The natural transformations $T^{*} T^{(r)} \rightarrow T^{*} T^{(r)}$

Włodzimierz M. Mikulski
Institute of Mathematics, Jagiellonian University, Kraków, Reymonta 4, Poland, wlodzimierz.mikulski@im.uj.edu.pl

Received: 12 October 1999; accepted: 8 February 2000.

Abstract

For natural numbers $r \geq 1$ and $n \geq 3$ a complete classification of natural transformations $A: T^{*} T^{(r)} \rightarrow T^{*} T^{(r)}$ over n-manifolds is given, where $T^{(r)}$ is the linear r-tangent bundle functor.

Keywords: bundle functors, natural transformations
MSC 2000 classification: primary 58A20, secondary 53A55

In this paper let M be an arbitrary n-manifold.
In [3], Kolař and Radziszewski obtained a classification of all natural transformations $T^{*} T M \tilde{=} T T^{*} M \rightarrow T^{*} T M$. In [1], Gancarzewicz and Kolář obtained a classification of all natural affinors $T^{*} T^{(r)} M \rightarrow T^{*} T^{(r)} M$ on the linear r tangent bundle $T^{(r)} M=\left(J^{r}(M, \mathbf{R})_{0}\right)^{*}$.

This note is a generalization of [1] and [3]. For natural numbers $n \geq 3$ and $r \geq 1$ we obtain a complete description of all natural transformations $A: T^{*} T^{(r)} M \rightarrow T^{*} T^{(r)} M$. It is following.

By [4], we have an (explicitly defined) isomorphism between the algebra of natural functions $T^{*} T^{(r)} M \rightarrow \mathbf{R}$ and the algebra $C^{\infty}\left(\mathbf{R}^{r}\right)$ of smooth maps $\mathbf{R}^{r} \rightarrow \mathbf{R}$. In Section 1, we cite the result of [4].

Clearly, the set of all natural transformations $T^{*} T^{(r)} M \rightarrow T^{(r)} M$ is (in obvious way) a module over the algebra of natural functions $T^{*} T^{(r)} M \rightarrow \mathbf{R}$. In Section 3, we prove that if $n \geq 3$, then this module is free and r-dimensional, and we construct explicitly the basis of this module.

Let $\underline{B}: T^{*} T^{(r)} M \rightarrow T^{(r)} M$ be a natural transformation. A natural transformation $B: T^{*} T^{(r)} M \rightarrow T^{*} T^{(r)} M$ is called to be over \underline{B} iff $q \circ B=\underline{B}$, where $q: T^{*} T^{(r)} M \rightarrow T^{(r)} M$ is the cotangent bundle projection. (Of course, any natural transformation $B: T^{*} T^{(r)} M \rightarrow T^{*} T^{(r)} M$ is over $\underline{B}=q \circ B$.) Clearly, the set of all natural transformations $T^{*} T^{(r)} M \rightarrow T^{*} T^{(r)} M$ over \underline{B} is (in obvious way) a module over the algebra of natural functions $T^{*} T^{(r)} M \rightarrow \mathbf{R}$. In Section 5 , we prove that this module is free and $(r+1)$-dimensional, and we construct explicitly the basis of this module.

In Sections 2 and 4, we cite or prove some technical facts. We use these facts in Sections 3 and 5.

Throughout this note the usual coordinates on \mathbf{R}^{n} are denoted by x^{1}, \ldots, x^{n} and $\partial_{i}=\frac{\partial}{\partial x^{i}}, i=1, \ldots, n$.

All natural operators, natural functions and natural transformations are over n-manifolds, i. e. the naturality is with respect to embeddings between n-manifolds.

All manifolds and maps are assumed to be of class C^{∞}.

1. The natural functions $T^{*} T^{(r)} M \rightarrow \mathbb{R}$

Example 1. ([4]) For any $s \in\{1, \ldots, r\}$ we have a natural function $\lambda^{<s>}$: $T^{*} T^{(r)} M \rightarrow \mathbf{R}$ given by $\lambda^{<s>}(a)=<\left(A^{<s>} \circ \pi\right)(a), q(a)>$, where the map $q: T^{*} T^{(r)} M \rightarrow T^{(r)} M$ is the cotangent bundle projection, $A^{<s>}:\left(T^{(r)} M\right)^{*}$ $\rightarrow\left(T^{(r)} M\right)^{*}$ is a fibre bundle morphism over $i d_{M}$ given by $A^{<s>}\left(j_{x}^{r} \gamma\right)=j_{x}^{r}\left(\gamma^{s}\right)$, $\gamma: M \rightarrow \mathbf{R}, \gamma(x)=0, \gamma^{s}$ is the s-th power of $\gamma, x \in M$, and $\pi: T^{*} T^{(r)} M \rightarrow$ $\left(T^{(r)} M\right)^{*}$ is a fibre bundle morphism over $i d_{M}$ by $\pi(a)=a \mid V_{q(a)} T^{(r)} M \xlongequal[=]{\sim} T_{x}^{(r)} M$, $a \in\left(T^{*} T^{(r)} M\right)_{x} M, x \in M$.

Proposition 1. ([4]) All natural functions $T^{*} T^{(r)} M \rightarrow \mathbf{R}$ are of the form $f \circ\left(\lambda^{<1>}, \ldots, \lambda^{<r>}\right)$, where $f \in C^{\infty}\left(\mathbf{R}^{r}\right)$.

Hence (since the image of $\left(\lambda^{<1>}, \ldots, \lambda^{<r>}\right)$ is $\left.\mathbf{R}^{r}\right)$ we have the algebra isomorphism between natural functions $T^{*} T^{(r)} M \rightarrow \mathbf{R}$ and $C^{\infty}\left(\mathbf{R}^{r}\right)$.

2. The natural operators lifting functions from M to $T^{*} T^{(r)} M$

Example 2. ([5]) Denote $S(r)=\left\{\left(s_{1}, s_{2}\right) \in(\mathbf{N} \cup\{0\})^{2}: 1 \leq s_{1}+s_{2} \leq r\right\}$. For $\left(s_{1}, s_{2}\right) \in S(r)$ and $L: M \rightarrow \mathbf{R}$ define $\lambda^{<s_{1}, s_{2}>}(L): T^{*} T^{(r)} M \rightarrow \mathbf{R}$ by $\lambda^{<s_{1}, s_{2}>}(a)=<\left(A^{<s_{1}, s_{2}>}(L) \circ \pi\right)(a), q(a)>$, where $q: T^{*} T^{(r)} M \rightarrow T^{(r)} M$ and $\pi: T^{*} T^{(r)} M \rightarrow\left(T^{(r)} M\right)^{*}$ are as in Example 1 and $A^{<s_{1}, s_{2}>}(L):\left(T^{(r)} M\right)^{*} \rightarrow$ $\left(T^{(r)} M\right)^{*}$ is a fibre bundle morphism over $i d_{M}$ given by $A^{<s_{1}, s_{2}>}(L)\left(j_{x}^{r} \gamma\right)=$ $j_{x}^{r}\left((L-L(x))^{s_{2}} \gamma^{s_{1}}\right), \gamma: M \rightarrow \mathbf{R}, \gamma(x)=0, x \in M$. Clearly, given a pair $\left(s_{1}, s_{2}\right) \in S(r)$ the correspondence $\lambda^{<s_{1}, s_{2}>}: L \rightarrow \lambda^{\left.<s_{1}, s_{2}\right\rangle}(L)$ is a natural operator $T^{(0,0)} \rightsquigarrow T^{(0,0)}\left(T^{*} T^{(r)}\right)$ in the sense of [2].

We see that $\lambda^{<0, s>}=\lambda^{<s>}$ for $s=1, \ldots, r$, where $\lambda^{<s>}$ is as in example 1, and the operators $\lambda^{<s, 1>}$ for $s=0, \ldots, r-1$ are linear (in L) and $\lambda^{<s, 1>}(1)=0$.

Example 3. Given $L: M \rightarrow \mathbf{R}$ we have the vertical lifting $L^{V}: T^{*} T^{(r)} M \rightarrow$ \mathbf{R} of L defined to be the composition of L with the canonical projection $T^{*} T^{(r)} M$
$\rightarrow M$. The correspondence $L \rightarrow L^{V}$ is a natural operator

$$
T^{(0,0)} \rightsquigarrow T^{(0,0)}\left(T^{*} T^{(r)}\right) .
$$

Proposition 2. ([5]) Let $C: T^{(0.0)} \rightsquigarrow T^{(0,0)}\left(T^{*} T^{(r)}\right)$ be a natural operator. If $n \geq 3$, then there exists the uniquely determined (by C) smooth map H : $\mathbf{R}^{S(r)} \times \mathbf{R} \rightarrow \mathbf{R}$ such that $C(L)=H \circ\left(\left(\lambda^{<s_{1}, s_{2}>}\right)_{\left(s_{1}, s_{2}\right) \in S(r)}, L^{V}\right)$ for any n manifold M and any $L: M \rightarrow \mathbf{R}$.

Corollary 1. Let $C: T^{(0.0)} \rightsquigarrow T^{(0,0)}\left(T^{*} T^{(r)}\right)$ be a linear natural operator with $C(1)=0$. If $n \geq 3$, then there exists the uniquely determined (by C) smooth maps $H^{0}, \ldots, H^{r-1}: \mathbf{R}^{r} \rightarrow \mathbf{R}$ such that $C(L)=\sum_{s=0}^{r-1} H^{s} \circ\left(\lambda^{<1>}, \ldots, \lambda^{<r>}\right)$. $\lambda^{<s, 1>}(L)$ for any n-manifold M and any $L: M \rightarrow \mathbf{R}$.

Proof. We have $\lambda^{\left\langle s_{1}, s_{2}\right\rangle}(t L)=t^{s_{2}} \lambda^{\left\langle s_{1}, s_{2}\right\rangle}(L)$ and $(t L)^{V}=t L^{V}$ for any $L: M \rightarrow \mathbf{R}$ and any $t \in \mathbf{R}$, and $1^{V}=1$. Then the assertion is a consequence of Proposition 2 and the homogeneous function theorem, [2]. QED

3. The natural transformations $T^{*} T^{(r)} M \rightarrow T^{(r)} M$

3.1.

Every natural transformation $B: T^{*} T^{(r)} M \rightarrow T^{(r)} M$ induces a linear natural operator $\Phi(B): T^{(0,0)} M \rightsquigarrow T^{(0,0)}\left(T^{*} T^{(r)} M\right)$ by $\Phi(B)(L)(a)=<B(a), j_{x}^{r}(L-$ $L(x))>, a \in\left(T^{*} T^{(r)} M\right)_{x}, x \in M$. Clearly, $\Phi(B)(1)=0$. On the other hand every linear natural operator $C: T^{(0,0)} M \rightsquigarrow T^{(0,0)}\left(T^{*} T^{(r)} M\right)$ with $C(1)=0$ induces a natural transformation $\Psi(C): T^{*} T^{(r)} M \rightarrow T^{(r)} M$ by $\left\langle\Psi(C)(a), j_{x}^{r} \gamma>\right.$ $=C(\gamma)(a), a \in\left(T^{*} T^{(r)} M\right)_{x}, \gamma: M \rightarrow \mathbf{R}, \gamma(x)=0, x \in M .(\Psi(C)$ is welldefined as C is of order $\leq r$ because of Corollary 1.) It is easily seen that Ψ is inverse to Φ.

3.2.

The set of natural transformations $T^{*} T^{(r)} M \rightarrow T^{(r)} M$ is (in obvious way) a module over the algebra of natural functions $T^{*} T^{(r)} M \rightarrow \mathbf{R}$. Similarly, the set of natural operators $C: T^{(0,0)} M \rightsquigarrow T^{(0,0)}\left(T^{*} T^{(r)} M\right.$) with $C(1)=0$ is (in obvious way) a module over the algebra of natural functions $T^{*} T^{(r)} M \rightarrow \mathbf{R}$. Clearly, the (described in 3.1.) bijection Ψ is an isomorphism of the modules. Hence from Corollary 1 we deduce.

Theorem 1. If $n \geq 3$, then the $\Psi\left(\lambda^{<s, 1>}\right)$ for $s=0, \ldots, r-1$, where $\lambda^{<s, 1>}$ are as in Example 2, form the basis (over the algebra of natural functions $T^{*} T^{(r)} M \rightarrow \mathbf{R}$) of the module of natural transformations $T^{*} T^{(r)} M \rightarrow T^{(r)} M$.

4. The natural functions $\underline{B}!\left(T T^{(r)} M\right) \rightarrow \mathbb{R}$

Let $\underline{B}: T^{*} T^{(r)} M \rightarrow T^{(r)} M$ be a natural transformation.

4.1.

Let $\underline{B}^{!}\left(T T^{(r)} M\right)$ be the pull-back of the tangent bundle $T T^{(r)} M$ of $T^{(r)} M$ with respect to \underline{B}. Any element from $\underline{B}^{!}\left(T T^{(r)} M\right)$ is of the form (a, y), where $a \in T^{*} T^{(r)} M$ and $y \in T_{\underline{B}(a)} T^{(r)} M$. Clearly, $\underline{B}^{!}\left(T T^{(r)} M\right)$ is a vector bundle over $T^{*} T^{(r)} M$ and $\underline{B}^{!}\left(T T^{(r)} M\right)$ is a natural bundle over n-manifolds M.

Example 4. The natural functions $\lambda^{<s>}: T^{*} T^{(r)} M \rightarrow \mathbf{R}$ for $s=1, \ldots, r$ (see Example 1) determine (by the pull-back with respect to the bundle projection $\left.\underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow T^{*} T^{(r)} M\right)$ the natural functions $\lambda^{\langle s\rangle}: \underline{B}^{!}\left(T T^{(r)} M\right)$ \rightarrow R. Clearly, they are fibre constant with respect to the bundle projection $\underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow T^{*} T^{(r)} M$.

Example 5. We have a natural function $\nu: \underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow \mathbf{R}$ such that $\nu(a, y)=v \gamma, a \in\left(T^{*} T^{(r)} M\right)_{x}, y \in T_{\underline{B}(a)} T^{(r)} M, x \in M, v=T p(y) \in T_{x} M, p:$ $T^{(r)} M \rightarrow M$ is the bundle projection, $\gamma: M \rightarrow \mathbf{R}, j_{x}^{r} \gamma=\pi(a), \pi: T^{*} T^{(r)} M \rightarrow$ $\left(T^{(r)} M\right)^{*}$ is as in Example 1. Clearly, ν is fibre linear with respect to the bundle projection $\underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow T^{*} T^{(r)} M$.

Example 6. For $s=2, \ldots, r+1$ we have a natural function

$$
\nu^{<s>}: \underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow \mathbf{R}
$$

such that $\nu^{<s>}(a, y)=d_{\underline{B}(a)}\left(C\left(\gamma^{s}\right)\right)(y), a \in\left(T^{*} T^{(r)} M\right)_{x}, y \in T_{\underline{B}(a)} T^{(r)} M$, $x \in M, \gamma: M \rightarrow \mathbf{R}, \gamma(x)=0, j_{x}^{r} \gamma=\pi(a), \pi: T^{*} T^{(r)} M \rightarrow\left(T^{(r)} M\right)^{*}$ is as in Example 1, γ^{s} is the s-th power of γ and $C: T^{(0,0)} M \rightsquigarrow T^{(0,0)}\left(T^{(r)} M\right)$ is a natural operator defined as follows. If $L: M \rightarrow \mathbf{R}$ then $C(L): T^{(r)} M \rightarrow \mathbf{R}$, $C(L)(\omega)=<\omega, j_{x}^{r}(L-L(x))>, \omega \in T_{x}^{(r)} M, x \in M$. (If $s=2, \ldots, r+1$ then $j_{x}^{r+1}\left(\gamma^{s}\right)$ is determined by a because of $j_{x}^{r} \gamma=\pi(a)$ is determined and $\gamma(x)=$ 0 . Hence $j_{\underline{\underline{B}}(a)}^{1}\left(C\left(\gamma^{s}\right)\right)$ is determined by a. Then the differential $d_{\underline{B}(a)} C\left(\gamma^{s}\right)$: $T_{\underline{B}(a)} T^{(r)} M \rightarrow \mathbf{R}$ is determined by a. Consequently $\nu^{<s>}$ is well-defined.) The $\nu^{<s\rangle}$ are fibre linear with respect to $\underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow T^{*} T^{(r)} M$.

The purpose of this section is to prove the following proposition.
Proposition 3. Let $g: \underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow \mathbf{R}$ be a natural function. Then there exists the uniquely determined (by g) smooth map $f: \mathbf{R}^{2 r+1} \rightarrow \mathbf{R}$ such that $g=f \circ\left(\lambda^{<1>}, \ldots, \lambda^{<r>}, \nu^{<2>}, \ldots, \nu^{<r+1>}, \nu\right)$.

We have the following corollary of Proposition 3.

Corollary 2. Let $g: \underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow \mathbf{R}$ be a natural function such that g is fibre linear with respect to the bundle projection $\underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow T^{*} T^{(r)} M$. Then there exists the uniquely determined (by g) smooth maps $f^{2}, \ldots, f^{r+1}, f: \mathbf{R}^{r} \rightarrow$ \mathbf{R} such that $g=f \circ\left(\lambda^{<1>}, \ldots, \lambda^{\langle r\rangle}\right) \cdot \nu+\sum_{s=2}^{r+1} f^{s} \circ\left(\lambda^{<1\rangle}, \ldots, \lambda^{\langle r\rangle}\right) \cdot \nu^{<s\rangle}$.

Proof. The assertion is a consequence of Proposition 3 and the homogeneous function theorem.

The proof of Proposition 3 will occupy the rest of this section.
Lemma 1. Let $g, h: \underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow \mathbf{R}$ be natural functions. Suppose that $g(a, y)=h(a, y)$ for any $a \in\left(T^{*} T^{(r)} \mathbf{R}^{n}\right)_{0}$ and any $y \in T_{\underline{B}(a)} T^{(r)} \mathbf{R}^{n}$ with $\pi(a)=$ $j_{0}^{r}\left(x^{1}\right)$ and $<a, T^{(r)} \partial_{i}(q(a))>=0$ for $i=1, \ldots, n$, where $T^{(r)}$ is also the complete lifting of vector fields to $T^{(r)}$ and where $q: T^{*} T^{(r)} \mathbf{R}^{n} \rightarrow T^{(r)} \mathbf{R}^{n}$ and $\pi: T^{*} T^{(r)} \mathbf{R}^{n} \rightarrow\left(T^{(r)} \mathbf{R}^{n}\right)^{*}$ are as in Example 1. Then $g=h$.

Schema of the proof. The proof is quite similar to the proof of Lemma 5 in [4]. In [4], functions g and h depend only on a from $T^{*} T^{(r)} M$. Now, functions g and h depend on a (also from $T^{*} T^{(r)} M$) and y. Clearly, we can "trivialize" a in the same way as in the proofs of Lemmas $2-5$ in [4]. Roughly speaking, in this way we obtain the proof of our lemma.

Proof of Proposition 3. Let $g: \underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow \mathbf{R}$ be a natural function. Define $f: \mathbf{R}^{r} \times \mathbf{R}^{r} \times \mathbf{R} \rightarrow \mathbf{R}$ by $f(\xi, \rho, \eta)=g\left(a_{\xi}, y_{\xi, \rho, \eta}\right), \xi=\left(\xi^{1}, \ldots, \xi^{r}\right) \in$ $\mathbf{R}^{r}, \rho=\left(\rho^{2}, \ldots, \rho^{r+1}\right) \in \mathbf{R}^{r}, \eta \in \mathbf{R}$, where $a_{\xi} \in\left(T^{*} T^{(r)}\right)_{0}$ is the unique form satisfying the conditions $\pi\left(a_{\xi}\right)=j_{0}^{r}\left(x^{1}\right),<a_{\xi}, T^{(r)} \partial_{i}(q(a))>=0$ for $i=1, \ldots, n$, $<q\left(a_{\xi}\right), j_{0}^{r}\left(x^{\alpha}\right)>=0$ for all $\alpha=\left(\alpha_{1}, \ldots \alpha_{n}\right) \in(\mathbf{N} \cup\{0\})^{n}$ with $1 \leq|\alpha| \leq r$ and $\alpha_{2}+\cdots+\alpha_{n} \geq 1$ and $<q\left(a_{\xi}\right), j_{0}^{r}\left(\left(x^{1}\right)^{s}\right)>=\xi^{s}$ for $s=1, \ldots, r$, and where $y_{\xi, \rho, \eta}=\eta T^{(r)} \partial_{1 \mid \underline{B}\left(a_{\xi}\right)}+\left(\underline{B}\left(a_{\xi}\right), \sum_{p=1}^{r} \rho^{p+1}\left(j_{0}^{r}\left(\left(x^{1}\right)^{p}\right)\right)^{*}\right) \in T_{\underline{B}\left(a_{\xi}\right)} T^{(r)} \mathbf{R}^{n}$ (we use the standard identification $V T^{(r)} M=T^{(r)} M \times_{M} T^{(r)} M$). Here $\left(j_{0}^{r}\left(x^{\alpha}\right)\right)^{*}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in(\mathbf{N} \cup\{0\})^{n}$ with $1 \leq|\alpha| \leq r$ is the basis dual to the $j_{0}^{r}\left(x^{\alpha}\right)$.

It is easy to compute that $\lambda^{<s>}\left(a_{\xi}, y_{\xi, \rho, \eta}\right)=\xi^{s}$ for $s=1, \ldots, r, \nu^{<s>}\left(a_{\xi}\right.$, $\left.y_{\xi, \rho, \eta}\right)=\rho^{s}+s \xi^{s-1} \eta$ for $s=2, \ldots, r+1$, and $\nu\left(a_{\xi}, y_{\xi, \rho, \eta}\right)=\eta$. Hence $g\left(a_{\xi}, y_{\xi, \rho, \eta}\right)$ $=\bar{f} \circ\left(\lambda^{<1>}, \ldots, \lambda^{<r>}, \nu^{<2>}, \ldots, \nu^{<r+1>}, \nu\right)\left(a_{\xi}, y_{\xi, \rho, \eta}\right)$, where $\bar{f}(\xi, \rho, \eta)=f\left(\xi,\left(\rho^{s}\right.\right.$ $\left.\left.-s \xi^{s-1} \eta\right)_{s=2}^{r+1}, \eta\right)$. We prove that $g=\bar{f} \circ\left(\lambda^{<1>}, \ldots, \lambda^{<r>}, \nu^{<2>}, \ldots, \nu^{<r+1>}, \nu\right)$.

Let (a, y) be as in the assumption of Lemma 1. Let $c_{t}=\left(x^{1}, t x^{2}, \ldots, t x^{n}\right)$: $\mathbf{R}^{n} \rightarrow \mathbf{R}^{n}, t \neq 0$. It is easy to see that $\left(T^{*} T^{(r)} c_{t}(a), T T^{(r)} c_{t}(y)\right)$ tends (as t tends to 0) to some $\left(a_{\xi}, y_{\xi, \rho, \eta}\right)$. By the invariance with respect to c_{t} we get $g(a, y)=$ $g\left(T^{*} T^{(r)} c_{t}(a), T T^{(r)} c_{t}(y)\right)$ and $\bar{f} \circ\left(\lambda^{<1>}, \ldots, \lambda^{<r>}, \nu^{<2>}, \ldots, \nu^{<r+1>}, \nu\right)(a, y)=$ $\bar{f} \circ\left(\lambda^{<1>}, \ldots, \lambda^{<r>}, \nu^{<2>}, \ldots, \nu^{<r+1>}, \nu\right)\left(T^{*} T^{(r)} c_{t}(a), T T^{(r)} c_{t}(y)\right)$ for any $t \neq 0$. Hence $g(a, y)=g\left(a_{\xi}, y_{\xi, \rho, \eta}\right)=\bar{f} \circ\left(\lambda^{<1>}, \ldots, \lambda^{<r>}, \nu^{<2>}, \ldots, \nu^{<r+1>}, \nu\right)\left(a_{\xi}\right.$, $\left.y_{\xi, \rho, \eta}\right)=\bar{f} \circ\left(\lambda^{<1>}, \ldots, \lambda^{<r>}, \nu^{<2>}, \ldots, \nu^{<r+1>}, \nu\right)(a, y)$. Therefore

$$
g=\bar{f} \circ\left(\lambda^{<1>}, \ldots, \lambda^{<r>}, \nu^{<2>}, \ldots, \nu^{<r+1>}, \nu\right)
$$

because of Lemma 1.
Since the image of $\left(\lambda^{<1>}, \ldots, \lambda^{\langle r>}, \nu^{<2>}, \ldots, \nu^{<r+1>}, \nu\right)$ is $\mathbf{R}^{2 r+1}$, the map f is uniquely determined by g. QED

5. The natural transformations $T^{*} T^{(r)} M \rightarrow T^{*} T^{(r)} M$ over $T^{*} T^{(r)} M \rightarrow T^{(r)} M$

Let $\underline{B}: T^{*} T^{(r)} M \rightarrow T^{(r)} M$ be a natural transformation. A natural transformation $B: T^{*} T^{(r)} M \rightarrow T^{*} T^{(r)} M$ is called to be over \underline{B} iff $q \circ B=\underline{B}$, where $q: T^{*} T^{(r)} M \rightarrow T^{(r)} M$ is the cotangent bundle projection.

5.1.

Every natural transformation $B: T^{*} T^{(r)} M \rightarrow T^{*} T^{(r)} M$ over \underline{B} induces a natural function $\Theta(B): \underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow \mathbf{R}$ by $\Theta(B)(a, y)=<B(a), y>$, $(a, y) \in \underline{B}^{!}\left(T T^{(r)} M\right) .(B(a)$ and y are over $\underline{B}(a)$ and therefore we can take the contraction.) Clearly $\Theta(B)$ is fibre linear with respect to the bundle projection $\underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow T^{*} T^{(r)} M$. On the other hand every natural function $g: \underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow \mathbf{R}$ such that g is fibre linear with respect to the bundle projection $\underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow T^{*} T^{(r)} M$ induces a natural transformation $\Omega(g)$: $T^{*} T^{(r)} M \xrightarrow{\rightarrow} T^{*} T^{(r)} M$ over \underline{B} by $<\Omega(g)(a), y>=g(a, y), a \in T^{*} T^{(r)} M$, $y \in T_{\underline{B}(a)} T^{(r)} M$. It is easily seen that Ω is inverse to Θ.

5.2.

The set of natural transformations $T^{*} T^{(r)} M \rightarrow T^{*} T^{(r)} M$ over \underline{B} is (in obvious way) a module over the algebra of natural functions $T^{*} T^{(r)} M \rightarrow \mathbf{R}$. Similarly, the set of natural functions $g: \underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow \mathbf{R}$ such that g is fibre linear with respect to the bundle projection $\underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow T^{*} T^{(r)} M$ is (in obvious way) a module over the algebra of natural functions $T^{*} T^{(r)} M \rightarrow \mathbf{R}$. (We identify any natural function $T^{*} T^{(r)} M \rightarrow \mathbf{R}$ with the natural function $\underline{B}^{!}\left(T T^{(r)} M\right) \rightarrow \mathbf{R}$ by using the pull-back with respect to the obvious projection. Then the module operations are obvious.) Clearly, the (described in 5.1.) bijection Ω is an isomorphism of the modules. Hence from Corollary 2 we deduce.

Theorem 2. The $\Omega\left(\nu^{<s>}\right)$ for $s=2, \ldots, r+1$ and $\Omega(\nu)$, where ν and $\nu^{<s>}$ are as in Examples 5 and 6, form the basis (over the algebra of all natural functions $T^{*} T^{(r)} M \rightarrow \mathbf{R}$) of the module of natural transformations $T^{*} T^{(r)} M \rightarrow$ $T^{*} T^{(r)} M$ over \underline{B}.

References

[1] J. Gancarzewicz, I. Kolář: Natural affinors on the extended r-th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo, 30 (1993), 95-100.
[2] I. Kolář, P. M. Michor, J. Slovák: Natural operations in differential geometry, Springer-Verlag, Berlin 1993.
[3] I. Kolář, Z. Radziszewski: Natural transformations of second tangent and cotangent bundles, Czechoslovak Math. J. 38 (1988), 274-279.
[4] W. M. Mikulski: Natural functions on $T^{*} T^{(r)}$ and $T^{*} T^{r *}$, Archivium Math. Brno 31 (1995), 1-7.
[5] W. M. Mikulski: Natural operators lifting functions to cotangent bundles of linear higher order tangent bundles, Suppl. Rend. Circ. Mat. Palermo 43 (II) (1996), 199-206.

