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Abstract. A criterion for the existence of groups admitting autocommutator subgroups with
cyclic outer automorphism group is given. Also the classification of those finite groups G such
that K(G) = H if H is a centerless finite group with cyclic outer automorphism group and
possible solutions G if |Z(H)| = 2 and H has a cyclic outer automorphism group is presented.
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1 Introduction

Let G be a group and Aut(G) denote its automorphism group. The auto-
commutator of element g € G and automorphism o € Aut(G) is [g,a] = g 1g®
and the autocommutator subgroup of G is K(G) = |G, Aut(G)] = ([g,¢] : g € G,
a € Aut(@)). In 1997, Hegarty [5] showed that for each finite group H there
are only finitely many finite groups G satisfying K(G) = H.

Deaconescu and Wall [4] solved the equation K(G) = H, where H = Z is
an infinite cyclic group or H = Z,, is a cyclic group of prime order p. They have
shown that if K(G) = Z, then G = 7Z, Z X Zy or Dy, the infinite dihedral group,
and if G is a finite group such that K(G) = Z,, then G = Z, if p = 2 and
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G = Ly, Zyp X L, T or T X Zy if p is odd, where T is a partial holomorph of
Z,, containing Z,. Also they have noted that there exist finite groups H such
that the equation K(G) = H has no solution and the symmetric group S3 as a
complete group is an example of such a group. The fact that S3 is a complete
group is very useful in determination of finite groups G' with autocommutator
subgroup isomorphic to S3 as we show the claim for each finite complete group
in Corollary 1.

We intend to study finite groups, which have a structure rather similar to
complete groups. First we give a criterion for the existence of a solution to
the equation K(G) = H, where H is an arbitrary finite group with cyclic outer
autmorphism group. Then we determine all solutions of the equation K (G) = H
for each centreless group H with cyclic outer automorphism group and give all
possible solutions, when |Z(H)| = 2 and the outer automorphism group of H is
cyclic. Finally we give some examples, illustrating our results.

2 Preliminaries

We begin with some useful results that will be used in the proof of our main
theorems.

Lemma 1. If U and V are characteristic subgroups of G = U x V', then
K(G)=K({U) x K(V).

PROOF. The proof is clear and also may be found in [2]. QED

Lemma 2. IfG=UxV,U#1 and UNK(G) =1, then U = Zs,.

PROOF. See [4]. QED

Lemma 3. Let G be a group. Then

(1) Ca(K(G)) € Z(K(G)) and v3(Ca(K(G))) = 1;

(2) if Z(K(G)) =1, then C(K(G)) is abelian.
PrOOF. Clearly Ci(K(G)) C Ca(K(G) NG C Cq(K(G)) N K(f) =

Z(K(G)). In particular [Ce(K(Q)), Ca(K(Q))] C [K(G),Ce(K(G))
clearly if Z(K(G)) = 1, then Cq(K(G)) is abelian. QED

Lemma 4. Let G be a group such that G = K(G)Cq(K(G)). Then
(1) K(G) = K(K(G))Z(K(G));

(2) If Z(K(Q)) = 1, then K(G) = K(K(G)) and Ca(K(G)) =1 or Zs.
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PROOF. (1) Since K(G) and Cg(K(G)) are characteristic subgroups of G,
we have

>

K(G) =[G,

= |K
K

ut(G)]
(@), A

(@), Aut(K(G)
K(K(G))Z(K(G)

—_— o —

Hence K(G) = K(K(G))Z(K(G)).
(2) It follows using part (1) and Lemma 2. QED

Lemma 5. IfU and V are finite groups with no common direct factor, then
KU xV)=K(U)ImHom(V,Z(U))) x K(V)Im(Hom(U, Z(V))),

where Im(Hom(V, Z(U))) and Im(Hom(U, Z(V'))) are the union of the images
of all corresponding homomorphisms, respectively. In particular K(U x V) =
K(U) x1ifand only if V=1, or V= Zs, U has no subgroups of index 2 and
Q1 (Syl2(Z(U))) € K(U), where Syla(Z(U)) is the Sylow 2-subgroup of Z(U).

PROOF. The result is a direct consequence of [1, Theorem 3.2]. QED

The following lemma is crucial in determination of the structure of groups
under considerations.

Lemma 6. Let G be a group, K(G) = H, A = Cq(H) and {z1,...,zn}
a right transversal to HA in G. If « € Aut(A) fizes Z(H) elementwise, then
the map & : G — G, which is defined by (haz;)® = ha®z;a; (a; € A) is an

automorphism of G if and only if (z;x;2,')% = adafay ", for each i, j, k such
that HAx;x; = HAxy,.
PROOF. Let ai,...,a, be in A and let hax;,h'a'z; € G be arbitrary el-

ements such that HAz,x; = HAxy. Then z;2; = h"a"zy, for some " € H
and a” € A and hence haz;h'd'z; = hh’xflh”aa’xifla”azk. Now the map & is a

homomorphism if and only if

hh/w;l h//aa/x;1 a//xk)a
az;h'a'z;)*
haz;)®(h'a'z;)*

/
= ha%zia;h'a’® Tja;

—1 —1x
Iz . / 1z . /
hh'%i h'a%d* o"zpay =

(
= (h
=

—1

—1
"o /aﬂcl o T, Iy
= hh'™ h a‘a;t a;® .
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so that
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a, " . Since x;x; = h"a"xy, we get x; = W' iz xy,

(l,ixjxlzl)a _ h//a//a
= h"a"xiai:z:;lxkaja;%,;l

lxkajalzlzlzl

— xiaih”‘ri a/l$i .'L‘;
_ —1,.—1
= :L‘iaia:jajak ZL‘k
5 a a—1
_ o,
=ziafry
as required. The other conditions are easy to verify and the proof is complete.
QED

Lemma 7. Let H be a centreless group and G be a group such that Inn(H)
char G < Aut(H). Then Aut(G) = Npwm)(G), where the isomorphism comes
from the conjugation of elements of Nauy(r)(G) on G.

PROOF. See [8, Lemma 1.1]. QED

3 Main results

We first obtain a criterion for the existence of groups admitting an auto-
commutator subgroup with cyclic outer automorphism group.

Theorem 1. Let H be a group with cyclic outer automorphism group. If H
is the autocommutator subgroup of a group, then H = K(H)Z(H).

PROOF. Let G be an arbitrary group such that K(G) = H and put A =
Ca(H). As HAJA = H/Z(H) and G/H is isomorphic to a subgroup of Aut(H),
there exist elements x and y such that (z) < (y) and G = HA(x) < M = HA(y),
where M /A = Aut(H).

If @ € Aut(G), then alg € Aut(H) and so there exists an element g € M
such that a|pg = 64|, where 6, is the automorphism of G defined by conjugation
by g. Put 8 = ozHg—l, then f3| is the identity map and so h* = (h*)% = h*” for
each h € H. Hence [z,8] € ANH = Z(H). Let ¢ = hay’, where h € H and
a € A. Then

[z, 0] = [z, 80,] = [z, ][z, 8" = [z, g][z, B}
= [ hay'l[w, B)? = [, al?" [z, W] [z, 5] € K (H)Z(H).
Now since H and A are characteristic subgroups of G, we have
H =[G, Aut(G)] = [H, Aut(G)][A4, Aut(G)][(x), Aut(G)] C K(H)Z(H) C H.
Therefore H = K(H)Z(H). QED
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Theorem 2. Let G be a finite group, K(G) = H such that Out(H) is cyclic
and let A= Cg(H). Then

(1) Z(H) =1 if and only if H = K(H) and either G = K, or G = K XZg such
that K has no subgroups of index 2, for some Inn(H) Char K < Aut(H).

(2) if Z(H) = Za, then G/Z(H) = K or K x Zy for some Inn(H) < K <
Aut(G).

PROOF. Since Out(H) is cyclic and G/HA is isomorphic to a subgroup of
Out(H) and HA/A = H/Z(H) = Inn(H) there exists an element = € G such
that G = HA(x), where 2™ = ha € HA for some n. Utilizing Lemma 4(1), we
may write A = B x C, where B is the Sylow 2-subgroup of A and C' is a group
of odd order. Moreover [A, Aut(G)] C ANH = Z(H), and hence C' C Z(G).

If ged(n, Ja]) = 1, then a = a’™ for some a’ € A. Since |Z(H)| < 2, we have
[z,a/7'|€ ANH = Z(H) C Z(G) and so

n

(' tz)" = a”"x"[x,a’*l](z) = h[x,a’*l](g) cH

and we may assume without loss of generality that a = 1. Now if ged(n, |a|) > 1,
then we let p to be a prime divisor of ged(n, |a]) and o’ be an element of order
pin A. If @ € Aut(A) fixes a, then by Lemma 6, a can be extended to an
automorphism @ of G such that 2® = zd/, so that «’ = [z,a] € AN H = Z(H).
Hence p =2 and Q;(B) = Z(H) # 1. Now if a = be for some b € B and ¢ € C,
then ¢ = ¢ for some ¢ € C and so by replacing = by ¢!z we may assume
without loss of generality that ¢ = 1. Hence in both cases G = HB(x) x C' and
by Lemma 2, we have C' =1 and A is a 2-group. We have two cases:

Case 1. A is abelian with |Z(H)| =2 and 2" € H.

Let A = (a’) x D, where Z(H) C (). If a € Aut(A) such that a’® = a’~1b
for some b € Oy (D) with |b| < |a’| and «|p is an arbitrary automorphism of D,
then by Lemma 6, o can be extednted to an automorphism of G, by fixing x,
and it follows that [A,a] C H. Hence a* = 1, K(D) = 1 that is D = 1 or Z
and if D # 1, then a? = 1. Therefore A = Zy, Zy or Zgy x Zo.

Case 2. Z(H) =1, or |Z(H)| =2 and either A’ = Z(H) or Q,(A) = Z(H).

Since an arbitrary automorphism « of A fixes Z(H) elementwise, o can be
extended, by Lemma 6, to an automorphism @ of G such that z® = zla, a].
Therefore

K(A) = [A, Aut(A)] = [4, Auwt(G)] C AN H = Z(H).

Hence A = 1 or Zy if Z(H) = 1 and by [4, Theorem 2|, A = Zy or Z4 if
Z(H) = L.
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Now if Z(H) = 1, then 2" € H and so G = H(z)A = H(x) x A = K X
A, where Inn(H) Char K < Aut(H). Hence either G = K, or G = K x Zs
and by Lemma 5, K has no subgroups of index 2. Also by Theorem 1, H =
K(H)Z(H) = K(H), as required. Conversely assume that G = K, or K x Zs,
where K has no subgroups of index 2, for some Inn(H) Char Aut(H ). By Lemma
7, Aut(K) = Npye(m) (K) = Aut(H), which follows in conjunction with Lemma
5 that

K(G) = K(K) = [K, Awt(K)] = [K, Aut(H)] = K (H) = H,

as required.
Finally if Z(H) = Zs, then G = H(z)A with H(zx) N A = Z(H). It follows
that
G/Z(H) = H{z)/Z(H) x A/Z(H) = K

or K X Zsg for some Inn(H) < K < Aut(H). The proof is complete. QED

Corollary 1. If G is a finite group and K(G) = H is a complete group,
then H is perfect and G = H or H X Zs. Conversely if H is a centerless perfect
group and G = H or H x Za, then K(G) = H.

Proor. The result follows from Theorem 2 or from Lemma 4. QED

Example 1. Let G be a finite group such that K(G) = H is a simple group
with cyclic outer automorphism group. Then atlas of finite simple groups [3]
gives that H is isomorphic to a sporadic simple group or one of the groups A,
(n # 6), PSL,(p™) with p™ > 3 (n = 2, p odd, m even, or n = p = 2, or
ged(n,p™ —1) =m=1and n > 2), Ogp1(p™) withn>1(n=p=m+1=2,
orn =m = 2, or p, m odd), PSpa,(p™) withn > 2 (p = 2 or p, m odd), O3 (p™)
withn >3 (p=m+1=2), Es(p™) (m =1and 3{p—1), E7(p™) (p =20rp, m
odd), Eg(p™), Fu(p™) (podd or p =m+1 = 2), Ga(p™) (p # 3or p=m+2 = 3),
PSU,(p*™) with n > 2 (ged(n, p*™+1) = 1, or ged(n, p*™+1) = 2 and m odd),
0,,,(p*™) with n > 3 (p = 2, or ged(4,p™ + 1) = 2 and m odd, or m = 1),
2E6(p2m) (3 fpm-i-l orm = 1)7 3D4(p3m), 52(22m+1)’ 2F4(22n+1) or R€€(32n+1).
In this case the structure of the group G is provided by Theorem 2(1).

Example 2. According to Corollary 1, [7, Theorem 13.5.9] and the atlas of
finite simple groups [3], there is a finite group G with K(G) = Aut(H), where H
is a non-abelian simple group if and only if Aut(H) is perfect and Out(H) =1,
or equivalently H is a complete simple group. Hence H is isomorphic to My,
Moz, Msy, Coyi, Coy, Cos, Fisg, Th, B, M, Jy, J4, Ly, Ru, PSpgn(Q) (n > 2),
E;(2), Es(p), Fa(p) (p > 2) and Ga(p) (p # 3), where p is a prime and n is a
natural number. In this case G =2 H or H X Zs.
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If K(G) & Dy = Zs, then by [4, Theorem 2|, G = Z4 and if G is abelian
and K(G) & Dy = Zy X Zo, then by [2], G =2 7o X Zso or Zy X Zg. Note that we
don’t know all finite solutions to the equation K(G) = Zy X Zs.

It can be easily verified that for n > 2

Z@, n Odd,

Out(Dan) = 4 Zy(n), n=2p™and p=3 (mod 4),
Z ony X Za, otherwise.
2

Hence Out(Day,) (n > 2) is cyclic if and only if n is odd, n = 4p™ and p = 3
(mod 4), or n = 4.

Example 3. There is no finite group G such that K(G) = Dg, Dyym with
p =3 (mod 4), Dg, with odd n, or even D,. For otherwise if K(G) = H, then
by Theorem 1, H = K(H)Z(H) = K(H) C H, which is impossible.

According to the above example we may pose the following conjecture.
Conjecture 1. There is no finite group G such that K(G) = Dy, (n > 2).
As another application of Theorem 1 we have:

Example 4. There is no finite group G such that K(G) = QDan (n > 3),
the quasi-dihedral group of order 2". To see this, let

1 n—2_
=b2=1,a"=d? L,

H = QDgn = {(a,b: a®""
where n > 3. Let a be an endomorphism of H. A simple computation shows
that ¢ is an automorphism if and only if a¥ = o’ and b = a?b for some odd
integer ¢ and integer j. In particular Aut(H) = (5) % (a), where « and 8 are
defined by a® = a*, b* = b, a® = a and b® = a?b, in which u is a primitive root
modulo 2"~ . It can be easily verified that 3 € Inn(H) and o € Inn(H) if and
only if |af| < 2. It follows that Out(H) = (aInn(G)) = Zyn—s is cyclic. Hence
by Theorem 1, we should have H = K(H)Z(H), which is a contradiction for
K(H)Z(H)=K(H) = {(a®) C H.
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