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Abstract. A criterion for the existence of groups admitting autocommutator subgroups with
cyclic outer automorphism group is given. Also the classification of those finite groups G such
that K(G) ∼= H if H is a centerless finite group with cyclic outer automorphism group and
possible solutions G if |Z(H)| = 2 and H has a cyclic outer automorphism group is presented.
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1 Introduction

Let G be a group and Aut(G) denote its automorphism group. The auto-
commutator of element g ∈ G and automorphism α ∈ Aut(G) is [g,α] = g−1gα

and the autocommutator subgroup of G is K(G) = [G,Aut(G)] = �[g,α] : g ∈ G,
α ∈ Aut(G)�. In 1997, Hegarty [5] showed that for each finite group H there
are only finitely many finite groups G satisfying K(G) ∼= H.

Deaconescu and Wall [4] solved the equation K(G) ∼= H, where H ∼= Z is
an infinite cyclic group or H ∼= Zp is a cyclic group of prime order p. They have
shown that if K(G) ∼= Z, then G ∼= Z, Z×Z2 or D∞ the infinite dihedral group,
and if G is a finite group such that K(G) ∼= Zp, then G ∼= Z4 if p = 2 and
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10 M. Naghshineh, M. Farrokhi D. G., M. R. R. Moghaddam

G ∼= Zp, Zp × Z2, T or T × Z2 if p is odd, where T is a partial holomorph of
Zp containing Zp. Also they have noted that there exist finite groups H such
that the equation K(G) ∼= H has no solution and the symmetric group S3 as a
complete group is an example of such a group. The fact that S3 is a complete
group is very useful in determination of finite groups G with autocommutator
subgroup isomorphic to S3 as we show the claim for each finite complete group
in Corollary 1.

We intend to study finite groups, which have a structure rather similar to
complete groups. First we give a criterion for the existence of a solution to
the equation K(G) ∼= H, where H is an arbitrary finite group with cyclic outer
autmorphism group. Then we determine all solutions of the equation K(G) ∼= H
for each centreless group H with cyclic outer automorphism group and give all
possible solutions, when |Z(H)| = 2 and the outer automorphism group of H is
cyclic. Finally we give some examples, illustrating our results.

2 Preliminaries

We begin with some useful results that will be used in the proof of our main
theorems.

Lemma 1. If U and V are characteristic subgroups of G = U × V , then
K(G) = K(U)×K(V ).

Proof. The proof is clear and also may be found in [2]. QED

Lemma 2. If G = U × V , U �= 1 and U ∩K(G) = 1, then U ∼= Z2.

Proof. See [4]. QED

Lemma 3. Let G be a group. Then

(1) CG(K(G))� ⊆ Z(K(G)) and γ3(CG(K(G))) = 1;

(2) if Z(K(G)) = 1, then CG(K(G)) is abelian.

Proof. Clearly CG(K(G))� ⊆ CG(K(G)) ∩ G� ⊆ CG(K(G)) ∩ K(G) =
Z(K(G)). In particular [CG(K(G))�, CG(K(G))] ⊆ [K(G), CG(K(G))] = 1 and
clearly if Z(K(G)) = 1, then CG(K(G)) is abelian. QED

Lemma 4. Let G be a group such that G = K(G)CG(K(G)). Then

(1) K(G) = K(K(G))Z(K(G));

(2) If Z(K(G)) = 1, then K(G) = K(K(G)) and CG(K(G)) ∼= 1 or Z2.
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Proof. (1) Since K(G) and CG(K(G)) are characteristic subgroups of G,
we have

K(G) = [G,Aut(G)]

= [K(G),Aut(G)][CG(K(G)),Aut(G)]

⊆ [K(G),Aut(K(G))](CG(K(G)) ∩K(G))

= K(K(G))Z(K(G)) ⊆ K(G).

Hence K(G) = K(K(G))Z(K(G)).
(2) It follows using part (1) and Lemma 2. QED

Lemma 5. If U and V are finite groups with no common direct factor, then

K(U × V ) = K(U) Im(Hom(V, Z(U)))×K(V ) Im(Hom(U,Z(V ))),

where Im(Hom(V, Z(U))) and Im(Hom(U,Z(V ))) are the union of the images
of all corresponding homomorphisms, respectively. In particular K(U × V ) =
K(U)× 1 if and only if V ∼= 1, or V ∼= Z2, U has no subgroups of index 2 and
Ω1(Syl2(Z(U))) ⊆ K(U), where Syl2(Z(U)) is the Sylow 2-subgroup of Z(U).

Proof. The result is a direct consequence of [1, Theorem 3.2]. QED

The following lemma is crucial in determination of the structure of groups
under considerations.

Lemma 6. Let G be a group, K(G) = H, A = CG(H) and {x1, . . . , xn}
a right transversal to HA in G. If α ∈ Aut(A) fixes Z(H) elementwise, then
the map ᾱ : G → G, which is defined by (haxi)ᾱ = haαxiai (ai ∈ A) is an
automorphism of G if and only if (xixjx

−1
k

)ᾱ = xᾱ
i
xᾱ
j
xᾱ
k

−1, for each i, j, k such
that HAxixj = HAxk.

Proof. Let a1, . . . , an be in A and let haxi, h�a�xj ∈ G be arbitrary el-
ements such that HAxixj = HAxk. Then xixj = h��a��xk for some h�� ∈ H

and a�� ∈ A and hence haxih�a�xj = hh�x
−1
i h��aa�x

−1
i a��xk. Now the map ᾱ is a

homomorphism if and only if

hh�x
−1
i h��aαa�x

−1
i

α

a��αxkak = (hh�x
−1
i h��aa�x

−1
i a��xk)

ᾱ

= (haxih
�a�xj)

ᾱ

= (haxi)
ᾱ(h�a�xj)

ᾱ

= haαxiaih
�a�αxjaj

= hh�x
−1
i h��aαa�αx

−1
i a��a

x
−1
i

i
a
x
−1
k

j
xk.
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Hence a��α = a��a
x
−1
i

i
a
x
−1
k

j
a−1
k

xk . Since xixj = h��a��xk, we get xj = h��xia��xix−1
i

xk
so that

(xixjx
−1
k

)ᾱ = h��a��α

= h��a��xiaix
−1
i

xkaja
−1
k

x−1
k

= xiaih
��xia��xix−1

i
xkaja

−1
k

x−1
k

= xiaixjaja
−1
k

x−1
k

= xᾱi x
ᾱ

j x
ᾱ

k

−1
,

as required. The other conditions are easy to verify and the proof is complete.
QED

Lemma 7. Let H be a centreless group and G be a group such that Inn(H)
char G ≤ Aut(H). Then Aut(G) ∼= NAut(H)(G), where the isomorphism comes
from the conjugation of elements of NAut(H)(G) on G.

Proof. See [8, Lemma 1.1]. QED

3 Main results

We first obtain a criterion for the existence of groups admitting an auto-
commutator subgroup with cyclic outer automorphism group.

Theorem 1. Let H be a group with cyclic outer automorphism group. If H
is the autocommutator subgroup of a group, then H = K(H)Z(H).

Proof. Let G be an arbitrary group such that K(G) = H and put A =
CG(H). As HA/A ∼= H/Z(H) and G/H is isomorphic to a subgroup of Aut(H),
there exist elements x and y such that �x� ≤ �y� andG = HA�x� � M = HA�y�,
where M/A ∼= Aut(H).

If α ∈ Aut(G), then α|H ∈ Aut(H) and so there exists an element g ∈ M
such that α|H = θg|H , where θg is the automorphism of G defined by conjugation

by g. Put β = αθ−1
g , then β|H is the identity map and so hx = (hx)β = hx

β
for

each h ∈ H. Hence [x,β] ∈ A ∩ H = Z(H). Let g = hayi, where h ∈ H and
a ∈ A. Then

[x,α] = [x,βθg] = [x, θg][x,β]
θg = [x, g][x,β]g

= [x, hayi][x,β]g = [x, a]y
i
[x, h]ay

i
[x,β]g ∈ K(H)Z(H).

Now since H and A are characteristic subgroups of G, we have

H = [G,Aut(G)] = [H,Aut(G)][A,Aut(G)][�x�,Aut(G)] ⊆ K(H)Z(H) ⊆ H.

Therefore H = K(H)Z(H). QED
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Theorem 2. Let G be a finite group, K(G) = H such that Out(H) is cyclic
and let A = CG(H). Then

(1) Z(H) = 1 if and only if H = K(H) and either G ∼= K, or G ∼= K×Z2 such
that K has no subgroups of index 2, for some Inn(H) Char K ≤ Aut(H).

(2) if Z(H) ∼= Z2, then G/Z(H) ∼= K or K × Z2 for some Inn(H) ≤ K ≤
Aut(G).

Proof. Since Out(H) is cyclic and G/HA is isomorphic to a subgroup of
Out(H) and HA/A ∼= H/Z(H) ∼= Inn(H) there exists an element x ∈ G such
that G = HA�x�, where xn = ha ∈ HA for some n. Utilizing Lemma 4(1), we
may write A = B ×C, where B is the Sylow 2-subgroup of A and C is a group
of odd order. Moreover [A,Aut(G)] ⊆ A ∩H = Z(H), and hence C ⊆ Z(G).

If gcd(n, |a|) = 1, then a = a�n for some a� ∈ A. Since |Z(H)| ≤ 2, we have
[x, a�−1] ∈ A ∩H = Z(H) ⊆ Z(G) and so

(a�−1x)n = a�−nxn[x, a�−1](
n
2) = h[x, a�−1](

n
2) ∈ H

and we may assume without loss of generality that a = 1. Now if gcd(n, |a|) > 1,
then we let p to be a prime divisor of gcd(n, |a|) and a� be an element of order
p in A. If α ∈ Aut(A) fixes a, then by Lemma 6, α can be extended to an
automorphism ᾱ of G such that xᾱ = xa�, so that a� = [x, ᾱ] ∈ A ∩H = Z(H).
Hence p = 2 and Ω1(B) = Z(H) �= 1. Now if a = bc for some b ∈ B and c ∈ C,
then c = c�n for some c� ∈ C and so by replacing x by c�−1x we may assume
without loss of generality that c = 1. Hence in both cases G ∼= HB�x� ×C and
by Lemma 2, we have C = 1 and A is a 2-group. We have two cases:

Case 1. A is abelian with |Z(H)| = 2 and xn ∈ H.
Let A = �a�� ×D, where Z(H) ⊆ �a��. If α ∈ Aut(A) such that a�α = a�−1b

for some b ∈ Ω1(D) with |b| < |a�| and α|D is an arbitrary automorphism of D,
then by Lemma 6, α can be extednted to an automorphism of G, by fixing x,
and it follows that [A,α] ⊆ H. Hence a4 = 1, K(D) = 1 that is D ∼= 1 or Z2

and if D �= 1, then a2 = 1. Therefore A ∼= Z2, Z4 or Z2 × Z2.
Case 2. Z(H) = 1, or |Z(H)| = 2 and either A� = Z(H) or Ω1(A) = Z(H).
Since an arbitrary automorphism α of A fixes Z(H) elementwise, α can be

extended, by Lemma 6, to an automorphism ᾱ of G such that xᾱ = x[a,α].
Therefore

K(A) = [A,Aut(A)] = [A,Aut(G)] ⊆ A ∩H = Z(H).

Hence A ∼= 1 or Z2 if Z(H) = 1 and by [4, Theorem 2], A ∼= Z2 or Z4 if
Z(H) ∼= Z2.
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Now if Z(H) = 1, then xn ∈ H and so G = H�x�A ∼= H�x� × A ∼= K ×
A, where Inn(H) Char K ≤ Aut(H). Hence either G ∼= K, or G ∼= K × Z2

and by Lemma 5, K has no subgroups of index 2. Also by Theorem 1, H =
K(H)Z(H) = K(H), as required. Conversely assume that G ∼= K, or K × Z2,
whereK has no subgroups of index 2, for some Inn(H) Char Aut(H). By Lemma
7, Aut(K) ∼= NAut(H)(K) = Aut(H), which follows in conjunction with Lemma
5 that

K(G) = K(K) = [K,Aut(K)] = [K,Aut(H)] = K(H) = H,

as required.
Finally if Z(H) ∼= Z2, then G = H�x�A with H�x� ∩ A = Z(H). It follows

that

G/Z(H) ∼= H�x�/Z(H)×A/Z(H) ∼= K

or K × Z2 for some Inn(H) ≤ K ≤ Aut(H). The proof is complete. QED

Corollary 1. If G is a finite group and K(G) = H is a complete group,
then H is perfect and G ∼= H or H ×Z2. Conversely if H is a centerless perfect
group and G ∼= H or H × Z2, then K(G) = H.

Proof. The result follows from Theorem 2 or from Lemma 4. QED

Example 1. Let G be a finite group such that K(G) = H is a simple group
with cyclic outer automorphism group. Then atlas of finite simple groups [3]
gives that H is isomorphic to a sporadic simple group or one of the groups An

(n �= 6), PSLn(pm) with pm > 3 (n = 2, p odd, m even, or n = p = 2, or
gcd(n, pm− 1) = m = 1 and n > 2), O2n+1(pm) with n > 1 (n = p = m+1 = 2,
or n = m = 2, or p,m odd), PSp2n(pm) with n > 2 (p = 2 or p,m odd), O+

2n(p
m)

with n > 3 (p = m+1 = 2), E6(pm) (m = 1 and 3 � p−1), E7(pm) (p = 2 or p, m
odd), E8(pm), F4(pm) (p odd or p = m+1 = 2),G2(pm) (p �= 3 or p = m+2 = 3),
PSUn(p2m) with n > 2 (gcd(n, p2m+1) = 1, or gcd(n, p2m+1) = 2 and m odd),
O−

2n(p
2m) with n > 3 (p = 2, or gcd(4, pmn + 1) = 2 and m odd, or m = 1),

2E6(p2m) (3 � pm+1 orm = 1), 3D4(p3m), Sz(22m+1), 2F4(22n+1) or Ree(32n+1).
In this case the structure of the group G is provided by Theorem 2(1).

Example 2. According to Corollary 1, [7, Theorem 13.5.9] and the atlas of
finite simple groups [3], there is a finite group G with K(G) ∼= Aut(H), where H
is a non-abelian simple group if and only if Aut(H) is perfect and Out(H) = 1,
or equivalently H is a complete simple group. Hence H is isomorphic to M11,
M23, M24, Co1, Co2, Co3, Fi23, Th, B, M , J1, J4, Ly, Ru, PSp2n(2) (n > 2),
E7(2), E8(p), F4(p) (p > 2) and G2(p) (p �= 3), where p is a prime and n is a
natural number. In this case G ∼= H or H × Z2.
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If K(G) ∼= D2
∼= Z2, then by [4, Theorem 2], G ∼= Z4 and if G is abelian

and K(G) ∼= D4
∼= Z2 × Z2, then by [2], G ∼= Z2 × Z2 or Z4 × Z2. Note that we

don’t know all finite solutions to the equation K(G) ∼= Z2 × Z2.
It can be easily verified that for n > 2

Out(D2n) ∼=






Zϕ(n)
2

, n odd,

Zϕ(n), n = 2pm and p ≡ 3 (mod 4),
Zϕ(n)

2
× Z2, otherwise.

Hence Out(D2n) (n > 2) is cyclic if and only if n is odd, n = 4pm and p ≡ 3
(mod 4), or n = 4.

Example 3. There is no finite group G such that K(G) ∼= D8, D4pm with
p ≡ 3 (mod 4), D2n with odd n, or even D∞. For otherwise if K(G) = H, then
by Theorem 1, H = K(H)Z(H) = K(H) ⊂ H, which is impossible.

According to the above example we may pose the following conjecture.

Conjecture 1. There is no finite group G such that K(G) ∼= D2n (n > 2).

As another application of Theorem 1 we have:

Example 4. There is no finite group G such that K(G) ∼= QD2n (n > 3),
the quasi-dihedral group of order 2n. To see this, let

H = QD2n = �a, b : a2n−1
= b2 = 1, ab = a2

n−2−1�,

where n > 3. Let α be an endomorphism of H. A simple computation shows
that ϕ is an automorphism if and only if aϕ = ai and bϕ = a2jb for some odd
integer i and integer j. In particular Aut(H) = �β� � �α�, where α and β are
defined by aα = au, bα = b, aβ = a and bβ = a2b, in which u is a primitive root
modulo 2n−1. It can be easily verified that β ∈ Inn(H) and αt ∈ Inn(H) if and
only if |αt| ≤ 2. It follows that Out(H) = �α Inn(G)� ∼= Z2n−3 is cyclic. Hence
by Theorem 1, we should have H = K(H)Z(H), which is a contradiction for
K(H)Z(H) = K(H) = �a2� ⊂ H.
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