Note di Matematica Note Mat. **31** (2011) n. 2, 9–16.

Autocommutator subgroups with cyclic outer automorphism group

Mohammad Naghshineh

Department of Mathematics, Islamic Azad University, Mashhad-Branch, Mashhad, Iran mnaghshinehfard@yahoo.com

Mohammad Farrokhi D. G.

Department of Mathematics, Khayyam Higher Education Institute and Centre of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Iran m.farrokhi.d.g@gmail.com

Mohammad Reza R. Moghaddam

Department of Mathematics, Khayyam Higher Education Institute and Centre of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Iran rezam@ferdowsi.um.ac.ir

Received: 01/08/2010; accepted: 02/03/2011.

Abstract. A criterion for the existence of groups admitting autocommutator subgroups with cyclic outer automorphism group is given. Also the classification of those finite groups G such that $K(G) \cong H$ if H is a centerless finite group with cyclic outer automorphism group and possible solutions G if |Z(H)| = 2 and H has a cyclic outer automorphism group is presented.

Keywords: Autocommutator subgroup, outer automorphism

MSC 2000 classification: primary 20D45, secondary 20E34,20F99

1 Introduction

Let G be a group and Aut(G) denote its automorphism group. The *auto-commutator* of element $g \in G$ and automorphism $\alpha \in Aut(G)$ is $[g, \alpha] = g^{-1}g^{\alpha}$ and the *autocommutator subgroup* of G is $K(G) = [G, Aut(G)] = \langle [g, \alpha] : g \in G, \alpha \in Aut(G) \rangle$. In 1997, Hegarty [5] showed that for each finite group H there are only finitely many finite groups G satisfying $K(G) \cong H$.

Deaconescu and Wall [4] solved the equation $K(G) \cong H$, where $H \cong \mathbb{Z}$ is an infinite cyclic group or $H \cong \mathbb{Z}_p$ is a cyclic group of prime order p. They have shown that if $K(G) \cong \mathbb{Z}$, then $G \cong \mathbb{Z}$, $\mathbb{Z} \times \mathbb{Z}_2$ or D_{∞} the infinite dihedral group, and if G is a finite group such that $K(G) \cong \mathbb{Z}_p$, then $G \cong \mathbb{Z}_4$ if p = 2 and

http://siba-ese.unisalento.it/ (C) 2011 Università del Salento

 $G \cong \mathbb{Z}_p, \mathbb{Z}_p \times \mathbb{Z}_2, T$ or $T \times \mathbb{Z}_2$ if p is odd, where T is a partial holomorph of \mathbb{Z}_p containing \mathbb{Z}_p . Also they have noted that there exist finite groups H such that the equation $K(G) \cong H$ has no solution and the symmetric group S_3 as a complete group is an example of such a group. The fact that S_3 is a complete group is very useful in determination of finite groups G with autocommutator subgroup isomorphic to S_3 as we show the claim for each finite complete group in Corollary 1.

We intend to study finite groups, which have a structure rather similar to complete groups. First we give a criterion for the existence of a solution to the equation $K(G) \cong H$, where H is an arbitrary finite group with cyclic outer autmorphism group. Then we determine all solutions of the equation $K(G) \cong H$ for each centreless group H with cyclic outer automorphism group and give all possible solutions, when |Z(H)| = 2 and the outer automorphism group of H is cyclic. Finally we give some examples, illustrating our results.

2 Preliminaries

We begin with some useful results that will be used in the proof of our main theorems.

Lemma 1. If U and V are characteristic subgroups of $G = U \times V$, then $K(G) = K(U) \times K(V)$.

PROOF. The proof is clear and also may be found in [2]. QED

Lemma 2. If $G = U \times V$, $U \neq 1$ and $U \cap K(G) = 1$, then $U \cong \mathbb{Z}_2$. PROOF. See [4].

Lemma 3. Let G be a group. Then

(1) $C_G(K(G))' \subseteq Z(K(G))$ and $\gamma_3(C_G(K(G))) = 1$;

(2) if Z(K(G)) = 1, then $C_G(K(G))$ is abelian.

PROOF. Clearly $C_G(K(G))' \subseteq C_G(K(G)) \cap G' \subseteq C_G(K(G)) \cap K(G) = Z(K(G))$. In particular $[C_G(K(G))', C_G(K(G))] \subseteq [K(G), C_G(K(G))] = 1$ and clearly if Z(K(G)) = 1, then $C_G(K(G))$ is abelian.

Lemma 4. Let G be a group such that $G = K(G)C_G(K(G))$. Then

(1)
$$K(G) = K(K(G))Z(K(G));$$

(2) If Z(K(G)) = 1, then K(G) = K(K(G)) and $C_G(K(G)) \cong 1$ or \mathbb{Z}_2 .

PROOF. (1) Since K(G) and $C_G(K(G))$ are characteristic subgroups of G, we have

$$K(G) = [G, \operatorname{Aut}(G)]$$

= $[K(G), \operatorname{Aut}(G)][C_G(K(G)), \operatorname{Aut}(G)]$
 $\subseteq [K(G), \operatorname{Aut}(K(G))](C_G(K(G)) \cap K(G))$
= $K(K(G))Z(K(G)) \subseteq K(G).$

Hence K(G) = K(K(G))Z(K(G)).

(2) It follows using part (1) and Lemma 2.

QED

Lemma 5. If U and V are finite groups with no common direct factor, then

$$K(U \times V) = K(U) \operatorname{Im}(\operatorname{Hom}(V, Z(U))) \times K(V) \operatorname{Im}(\operatorname{Hom}(U, Z(V))),$$

where $\operatorname{Im}(\operatorname{Hom}(V, Z(U)))$ and $\operatorname{Im}(\operatorname{Hom}(U, Z(V)))$ are the union of the images of all corresponding homomorphisms, respectively. In particular $K(U \times V) =$ $K(U) \times 1$ if and only if $V \cong 1$, or $V \cong \mathbb{Z}_2$, U has no subgroups of index 2 and $\Omega_1(Syl_2(Z(U))) \subseteq K(U)$, where $Syl_2(Z(U))$ is the Sylow 2-subgroup of Z(U).

PROOF. The result is a direct consequence of [1, Theorem 3.2].

The following lemma is crucial in determination of the structure of groups under considerations.

Lemma 6. Let G be a group, K(G) = H, $A = C_G(H)$ and $\{x_1, \ldots, x_n\}$ a right transversal to HA in G. If $\alpha \in \text{Aut}(A)$ fixes Z(H) elementwise, then the map $\bar{\alpha} : G \to G$, which is defined by $(hax_i)^{\bar{\alpha}} = ha^{\alpha}x_ia_i \ (a_i \in A)$ is an automorphism of G if and only if $(x_ix_jx_k^{-1})^{\bar{\alpha}} = x_i^{\bar{\alpha}}x_j^{\bar{\alpha}}x_k^{\bar{\alpha}-1}$, for each i, j, k such that $HAx_ix_j = HAx_k$.

PROOF. Let a_1, \ldots, a_n be in A and let $hax_i, h'a'x_j \in G$ be arbitrary elements such that $HAx_ix_j = HAx_k$. Then $x_ix_j = h''a''x_k$ for some $h'' \in H$ and $a'' \in A$ and hence $hax_ih'a'x_j = hh'x_i^{-1}h''aa'x_i^{-1}a''x_k$. Now the map $\bar{\alpha}$ is a homomorphism if and only if

$$hh'^{x_i^{-1}}h''a^{\alpha}a'^{x_i^{-1}\alpha}a''^{\alpha}x_ka_k = (hh'^{x_i^{-1}}h''aa'^{x_i^{-1}}a''x_k)^{\bar{\alpha}}$$

= $(hax_ih'a'x_j)^{\bar{\alpha}}$
= $(hax_i)^{\bar{\alpha}}(h'a'x_j)^{\bar{\alpha}}$
= $ha^{\alpha}x_ia_ih'a'^{\alpha}x_ja_j$
= $hh'^{x_i^{-1}}h''a^{\alpha}a'^{\alpha x_i^{-1}}a''a_i^{x_i^{-1}}a_j^{x_k^{-1}}x_k$

QED

Hence $a''^{\alpha} = a'' a_i^{x_i^{-1}} a_j^{x_k^{-1}} a_k^{-1x_k}$. Since $x_i x_j = h'' a'' x_k$, we get $x_j = h''^{x_i} a''^{x_i} x_i^{-1} x_k$ so that

$$(x_i x_j x_k^{-1})^{\bar{\alpha}} = h'' a''^{\alpha}$$

= $h'' a'' x_i a_i x_i^{-1} x_k a_j a_k^{-1} x_k^{-1}$
= $x_i a_i h''^{x_i} a''^{x_i} x_i^{-1} x_k a_j a_k^{-1} x_k^{-1}$
= $x_i a_i x_j a_j a_k^{-1} x_k^{-1}$
= $x_i^{\bar{\alpha}} x_i^{\bar{\alpha}} x_k^{\bar{\alpha}-1}$,

as required. The other conditions are easy to verify and the proof is complete. $$$_{QED}$$

Lemma 7. Let H be a centreless group and G be a group such that Inn(H)char $G \leq \text{Aut}(H)$. Then $\text{Aut}(G) \cong N_{\text{Aut}(H)}(G)$, where the isomorphism comes from the conjugation of elements of $N_{\text{Aut}(H)}(G)$ on G.

PROOF. See [8, Lemma 1.1].

3 Main results

We first obtain a criterion for the existence of groups admitting an autocommutator subgroup with cyclic outer automorphism group.

Theorem 1. Let H be a group with cyclic outer automorphism group. If H is the autocommutator subgroup of a group, then H = K(H)Z(H).

PROOF. Let G be an arbitrary group such that K(G) = H and put $A = C_G(H)$. As $HA/A \cong H/Z(H)$ and G/H is isomorphic to a subgroup of $\operatorname{Aut}(H)$, there exist elements x and y such that $\langle x \rangle \leq \langle y \rangle$ and $G = HA\langle x \rangle \leq M = HA\langle y \rangle$, where $M/A \cong \operatorname{Aut}(H)$.

If $\alpha \in \operatorname{Aut}(G)$, then $\alpha|_H \in \operatorname{Aut}(H)$ and so there exists an element $g \in M$ such that $\alpha|_H = \theta_g|_H$, where θ_g is the automorphism of G defined by conjugation by g. Put $\beta = \alpha \theta_g^{-1}$, then $\beta|_H$ is the identity map and so $h^x = (h^x)^\beta = h^{x^\beta}$ for each $h \in H$. Hence $[x, \beta] \in A \cap H = Z(H)$. Let $g = hay^i$, where $h \in H$ and $a \in A$. Then

$$\begin{split} [x,\alpha] &= [x,\beta\theta_g] = [x,\theta_g] [x,\beta]^{\theta_g} = [x,g] [x,\beta]^g \\ &= [x,hay^i] [x,\beta]^g = [x,a]^{y^i} [x,h]^{ay^i} [x,\beta]^g \in K(H)Z(H). \end{split}$$

Now since H and A are characteristic subgroups of G, we have

$$H = [G, \operatorname{Aut}(G)] = [H, \operatorname{Aut}(G)][A, \operatorname{Aut}(G)][\langle x \rangle, \operatorname{Aut}(G)] \subseteq K(H)Z(H) \subseteq H.$$

Therefore $H = K(H)Z(H)$.

Theorem 2. Let G be a finite group, K(G) = H such that Out(H) is cyclic and let $A = C_G(H)$. Then

- (1) Z(H) = 1 if and only if H = K(H) and either $G \cong K$, or $G \cong K \times \mathbb{Z}_2$ such that K has no subgroups of index 2, for some Inn(H) Char $K \leq Aut(H)$.
- (2) if $Z(H) \cong \mathbb{Z}_2$, then $G/Z(H) \cong K$ or $K \times \mathbb{Z}_2$ for some $\operatorname{Inn}(H) \leq K \leq \operatorname{Aut}(G)$.

PROOF. Since $\operatorname{Out}(H)$ is cyclic and G/HA is isomorphic to a subgroup of $\operatorname{Out}(H)$ and $HA/A \cong H/Z(H) \cong \operatorname{Inn}(H)$ there exists an element $x \in G$ such that $G = HA\langle x \rangle$, where $x^n = ha \in HA$ for some n. Utilizing Lemma 4(1), we may write $A = B \times C$, where B is the Sylow 2-subgroup of A and C is a group of odd order. Moreover $[A, \operatorname{Aut}(G)] \subseteq A \cap H = Z(H)$, and hence $C \subseteq Z(G)$.

If gcd(n, |a|) = 1, then $a = a'^n$ for some $a' \in A$. Since $|Z(H)| \le 2$, we have $[x, a'^{-1}] \in A \cap H = Z(H) \subseteq Z(G)$ and so

$$(a'^{-1}x)^n = a'^{-n}x^n[x,a'^{-1}]^{\binom{n}{2}} = h[x,a'^{-1}]^{\binom{n}{2}} \in H$$

and we may assume without loss of generality that a = 1. Now if gcd(n, |a|) > 1, then we let p to be a prime divisor of gcd(n, |a|) and a' be an element of order p in A. If $\alpha \in Aut(A)$ fixes a, then by Lemma 6, α can be extended to an automorphism $\bar{\alpha}$ of G such that $x^{\bar{\alpha}} = xa'$, so that $a' = [x, \bar{\alpha}] \in A \cap H = Z(H)$. Hence p = 2 and $\Omega_1(B) = Z(H) \neq 1$. Now if a = bc for some $b \in B$ and $c \in C$, then $c = c'^n$ for some $c' \in C$ and so by replacing x by $c'^{-1}x$ we may assume without loss of generality that c = 1. Hence in both cases $G \cong HB\langle x \rangle \times C$ and by Lemma 2, we have C = 1 and A is a 2-group. We have two cases:

Case 1. A is abelian with |Z(H)| = 2 and $x^n \in H$.

Let $A = \langle a' \rangle \times D$, where $Z(H) \subseteq \langle a' \rangle$. If $\alpha \in \operatorname{Aut}(A)$ such that $a'^{\alpha} = a'^{-1}b$ for some $b \in \Omega_1(D)$ with |b| < |a'| and $\alpha|_D$ is an arbitrary automorphism of D, then by Lemma 6, α can be extedneed to an automorphism of G, by fixing x, and it follows that $[A, \alpha] \subseteq H$. Hence $a^4 = 1$, K(D) = 1 that is $D \cong 1$ or \mathbb{Z}_2 and if $D \neq 1$, then $a^2 = 1$. Therefore $A \cong \mathbb{Z}_2, \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Case 2. Z(H) = 1, or |Z(H)| = 2 and either A' = Z(H) or $\Omega_1(A) = Z(H)$.

Since an arbitrary automorphism α of A fixes Z(H) elementwise, α can be extended, by Lemma 6, to an automorphism $\bar{\alpha}$ of G such that $x^{\bar{\alpha}} = x[a, \alpha]$. Therefore

$$K(A) = [A, \operatorname{Aut}(A)] = [A, \operatorname{Aut}(G)] \subseteq A \cap H = Z(H).$$

Hence $A \cong 1$ or \mathbb{Z}_2 if Z(H) = 1 and by [4, Theorem 2], $A \cong \mathbb{Z}_2$ or \mathbb{Z}_4 if $Z(H) \cong \mathbb{Z}_2$.

Now if Z(H) = 1, then $x^n \in H$ and so $G = H\langle x \rangle A \cong H\langle x \rangle \times A \cong K \times A$, where Inn(H) Char $K \leq \operatorname{Aut}(H)$. Hence either $G \cong K$, or $G \cong K \times \mathbb{Z}_2$ and by Lemma 5, K has no subgroups of index 2. Also by Theorem 1, H = K(H)Z(H) = K(H), as required. Conversely assume that $G \cong K$, or $K \times \mathbb{Z}_2$, where K has no subgroups of index 2, for some Inn(H) Char Aut(H). By Lemma 7, Aut(K) $\cong N_{\operatorname{Aut}(H)}(K) = \operatorname{Aut}(H)$, which follows in conjunction with Lemma 5 that

$$K(G) = K(K) = [K, Aut(K)] = [K, Aut(H)] = K(H) = H,$$

as required.

Finally if $Z(H) \cong \mathbb{Z}_2$, then $G = H\langle x \rangle A$ with $H\langle x \rangle \cap A = Z(H)$. It follows that

$$G/Z(H) \cong H\langle x \rangle/Z(H) \times A/Z(H) \cong K$$

or $K \times \mathbb{Z}_2$ for some $\operatorname{Inn}(H) \leq K \leq \operatorname{Aut}(H)$. The proof is complete.

Corollary 1. If G is a finite group and K(G) = H is a complete group, then H is perfect and $G \cong H$ or $H \times \mathbb{Z}_2$. Conversely if H is a centerless perfect group and $G \cong H$ or $H \times \mathbb{Z}_2$, then K(G) = H.

PROOF. The result follows from Theorem 2 or from Lemma 4.

Example 1. Let G be a finite group such that K(G) = H is a simple group with cyclic outer automorphism group. Then atlas of finite simple groups [3] gives that H is isomorphic to a sporadic simple group or one of the groups A_n $(n \neq 6)$, $PSL_n(p^m)$ with $p^m > 3$ (n = 2, p odd, m even, or n = p = 2, or $gcd(n, p^m - 1) = m = 1$ and n > 2), $O_{2n+1}(p^m)$ with n > 1 (n = p = m + 1 = 2,or n = m = 2, or p, m odd, $PSp_{2n}(p^m)$ with n > 2 (p = 2 or p, m odd), $O_{2n}^+(p^m)$ with n > 3 (p = m + 1 = 2), $E_6(p^m)$ $(m = 1 \text{ and } 3 \nmid p - 1)$, $E_7(p^m)$ (p = 2 or p, modd), $E_8(p^m)$, $F_4(p^m)$ (p odd or p = m + 1 = 2), $G_2(p^m)$ $(p \neq 3 \text{ or } p = m + 2 = 3)$, $PSU_n(p^{2m})$ with n > 2 $(gcd(n, p^{2m} + 1) = 1, \text{ or } gcd(n, p^{2m} + 1) = 2$ and m odd), $O_{2n}^-(p^{2m})$ with n > 3 $(p = 2, \text{ or } gcd(4, p^{mn} + 1) = 2$ and m odd, or m = 1), ${}^2E_6(p^{2m})$ $(3 \nmid p^m + 1 \text{ or } m = 1)$, ${}^3D_4(p^{3m})$, $Sz(2^{2m+1})$, ${}^2F_4(2^{2n+1})$ or $Ree(3^{2n+1})$. In this case the structure of the group G is provided by Theorem 2(1).

Example 2. According to Corollary 1, [7, Theorem 13.5.9] and the atlas of finite simple groups [3], there is a finite group G with $K(G) \cong \operatorname{Aut}(H)$, where H is a non-abelian simple group if and only if $\operatorname{Aut}(H)$ is perfect and $\operatorname{Out}(H) = 1$, or equivalently H is a complete simple group. Hence H is isomorphic to M_{11} , M_{23} , M_{24} , Co_1 , Co_2 , Co_3 , Fi_{23} , Th, B, M, J_1 , J_4 , Ly, Ru, $PSp_{2n}(2)$ (n > 2), $E_7(2)$, $E_8(p)$, $F_4(p)$ (p > 2) and $G_2(p)$ $(p \neq 3)$, where p is a prime and n is a natural number. In this case $G \cong H$ or $H \times \mathbb{Z}_2$.

If $K(G) \cong D_2 \cong \mathbb{Z}_2$, then by [4, Theorem 2], $G \cong \mathbb{Z}_4$ and if G is abelian and $K(G) \cong D_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, then by [2], $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ or $\mathbb{Z}_4 \times \mathbb{Z}_2$. Note that we don't know all finite solutions to the equation $K(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

It can be easily verified that for n > 2

$$\operatorname{Out}(D_{2n}) \cong \begin{cases} \mathbb{Z}_{\frac{\varphi(n)}{2}}, & n \text{ odd,} \\ \mathbb{Z}_{\varphi(n)}, & n = 2p^m \text{ and } p \equiv 3 \pmod{4}, \\ \mathbb{Z}_{\frac{\varphi(n)}{2}} \times \mathbb{Z}_2, & \text{otherwise.} \end{cases}$$

Hence $Out(D_{2n})$ (n > 2) is cyclic if and only if n is odd, $n = 4p^m$ and $p \equiv 3 \pmod{4}$, or n = 4.

Example 3. There is no finite group G such that $K(G) \cong D_8$, D_{4p^m} with $p \equiv 3 \pmod{4}$, D_{2n} with odd n, or even D_{∞} . For otherwise if K(G) = H, then by Theorem 1, $H = K(H)Z(H) = K(H) \subset H$, which is impossible.

According to the above example we may pose the following conjecture.

Conjecture 1. There is no finite group G such that $K(G) \cong D_{2n}$ (n > 2).

As another application of Theorem 1 we have:

Example 4. There is no finite group G such that $K(G) \cong QD_{2^n}$ (n > 3), the quasi-dihedral group of order 2^n . To see this, let

$$H = QD_{2^n} = \langle a, b : a^{2^{n-1}} = b^2 = 1, a^b = a^{2^{n-2}-1} \rangle,$$

where n > 3. Let α be an endomorphism of H. A simple computation shows that φ is an automorphism if and only if $a^{\varphi} = a^{i}$ and $b^{\varphi} = a^{2j}b$ for some odd integer i and integer j. In particular $\operatorname{Aut}(H) = \langle \beta \rangle \rtimes \langle \alpha \rangle$, where α and β are defined by $a^{\alpha} = a^{u}$, $b^{\alpha} = b$, $a^{\beta} = a$ and $b^{\beta} = a^{2}b$, in which u is a primitive root modulo 2^{n-1} . It can be easily verified that $\beta \in \operatorname{Inn}(H)$ and $\alpha^{t} \in \operatorname{Inn}(H)$ if and only if $|\alpha^{t}| \leq 2$. It follows that $\operatorname{Out}(H) = \langle \alpha \operatorname{Inn}(G) \rangle \cong \mathbb{Z}_{2^{n-3}}$ is cyclic. Hence by Theorem 1, we should have H = K(H)Z(H), which is a contradiction for $K(H)Z(H) = K(H) = \langle a^{2} \rangle \subset H$.

Acknowledgements. The authors would like to thank Professor Francesco de Giovanni for reading the manuscript carefully and his valuable suggestions.

References

 J. N. S. BIDWELL, M. J. CURRAN, D. J. MCCAUGHAN: Automorphisms of direct products of finite groups, Arch. Math. 86 (2006), 481–489.

- [2] C. CHIS, M. CHIS, G. SILBERBERG: Abelian groups as autocommutator groups, Arch. Math. 90 (2008), 490–492.
- [3] J. H. CONWAY, R. T. CURTIS, S. P. NORTON, R. A. PARKER, R. A. WILSON: Atlas of Finite Groups - Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press Oxford (1985).
- [4] M. DEACONESCU, G. L. WALLS: Cyclic groups as autocommutator groups, Comm. Algebra 35 (2007), 215–219.
- [5] P. HEGARTY: Autocommutator Subgroups of Finite Groups, J. Algebra 190 (1997), 556– 562.
- [6] THE GAP GROUP: GAP-Groups, Algorithms and Programming, Version 4.4.12, 2008 (http://www.gap-system.org/).
- [7] D. J. S. ROBINSON: A Course in the Theory of Groups, Springer-Verlag, 1996.
- [8] JOHN S. ROSE: Automorphism group of groups with trivial centre, Proc. London Math. Soc. 31(3) (1975), 167–193.