Q

|f(x)− c|dx
�����

�����
Lp

.

Lemma 3. [see [8]] Let 0 < p < ∞ and w ∈ ∪1≤r<∞Ar. Then, for any
smooth function f for which the left-hand side is finite,

�

Rn
M(f)(x)pw(x)dx ≤ C

�

Rn
M#(f)(x)pw(x)dx.

Lemma 4. [see [1]] Suppose that 0 < η < n, 1 < s < p < n/η and
1/q = 1/p− η/n. Then

||Mη,s(f)||Lq ≤ C||f ||Lp .

Lemma 5. Let 1 < p < ∞, 0 < D < 2n. Then, for any smooth function f
for which the left-hand side is finite,

||M(f)||Lp,ϕ ≤ C||M#(f)||Lp,ϕ .

Proof. For any cube Q = Q(x0, d) in Rn, we know M(χQ) ∈ A1 for any
cube Q = Q(x, d) by [4]. Noticing that M(χQ) ≤ 1 and M(χQ)(x) ≤ dn/(|x −
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x0|− d)n if x ∈ Qc, by Lemma 4, we have, for f ∈ Lp,ϕ(Rn),
�

Q

M(f)(x)pdx =

�

Rn
M(f)(x)pχQ(x)dx

≤C

�

Rn
M(f)(x)pM(χQ)(x)dx

≤C

�

Rn
M#(f)(x)|pM(χQ)(x)dx

=C

��

Q

M#(f)(x)pM(χQ)(x)dx+
∞�

k=0

�

2k+1Q\2kQ
M#(f)(x)pM(χQ)(x)dx

�

≤C

��

Q

M#(f)(x)pdx+
∞�

k=0

�

2k+1Q\2kQ
M#(f)(x)p

|Q|
|2k+1Q|dx

�

≤C

��

Q

M#(f)(x)pdx+
∞�

k=0

�

2k+1Q

M#(f)(x)p
M(w)(x)

2n(k+1)
dx

�

≤C

��

Q

M#(f)(x)pdx+
∞�

k=0

�

2k+1Q

M#(f)(x)p2−kndy

�

≤C||M#(f)||p
Lp,ϕ

∞�

k=0

2−knϕ(2k+1d)

≤C||M#(f)||p
Lp,ϕ

∞�

k=0

(2−nD)kϕ(d)

≤C||M#(f)||p
Lp,ϕϕ(d),

thus
�

1

ϕ(d)

�

Q(x0,d)
M(f)(x)pdx

�1/p

≤ C

�
1

ϕ(d)

�

Q(x0,d)
M#(f)(x)pdx

�1/p

and
||M(f)||Lp,ϕ ≤ C||M#(f)||Lp,ϕ .

This finishes the proof. QED

Lemma 6. Let 0 < D < 2n, V ∈ Bq and q ≥ n/2. Then

(a) If q� ≤ p < ∞,
||T1(f)||Lp,ϕ ≤ C||f ||Lp,ϕ .

(b) If (2q)� ≤ p < ∞,
||T2(f)||Lp,ϕ ≤ C||f ||Lp,ϕ .



58 Lanzhe Liu

(c) If p�0 ≤ p < ∞ with 1/p0 = 1/q − 1/n,

||T3(f)||Lp,ϕ ≤ C||f ||Lp,ϕ .

Lemma 7. Let 0 < D < 2n, 1 ≤ s < p < n/η and 1/q = 1/p− η/n. Then

||Mη,s(f)||Lq,ϕ ≤ C||f ||Lp,ϕ .

The proofs of two Lemmas are similar to that of Lemma 5 by Lemma 1 and
3, we omit the details.

Lemma 8. [see [9]] Let m(x, V )−1 = sup{r > 0 : r2−n
�
B(x,r) V (y)dy ≤ 1},

V ∈ Bq, q ≥ n/2, d > 0 and x, x0 ∈ Rn with |x − x0| ≤ d. Then there exists
δ > 0 such that for any integer k > 0, 0 < h < |x− y|/16,

(a) If q� ≤ p < ∞,

|K1(x+ h, y)−K1(x, y)| ≤
C

(1 +m(x, V )|x− y|)k · hδ

|x− y|n−2+δ
V (y),

∞�

k=1

(2kd)n/q
�

��

2kd≤|x0−y|<2k+1d

|K1(x, y)−K1(x0, y)|qdy
�1/q

≤ C.

(b) If (2q)� ≤ p < ∞,

|K2(x+ h, y)−K2(x, y)| ≤
C

(1 +m(x, V )|x− y|)k · hδ

|x− y|n−1+δ
V (y)1/2,

∞�

k=1

(2kd)n/(2q)
�

��

2kd≤|x0−y|<2k+1d

|K2(x, y)−K2(x0, y)|2qdy
�1/2q

≤ C.

(c) If p�0 ≤ p < ∞ and 1/p0 = 1/q − 1/n,

|K3(x+ h, y)−K3(x, y)| ≤

≤ C

(1 +m(x, V )|x− y|)k · hδ

|x− y|n−1+δ

·
��

B(x,|x−y|)

V (z)

|y − z|dz + |x− y|−1

�
,

∞�

k=1

(2kd)n/p
�
0

��

2kd≤|x0−y|<2k+1d

|K3(x, y)−K3(x0, y)|p0dy
�1/p0

≤ C.
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2 Theorems and Proofs

We shall prove the following theorems.

Theorem 1. Let 0 < β < 1, V ∈ Bq, q ≥ n/2 and b ∈ Lipβ(Rn). Then
there exists a constant C > 0 such that, for any f ∈ C∞

0 (Rn) and x̃ ∈ Rn,

(a) If q� ≤ s < ∞,

M#([b, T1](f))(x̃) ≤ C||b||Lipβ (Mβ,s(f)(x̃) +Mβ,s(T1(f))(x̃)) .

(b) If (2q)� ≤ s < ∞,

M#([b, T2](f))(x̃) ≤ C||b||Lipβ (Mβ,s(f)(x̃) +Mβ,s(T2(f))(x̃)) .

(c) If p�0 ≤ s < ∞ with 1/p0 = 1/q − 1/n,

M#([b, T3](f))(x̃) ≤ C||b||Lipβ (Mβ,s(f)(x̃) +Mβ,s(T3(f))(x̃)) .

Theorem 2. Let 0 < β < min(1, δ), V ∈ Bq, q ≥ n/2 and b ∈ Lipβ(Rn).
Then there exists a constant C > 0 such that, for any f ∈ C∞

0 (Rn) and x̃ ∈ Rn,

(a) If q� ≤ s < ∞,

sup
Q�x̃

1

|Q|1+β/n

�

Q

|[b, T1](f)(x)− C0| dx

≤ C||b||Lipβ (Ms(f)(x̃) +Ms(T1(f))(x̃)) .

(b) If (2q)� ≤ s < ∞,

sup
Q�x̃

1

|Q|1+β/n

�

Q

|[b, T2](f)(x)− C0| dx

≤ C||b||Lipβ (Ms(f)(x̃) +Ms(T2(f))(x̃)) .

(c) If p�0 ≤ s < ∞ with 1/p0 = 1/q − 1/n,

sup
Q�x̃

1

|Q|1+β/n

�

Q

|[b, T3](f)(x)− C0| dx

≤ C||b||Lipβ (Ms(f)(x̃) +Ms(T3(f))(x̃)) .

Theorem 3. Let 0 < β < 1, V ∈ Bq, q ≥ n/2, 1/r = 1/p − β/n and
b ∈ Lipβ(Rn). Then
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(a) [b, T1] is bounded from Lp(Rn) to Lr(Rn) for q� ≤ p < n/β.

(b) [b, T2] is bounded from Lp(Rn) to Lr(Rn) for (2q)� ≤ p < n/β.

(c) [b, T3] is bounded from Lp(Rn) to Lr(Rn) for p�0 ≤ p < n/β and 1/p0 =
1/q − 1/n.

Theorem 4. Let 0 < D < 2n, 0 < β < 1, V ∈ Bq, q ≥ n/2, 1/r = 1/p−β/n
and b ∈ Lipβ(Rn). Then

(a) [b, T1] is bounded from Lp,ϕ(Rn) to Lr,ϕ(Rn) for q� ≤ p < n/β.

(b) [b, T2] is bounded from Lp,ϕ(Rn) to Lr,ϕ(Rn) for (2q)� ≤ p < n/β.

(c) [b, T3] is bounded from Lp,ϕ(Rn) to Lr,ϕ(Rn) for p�0 ≤ p < n/β and 1/p0 =
1/q − 1/n.

Theorem 5. Let 0 < β < min(1, δ), V ∈ Bq, q ≥ n/2 and b ∈ Lipβ(Rn).
Then

(a) [b, T1] is bounded from Lp(Rn) to Ḟ β,∞
p (Rn) for q� ≤ p < n/β.

(b) [b, T2] is bounded from Lp(Rn) to Ḟ β,∞
p (Rn) for (2q)� ≤ p < n/β.

(c) [b, T3] is bounded from Lp(Rn) to Ḟ β,∞
p (Rn) for p�0 ≤ p < n/β and 1/p0 =

1/q − 1/n.

To prove the theorems, we need the following lemmas.

Main Lemma 1. Let m > 1, 0 < β < 1, m� ≤ s < ∞ and b ∈ Lipβ(Rn).
Suppose that the operator T (f)(x) =

�
Rn K(x, y)f(y)dy is bounded on Lp(Rn)

for every m� < p < ∞, and K ∈ H(m), namely, there exists a constant C > 0
such that for any d > 0, x, x0 ∈ Rn with |x− x0| ≤ d, there is

∞�

k=1

(2kd)n/m
�

��

2kd≤|x0−y|<2k+1d

|K(x, y)−K(x0, y)|mdy

�1/m

≤ C,

where 1/m + 1/m� = 1. Then there exists a constant C > 0 such that, for any
f ∈ C∞

0 (Rn) and x̃ ∈ Rn,

M#([b, T ](f))(x̃) ≤ C||b||Lipβ (Mβ,s(f)(x̃) +Mβ,s(T (f))(x̃)) .

Proof. It suffices to prove for f ∈ C∞
0 (Rn) and some constant C0, the

following inequality holds:

1

|Q|

�

Q

|[b, T ](f)(x)− C0| dx ≤ C||b||Lipβ (Mβ,s(f)(x̃) +Mβ,s(T (f))(x̃)) .
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Fix a cube Q = Q(x0, d) and x̃ ∈ Q. Write, for f1 = fχ2Q and f2 = fχ(2Q)c ,

[b, T ](f)(x) = (b(x)− b2Q)T (f)(x)− T ((b− b2Q)f1)(x)− T ((b− b2Q)f2)(x).

Then

1

|Q|

�

Q

|[b, T ](f)(x)− T ((b2Q − b)f2)(x0)| dx

≤ 1

|Q|

�

Q

|(b(x)− b2Q)T (f)(x)|dx+
1

|Q|

�

Q

|T ((b− b2Q)f1)(x)|dx

+
1

|Q|

�

Q

|T ((b− b2Q)f2)(x)− T ((b− b2Q)f2)(x0)|dx

= I1 + I2 + I3.

For I1, by Hölder’s inequality and Lemma 2, we obtain

I1 ≤ C

|Q| ||b||Lipβ |2Q|β/n|Q|1−1/s

��

Q

|T (f)(x)|sdx
�1/s

≤ C||b||Lipβ |Q|β/n|Q|−1/s|Q|1/s−β/n

�
1

|Q|1−sβ/n

�

Q

|T (f)(x)|sdx
�1/s

≤ C||b||LipβMβ,s(T (f))(x̃).

For I2, by the boundedness of T , we get

I2 ≤
�

1

|Q|

�

Rn
|T ((b− b2Q)f1)(x)|sdx

�1/s

≤ C

�
1

|Q|

�

Rn
|(b(x)− b2Q)f1(x)|sdx

�1/s

≤ C|Q|−1/s||b||Lipβ |2Q|β/n|2Q|1/s−β/n

�
1

|2Q|1−sβ/n

�

2Q
|f(x)|sdx

�1/s

≤ C||b||LipβMβ,s(f)(x̃).

For I3, recalling that s > m�, we have

I3 ≤ 1

|Q|

�

Q

�

(2Q)c
|b(y)− b2Q||f(y)||K(x, y)−K(x0, y)|dydx

≤ 1

|Q|

�

Q

∞�

k=1

�

2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)||b(y)− b2k+1Q|

|f(y)|dydx
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+
1

|Q|

�

Q

∞�

k=1

�

2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)||b2k+1Q − b2Q|

|f(y)|dydx

≤ C

|Q|

�

Q

∞�

k=1

��

2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)|mdy

�1/m

×||b||Lipβ |2kQ|β/n
��

2k+1Q

|f(y)|m�
dy

�1/m�

dx

≤ C

|Q|

�

Q

∞�

k=1

(2kd)n/m
�

��

2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)|mdy

�1/m

dx

×||b||Lipβ
�

1

|2k+1Q|1−sβ/n

�

2k+1Q

|f(y)|sdy
�1/s

≤ C||b||LipβMβ,s(f)(x̃).

These complete the proof of the lemma. QED

Main Lemma 2. Let m > 1, 0 < β < 1, m� ≤ s < ∞ and b ∈ Lipβ(Rn).
Suppose that the operator T (f)(x) =

�
Rn K(x, y)f(y)dy is bounded on Lp(Rn)

for every m� < p < ∞ and K ∈ H(m,β), namely, there exists a constant C > 0
such that for any d > 0, x, x0 ∈ Rn with |x− x0| ≤ d, there is

∞�

k=1

2kβ(2kd)n/m
�

��

2kd≤|x0−y|<2k+1d

|K(x, y)−K(x0, y)|mdy

�1/m

≤ C,

where 1/m + 1/m� = 1. Then there exists a constant C > 0 such that, for any
f ∈ C∞

0 (Rn) and x̃ ∈ Rn,

sup
Q�x̃

1

|Q|1+β/n

�

Q

|[b, T ](f)(x)− C0| dx ≤ C||b||Lipβ (Ms(f)(x̃) +Ms(T (f))(x̃)) .

Proof. It suffices to prove for f ∈ C∞
0 (Rn) and some constant C0, the

following inequality holds:

1

|Q|1+β/n

�

Q

|[b, T ](f)(x)− C0| dx ≤ C||b||Lipβ (Ms(f)(x̃) +Ms(T (f))(x̃)) .
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Fix a cube Q = Q(x0, d) and x̃ ∈ Q. Write, for f1 = fχ2Q and f2 = fχ(2Q)c ,

1

|Q|1+β/n

�

Q

|[b, T ](f)(x)− T ((b2Q − b)f2)(x0)| dx

≤ 1

|Q|1+β/n

�

Q

|(b(x)− b2Q)T (f)(x)|dx+
1

|Q|

�

Q

|T ((b− b2Q)f1)(x)|dx

+
1

|Q|1+β/n

�

Q

|T ((b− b2Q)f2)(x)− T ((b− b2Q)f2)(x0)|dx

= I4 + I5 + I6.

By using the same argument as in the proof of Main Lemma 1, we get

I4 ≤ C

|Q|1+β/n
||b||Lipβ |2Q|β/n|Q|1−1/s

��

Q

|T (f)(x)|sdx
�1/s

≤ C||b||Lipβ
�

1

|Q|

�

Q

|T (f)(x)|sdx
�1/s

≤ C||b||LipβMs(T (f))(x̃),

I5 ≤ 1

|Q|1+β/n
|Q|1−1/s

��

Rn
|T ((b− b2Q)f1)(x)|sdx

�1/s

≤ C

|Q|1+β/n
|Q|1−1/s

��

Rn
|(b(x)− b2Q)f1(x)|sdx

�1/s

≤ C

|Q|1+β/n
|Q|1−1/s||b||Lipβ |2Q|β/n|2Q|1/s

�
1

|2Q|

�

2Q
|f(x)|sdx

�1/s

≤ C||b||LipβMs(f)(x̃),

I6 ≤ 1

|Q|1+β/n

�

Q

∞�

k=1

�

2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)||b(y)− b2k+1Q|

|f(y)|dydx

+
1

|Q|1+β/n

�

Q

∞�

k=1

�

2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)||b2k+1Q − b2Q|

|f(y)|dydx

≤ C

|Q|1+β/n

�

Q

∞�

k=1

��

2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)|mdy

�1/m

×||b||Lipβ |2kQ|β/n
��

2k+1Q

|f(y)|m�
dy

�1/m�

dx
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≤ C

|Q|

�

Q

∞�

k=1

2kβ(2kd)n/m
�

��

2kd≤|y−x0|<2k+1d

|K(x, y)−K(x0, y)|mdy

�1/m

dx

×||b||Lipβ
�

1

|2k+1Q|

�

2k+1Q

|f(y)|sdy
�1/s

≤ C||b||LipβMs(f)(x̃).

This completes the proof of the Lemma. QED

Proof of Theorem 1. By Lemma 10, we know K1 ∈ H(q), K2 ∈ H(2q)
and K3 ∈ H(p0), thus Theorem 1 follows from Main Lemma 1. QED

Proof of Theorem 2. If q� ≤ s < ∞, by [11], we know
��

2kd≤|x0−y|<2k+1d

|K1(x, y)−K1(x0, y)|qdy
�1/q

≤ C
dδ

(2kd)δ+n/q�
,

by Lemma 10 and notice 0 < β < δ, we get

∞�

k=1

2kβ(2kd)n/q
�

��

2kd≤|x0−y|<2k+1d

|K(x, y)−K(x0, y)|qdy
�1/q

≤ C
∞�

k=1

2kβ(2kd)n/q
� dδ

(2kd)δ+n/q�

≤ C
∞�

k=1

2k(β−δ) ≤ C,

thus K1 ∈ H(q,β). Similarly, K2 ∈ H(2q,β) and K3 ∈ H(p0,β). Theorem 2
follows from Main Lemma 2. QED

Proof of Theorem 3. Choose q� ≤ s < p for T1, (2q)� ≤ s < p for T2,
p0 ≤ s < p for T3 in Theorem 1, we have, by Lemma 1, 3 and 4, for j = 1, 2, 3,

||[b, Tj ](f)||Lr ≤ |M([b, Tj ](f))|Lr

≤ C|M#([b, Tj ](f))|Lr

≤ C||b||Lipβ (|Mβ,s(T (f))|Lr + |Mβ,s(f)|Lr)

= C||b||Lipβ (|Mβ,s(T (f))|Lr + |Mβ,s(f)|Lr)

≤ C||b||Lipβ (|T (f)|Lp + |f |Lp)

≤ C||b||Lipβ |f |Lp .

This completes the proof of Theorem 3. QED
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Proof of Theorem 4. Choose q� ≤ s < p for T1, (2q)� ≤ s < p for T2,
p0 ≤ s < p for T3 in Theorem 1, then, by Lemma 5-7, for j = 1, 2, 3,

||[b, Tj ](f)||Lr,ϕ

≤ |M([b, Tj ](f))|Lr,ϕ

≤ C|M#([b, Tj ](f))
#|Lr,ϕ

≤ C||b||Lipβ (|Mβ,s(T (f))|Lr,ϕ + |Mβ,s(f)|Lr,ϕ)

= C||b||Lipβ (|Mβ,s(T (f))|Lr,ϕ + |Mβ,s(f)|Lr,ϕ)

≤ C||b||Lipβ (|T (f)|Lp,ϕ + |f |Lp,ϕ)

≤ C||b||Lipβ |f |Lp,ϕ .

This completes the proof of Theorem 4. QED

Proof of Theorem 5. Choose q� ≤ s < p for T1, (2q)� ≤ s < p for T2,
p0 ≤ s < p for T3 in Theorem 2, then, by using Lemma 2, we obtain, for
j = 1, 2, 3,

||[b, Tj ](f)||Ḟβ,∞
p

≤ C

�����

�����supQ�·

1

|Q|1+β/n

�

Q

|[b, Tj ](f)(x)− T ((b2Q − b)f2)(x0)| dx
�����

�����
Lp

≤ C||b||Lipβ (|Ms(T (f))|Lp + |Ms(f)|Lp)

= C||b||Lipβ (|Ms(T (f))|Lp + |Ms(f)|Lp)

≤ C||b||Lipβ (|T (f)|Lp + |f |Lp)

≤ C||b||Lipβ ||f ||Lp .

This completes the proof of the theorem. QED
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