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Abstract. The aim of this paper is to introduce a generalized digital (k0, k1)-homeomorphism
of the digital curve and the digital surface in Zn. The generalized digital (k0, k1)-continuity
is studied with the n kinds of k-adjacency relations in Zn. The k-type digital fundamental
group of the digital image comes from the generalized digital (k0, k1)-homotopy, i ∈ {0, 1}.
Furthermore, we show how a digital (k0, k1)-homeomophism induces a digital fundamental
group (k0, k1)-isomorphism.
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Introduction

The digital k-adjacency on digital curves and digital surfaces in Z3 are in-
vestigated in [7, 8, 9]. The digital continuity was introduced in [1, 2, 10] and
further an advanced concept of the digital continuity was also introduced [1].

Recently, the digital (k0, k1)-continuity was investigated with relation to the
digital (k0, k1)-homeomorphism, and further it is a generalization of the concepts
from [1, 2, 10] relative to the dimension and the adjacency.

By virtue of a generalization of the k-adjacency relations, we consider the
generalized digital (k0, k1)-continuity and the generalized digital (k0, k1)-homeo-
morphism in Z4 and Z5.

We work in the category of finite digital images and digitally (k0, k1)-conti-
nuous maps.

1 Notation and basic terminology

In the set Zn of points in the Euclidean n-dimensional space, n = 4, 5, that
have integer coordinates, two metric spaces (Zn, dn) and (Zn, d∗) are considered
with the following metric functions:

dn, d∗ : Zn × Zn → N ∪ {0} are defined by
(M1) dn(p, q) =

∑n
i=1 |pi − qi| and
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(M2) d∗(p, q) = max{|pi − qi|}i∈M , M = {1, 2, · · · , n}, respectively

for two points p, q ∈ Zn, N is the set of natural numbers.

By use of the above two metric functions we get the k-adjacency relations
of a digital image in Z4 and Z5.

Basically, two pixels (p1, p2), (q1, q2) ∈ Z2 are called 4-adjacent if |p1 − q1|+
|p2−q2| = 1. And they are called 8-adjacent if max {|p1−q1|, |p2−q2|} = 1[7, 8].

Two voxels (p1, p2, p3), (q1, q2, q3)(∈ Z3) are called 6-adjacent if

|p1 − q1| + |p2 − q2| + |p3 − q3| = 1.

They are called 26-adjacent if max{|p1 − q1|, |p2 − q2|, |p3 − q3|} = 1 [8, 9].

Furthermore, two points are 18-adjacent if they are 26-adjacent and differ
in at most two of their coordinates [8].

Concretely, a digital picture is considered as a quadruple P = (V, k, k̄,X)
with black points set X ⊂ V and white points set V −X. If V = Z2, (k, k̄) =
(4, 8) or (8, 4), and if V = Z3, (k, k̄) = (6, 26), (26, 6), (6, 18) or (18, 6)[11, 8, 9].

The point p = (p1, p2, p3, p4, p5) ∈ Z5 is considered as a 5-cube {(p1 ±
1/2, p2 ± 1/2, p3 ± 1/2, p4 ± 1/2, p5 ± 1/2)} with a center p, whose edges are
parallel to each axes.

Now in Z5, we consider the following equations which are relevant for the
k-neighborhood and the k-adjacency relations.

For two 5-xels p = (p1, p2, p3, p4, p5), q = (q1, q2, q3, q4, q5) ∈ Z5

(1) d5(p, q) = 5, d∗(p, q) = 1 ⇒ then p shares a point with q,

(2) d5(p, q) = 4, d∗(p, q) = 1 ⇒ then p shares an edge with q,

(3) d5(p, q) = 3, d∗(p, q) = 1 ⇒ then p shares a face with q,

(4) d5(p, q) = 2, d∗(p, q) = 1 ⇒ then p shares a cube with q,

(5) d5(p, q) = 1, d∗(p, q) = 1 ⇒ then p shares a 4-cube with q.

Consequently, in Z5, the 5 kinds of digital k-neighborhoods are obtained
from (1) ∼ (5) above and by the properties of the combination as follows:

(1)′ N242(p) = {q ∈ Z5|d5(p, q) ≤ 5, d∗(p, q) = 1} from the above formula
(1) such that ]{q ∈ Z5|d5(p, q) ≤ 5, d∗(p, q) = 1} = 242, where ] means the
cardinality of the set.

(2)′ N210(p) = {q ∈ Z5|d5(p, q) ≤ 4, d∗(p, q) = 1} from the above formula
(2).

Namely, for p = (p1, p2, p3, p4, p5) ∈ Z5, N210(p) = N242(p) − X5(p), where
X5(p) = {q ∈ Z5|d5(p, q) = 5, d∗(p, q) = 1}. In fact, X5(p) = {(p1 ± 1, p2 ±
1, p3±1, p4±1, p5±1)}. Now we use the notation, X5(p) = ∪5

i=0X5(p)
i in terms

of the following notations:

X5(p)
0 = {(p1 + 1, p2 + 1, p3 + 1, p4 + 1, p5 + 1)} with ]X5(p)

0 = C5
0 = 1,

where C5
i stands for the combination of 5 objects taken i.
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X5(p)
1 = {(p1 +1, pi−1 +1, pi−1, pi+1 +1, p5 +1)|i ∈ [1, 5]Z} and ]X5(p)

1 =
C5

1 , i.e., X5(p)
1 consists of the elements which have the coordinates with only

one element pi − 1(1 ≤ i ≤ 5) and the others are pj + 1(i 6= j).

X5(p)
2 = {(pi−1+1, pi−1, pj−1, pj+1+1, pj+2+1)}, where i 6= j ∈ [1, 5]Z and

]X5(p)
2 = C5

2 , i.e., X5(p)
2 consists of the elements which have the coordinates

with only two elements, pi−1, pj−1, 1 ≤ i, j ≤ 5, and the others pk +1(k 6= i, j).

X5(p)
3 = {(pi − 1, pi+1 + 1, pj − 1, pk − 1, pk+1 + 1)}, where i 6= j 6= k ∈

[1, 5]Z with ]X5(p)
3 = C5

3 , i.e., X5(p)
3 consists of the elements which have the

coordinates with only three elements, pi − 1, pj − 1, pk − 1, 1 ≤ i, j, k ≤ 5, and
the others are pl + 1, 1 ≤ l ≤ 5, l 6= i, j, k.

X5(p)
4 = {(p1 + 1, p2 − 1, p3 + 1, p4 + 1, p5 − 1), (p1 − 1, p2 + 1, p3 − 1, p4 −

1, p5 − 1), · · · , (p1 − 1, p2 − 1, p3 − 1, p4 − 1, p5 + 1)} with ]X5(p)
4 = C5

4 .

Finally,

X5(p)
5 = {(p1 − 1, p2 − 1, p3 − 1, p4 − 1, p5 − 1)} with ]X5(p)

5 = C5
5 .

Then X5(p)
i and X5(p)

j are disjoint for i 6= j ∈ {0, 1, 2, 3, 4, 5}.
Thus we get ]X5(p) =

∑5
i=0C

5
i .

Consequently, ]{q ∈ Z5|d5(p, q) ≤ 4, d∗(p, q) = 1}
= ](N242(p) −X5(p)) = 242 − (C5

0 + C5
1 + C5

2 + · · · + C5
5 ) = 210.

(3)′ N130(p) = {q ∈ Z5|d5(p, q) ≤ 3, d∗(p, q) = 1}
= N210(p) − X4(p) from (3) above, where X4(p) = {q ∈ Z5|d5(p, q) =

4, d∗(p, q)1}.
Actually,X4(p) = {(pi−2±1, pi−1±1, pi, pi+1±1, pi+2±1)} (i ∈ {1, 2, 3, 4, 5})
= ∪4

i=0X4(p)
i via the following notations:

X4(p)
0 = {(pj−1 + 1, pj + 1, pj+1 + 1, pi, pi+1 + 1)|i 6= j ∈ [1, 5]Z} with

]X4(p)
0 = C4

0 .

X4(p)
1 = {(pj−1 +1, pj −1, pi−1 +1, pi, pi+1 +1)|i 6= j ∈ [1, 5]Z}, i.e., X4(p)

1

consists of the elements which have the coordinates with only one pj − 1, 1 ≤
j(6= i) ≤ 5, and the others are pk + 1, 1 ≤ k ≤ 5, i 6= j 6= k, except pi with
]X4(p)

1 = C4
1 .

· · · ,
Finally,

X4(p)
4 = {(pi−2 − 1, pi−1 − 1, pi, pi+1 − 1, pi+2 − 1)} with ]X4(p)

4 = C4
4 .

Then X4(p)
i and X4(p)

j are disjoint for i 6= j ∈ {0, 1, 2, 3, 4}.
Therefore ]X4(p) = C5

1 (C4
0 + C4

1 + C4
2 + C4

3 + C4
4 ).

Thus we get the following:

]{q ∈ Z5|d5(p, q) ≤ 3, d∗(p, q) = 1} = ](N210(p) −X4(p))

= 210 − C5
1 (C4

0 + C4
1 + C4

2 + C4
3 + C4

4 ) = 130. Similarly,

(4)′ N50(p) = N130(p)−X3(p) = {q ∈ Z5|d5(p, q) ≤ 2, d∗(p, q) = 1} from (4)
above,

where X3(p) = {q ∈ Z5|d5(p, q) = 3, d∗(p, q) = 1}
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= {(pi−1 ± 1, pi, pi+1 ± 1, pj , pj+1 ± 1)} = ∪3
i=0X3(p)

i.
By the same method above, we get
]X3(p) = C5

2 (C3
0 + C3

1 + C3
2 + C3

3 ) = 50.
(5)′ N10(p) = {q ∈ Z5|d5(p, q) ≤ 1} from (5) above such that ]N10(p) = 10.
At last, 5 kinds of k-adjacency relations in Z5 are obtained from the above

formulas (1)′ ∼ (5)′:
We now say that p and q are called k-adjacent if q ∈ Nk(p) in Z5, where

k ∈ {242, 210, 130, 50, 10}.
Similarly, by the same method above, we get 4 kinds of k- adjacency relations

in Z4 are followed. Namely, for two 4-xels p = (p1, p2, p3, p4), q = (q1, q2, q3, q4) ∈
Z4, the following equations are considered,

(6) d4(p, q) = 4, d∗(p, q) = 1 ⇒ then p shares a point with q,
(7) d4(p, q) = 3, d∗(p, q) = 1 ⇒ then p shares an edge with q,
(8) d4(p, q) = 2, d∗(p, q) = 1 ⇒ then p shares a face with q,
(9) d4(p, q) = 1, d∗(p, q) = 1 ⇒ then p shares a cube with q.
From (6) ∼ (9) above, the following equations are taken by the same method

as Z5.
We now say that p and q are called k-adjacent if q ∈ Nk(p) in Z4, where

k ∈ {80, 64, 32, 8}.
Consequently, we get the following:

1 Proposition. There are 4 kinds of k-adjacency relations in Z4, k ∈ {80,
64, 32, 8} and 5 kinds of k-adjacency relations in Z5, k ∈ {242, 210, 130, 50, 10}.

Thus in Z4, the digital pictures (Z4, k, k̄,X) are considered for the following
cases: (k, k̄) ∈ {(80, 8), (8, 80), (64, 8), (8, 64), (32, 8), (8, 32)}.

Furthermore, in Z5, the digital pictures (Z5, k, k̄,X) are obtained for the fol-
lowing cases as follows: (k, k̄)∈{(242, 10), (10, 242), (210, 10), (10, 210), (130, 10),
(10, 130), (50, 10), (10, 50)}.

For a digital image X(⊂ Zn), two points x(6=)y(∈ X) are called k-connected
[1, 6] if there is a k-path f : [0,m]Z → X where the image is a sequence
(x0, x1, . . . , xm) from the set of points {f(0) = x0 = x, f(1) = x1, . . . , f(m) =
xm = y} such that xi and xi+1 are k-adjacent, i ∈ {0, 1, . . . ,m−1},m ≥ 1[1, 10].

And a simple closed k-curve is considered as a sequence (x0, x1, . . . , xm) of
the k-path where xi and xj are k-adjacent if and only if j = i + 1(modm) or
i = j − 1(modm)[1, 3].

2 Digital (k0, k1)-homotopy

On the basis of the digital continuity and the digital (k0, k1)-continuity [1,
10], the convenient digital (k0, k1)-continuity in terms of the digital k-connected-
ness was introduced in [2]. But for the study of pointed digital homotopy
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theory, we need some reformations. Furthermore, the former digital (k0, k1)-
continuity with the standard ki-adjacency relations will be generalized to the
digital (k0, k1)-continuity with the n types of ki-adjacency relations in Zn,
i ∈ {0, 1}, n ∈ {4, 5}.

Now we define a digital (k0, k1)-continuity as a generalization of the digital
(k0, k1)-continuity of [2]; such an approach is essential in studying the pointed
digital (k0, k1)-homotopy theory [2].

2 Definition. For two digital pictures (Zn0 , k0, k̄0, X) and (Zn1 , k1, k̄1, Y ),
we say that a map f : X → Y is digitally (k0, k1)-continuous at the point x ∈ X
if for every k0-connected subset Ok0(x) containing x, f(Ok0(x)) is k1-connected,
where ki ∈ {242, 210, 130, 50, 10} in Z5, ki ∈ {80, 64, 32, 8} in Z4, ki ∈ {26, 18, 6}
in Z3, ki ∈ {8, 4} in Z2 and so on.

If f is digitally (k0, k1)-continuous at any point x ∈ X then f is called a
digitally (k0, k1)-continuous map.

From now on, all spaces are considered under the following ki-adjacency
relations,

ki ∈ {242, 210, 130, 50, 10} in Z5, ki ∈ {80, 64, 32, 8} in Z4, ki ∈ {26, 18, 6}
in Z3, ki ∈ {8, 4} in Z2 and so on.

For two digital pictures (Zn0 , k0, k̄0, (X,A)) and (Zn1 , k1, k̄1, (Y,B)), we say
that a map f : (X,A) → (Y,B) is digitally (k0, k1)-continuous if f : X → Y is
digitally (k0, k1)-continuous and f(A) ⊂ B, respectively.

In [1, 2], the digital homotopy was introduced. Now we define the generalized
digital (k0, k1)-homotopy.

For digital pictures (Zn0 , k0, k̄0, X) and (Zn1 , k1, k̄1, Y ), let f, g : X → Y be
digitally (k0, k1)-continuous functions. And suppose that there are a positive
integer m and a function, F : X × [0,m]Z → Y such that

• for all x ∈ X,F (x, 0) = f(x) and F (x,m) = g(x),

• for all x ∈ X, the induced map Fx : [0,m]Z → Y defined by Fx(t) = F (x, t)
for all t ∈ [0,m]Z is digitally (2, k1)-continuous, and

• for all t ∈ [0,m]Z, the induced map Ft which is defined by Ft(x) = F (x, t) :
X → Y is digitally (k0, k1)-continuous for all x ∈ X.

If, further, F (x0, t) = y0 for some (x0, y0) ∈ X × Y and all t ∈ [0,m]Z, we
say F is a pointed (k0, k1)-homotopy.

If X = [0,mX ]Z and for all t ∈ [0,m]Z we have F (0, t) = F (0, 0) and
F (mX , t) = F (mX , 0), we say F holds the endpoints fixed.

We say an image X is k-contractible [2] if the identity map 1X is (k, k)-
homotopic in X to a constant map with image consisting of some x0 ∈ X. If
such a homotopy is a pointed homotopy, we say (X,x0) is pointed k-contractible.
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We say that f and g are digitally pointed homotopic and then we use a
notation f 'd·(k0,k1)·h g.

Especially, for the case of the digital pointed (k, k)-homotopy, we call it a dig-
ital pointed k-homotopy and use the notation: f 'd·k·h g instead of f 'd·(k,k)·h g.

For the digital image X with a k-adjacency and its subimage A, we call
(X,A) a digital image pair with a k-adjacency. Furthermore, if A is a singleton
set {p} then (X, p) is called a pointed digital image.

For a digital image (X,A) with a k-adjacency, we say that X is k-deformable
into A if there is a digital pointed k-homotopy D : X × [0,m]Z → X such that
D(x, 0) = x and D(x,m) ⊂ A, x ∈ X. The above digital pointed k-homotopy
is called a digital k-deformation. The current pointed k-homotopy means that
D(x0, t) = x0 for x0 ∈ A and all t ∈ [0,m]Z.

Actually, the digital fundamental group was developed for the digital image
in dimension at most three image in Z3 [6] and was derived from an approach to
algebraic topology under the standard k-adjacency in Zn, where k ∈ {3n−1(n ≥
2), 2n(n ≥ 1), 18(n = 3)} [5].

Now we make a reformation in terms of the generalized pointed digital ho-
motopy without any restriction to the dimension and the k-adjacency of the
image. The k-type digital fundamental group is induced via the generalized
pointed k-homotopy. Namely, we study the image in Zn with the n-kinds of the
k-adjacency in Zn, k ∈ {242, 210, 130, 50, 10} in Z5, k ∈ {80, 64, 32, 8} in Z4,
k ∈ {26, 18, 6} in Z3, k ∈ {8, 4} in Z2 and k ∈ {3n − 1(n ≥ 2), 2n(n ≥ 1)} in
Zn, n ≥ 6.

Since the preservation of the base point is essential in studying the pointed
digital (k0, k1)-homotopy theory, the digital (k0, k1)-continuity is very meaning-
ful.

Thus the k-type digital fundamental group is a generalization of the digital
fundamental group of [2, 5, 6] relative to the adjacency and the dimension of
the image.

Concretely, for a pointed digital image (X, p), a k-loop f based at p is a
k-path in X with f(0) = p = f(m). And we put F k

1 (X, p) = {f |f is a k-loop
based at p}.

For maps f, g(∈ F k
1 (X, p)), i.e., f : [0,m1]Z → (X, p) with f(0) = p = f(m1)

and g : [0,m2]Z → (X, p) with g(0) = p = g(m2), we get a map f ∗ g : [0,m1 +
m2]Z → (X, p) as follows [5]:

f ∗ g : [0,m1 + m2]Z → (X, p) is defined by f ∗ g(t)f(t), (0 ≤ t ≤ m1) and
g(t−m1), (m1 ≤ t ≤ m1 +m2). Then f ∗ g ∈ F k

1 (X, p).

We denote the digital k-homotopy class of f by [f ]. Obviously, the homotopy
class [f ∗ g] depends on the homotopy classes [f ] and [g].

Furthermore, for any f1, f2, g1, g2 ∈ F k
1 (X, p) such that f1 ∈ [f2], g1 ∈ [g2]
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we get the map f1 ∗ g1 ∈ [f2 ∗ g2], i.e., [f1 ∗ g1] = [f2 ∗ g2].
Consequently, we put πk

1 (X, p) = {[f ]|f ∈ F k
1 (X, p)}. And we take an oper-

ation · on πk
1 (X, p) as follows: [f ] · [g] = [f ∗ g].

The group structure on πk
1 (X, p) is checked by the same method as in [1]

with respect to the digital (2, k)-continuity.

For our emphasizing on the k-connectivity of the digital image X, we use
the superscript k like πk

1 (X, p).

Consequently, we get a group πk
1 (X, p) with the above operation ·, which is

called the k-type digital fundamental group of a pointed digital image (X, p).

Actually, if p and q belong to the same k-connected component of X, then
πk

1 (X, p) is isomorphic to πk
1 (X, q) [1].

For digital pictures (Zn0 , k0, k̄0, X), (Zn1 , k1, k̄1, Y ) and a digitally (k0, k1)-
continuous based map h : (X, p) → (Y, q), the map h induces a digital funda-
mental group (k0, k1)-homomorphism as follows.

Define π
(k0,k1)
1 (h) = h∗ : πk0

1 (X, p) → πk1
1 (Y, q) by the equation h∗([f1]) =

[h ◦ f1], where [f1] ∈ πk0
1 (X, p), which is well defined. Particularly, if k0 = k1,

we use the following notation, πk0
1 (h)[1].

For digital pictures (Zn0 , k0, k̄0, X), (Zn1 , k1, k̄1, Y ) and (Zn2 , k2, k̄2, Z) , let
f : X → Y be digitally (k0, k1)-continuous based map and g : Y → Z be digi-

tally (k1, k2)-continuous function. Then obviously π
(k0,k2)
1 (g ◦ f) = π

(k1,k2)
1 (g) ◦

π
(k0,k1)
1 (f)[1]. In particular, if k0 = k1 = k2, π

k0
1 (g ◦ f) = πk0

1 (g) ◦ πk0
1 (f). Actu-

ally, if a pointed image (X, p) is k-connected, for any point q ∈ X there is an
isomorphism φ : πk

1 (X, p) ∼= πk
1 (X, q)[1].

3 Theorem. For a digital image picture (Zn, k, k̄, (X,A)), if (X, p) is k-
deformable into (A, p) then πk

1 (X, p) ∼= πk
1 (A, p).

Proof. First, from the digital k-deformation D : X × [0,m]Z → X such
that D(X ×{m}) ⊂ A, let r : (X, p) → (A, p) be defined as follows: (i ◦ r)(x) =
D(x,m), x ∈ X and i : (A, p) → (X, p) is the inclusion map. Then D makes
1(X,p) be digitally pointed k-homotopic to i ◦ r. And further, D(x0, t) = x0

for some x0 ∈ A. Thus r is a right digital k-homotopy inverse of i. Namely,
i ◦ r 'd·k·h 1(X,p). Therefore πk

1 (i ◦ r) = πk
1 (i) ◦ πk

1 (r) = 1πk
1 (X,p). Thus πk

1 (r) is a
monomorphism.

Second, for any [g] ∈ πk
1 (A, p), there are a k-path f ∈ F k

1 (X, p) and a set
of k-paths {g1, g2, · · · , gc} ⊂ F k

1 (X, p), such that f 'd·k·h g1, gi 'd·k·h gi+1 for
i ∈ {1, 2, · · · , c − 1} and gc 'd·k·h g. Thus πk

1 (r)([f ]) = [g]. Therefore πk
1 (r) is

an epimorphism. QED

4 Corollary. [1] If X is pointed k-contractible then πk
1 (X, p) is trivial.
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3 Digital (k0, k1)-homeomorphism

For our classification of digital images, we need special relations among
digital images with ki-adjacencies i ∈ {0, 1}. One of them is the digital (k0, k1)-
homeomorphism as follows:

5 Definition. [1, 3, 4] For digital pictures (Zn0 , k0, k̄0, X) and (Zn1 , k1, k̄1,
Y ), a map h : X → Y is called a digital (k0, k1)-homeomorphism if h is digitally
(k0, k1)-continuous and bijective and further h−1 : Y → X is digitally (k1, k0)-
continuous. Then we write it by X ≈d·(k0,k1)·h Y . If k0 = k1, we say that h is a
digital homeomorphism [1].

The minimal simple closed curves in Z2 with three types which are not
digital homeomorphic to each other are MSC8,MSC4 and MSC ′

8(⊂ Z2)[3, 4].
Let MSC8 be the set which is digitally 8-homeomorphic to the image [4],

{(x1, y1), (x1−1, y1 +1), (x1−2, y1), (x1−2, y1−1), (x1−1, y1−2), (x1, y1−1)}.

Let MSC4 be the set which is digitally 4-homeomorphic to the image,

{(x1, y1), (x1, y1 + 1), (x1 − 1, y1 + 1), (x1 − 2, y1 + 1),

(x1 − 2, y1), (x1 − 2, y1 − 1), (x1 − 1, y1 − 1), (x1, y1 − 1)},

i.e., MSC4 ≈d·4·h N8(p3), p3 ∈ Z2 [3, 4].
Let MSC ′

8 be the set which is digitally 8-homeomorphic to the image,

{(x1, y1), (x1 − 1, y1 + 1), (x1 − 2, y1), (x1 − 1, y1 − 1)}

[1, 3].
We can classify digital images from the following induced digital fundamental

group (k0, k1)- isomorphism.

6 Theorem. Let (Zn0 , k0, k̄0, (X,x0)) and (Zn1 , k1, k̄1, (Y, y0)) be digital pic-
tures, where ki ∈ {242, 210, 130, 50, 10} in Z5, ki ∈ {80, 64, 32, 8} in Z4, ki ∈
{26, 18, 6} in Z3,ki ∈ {8, 4} in Z2 and ki ∈ {3n − 1, 2n} in Zn, n ≥ 6, i ∈ {0, 1}.
If h : (X,x0) → (Y, y0) is a digital (k0, k1)-homeomorphism then the induced
map h∗ : πk0

1 (X, p) → πk1
1 (Y, q) defined by h∗([f ]) = [h ◦ f ], [f ] ∈ πk0

1 (X, p) is a
digital fundamental group isomorphism.

Proof. First, h∗ is well-defined. If f ′ ∈ [f ] ∈ πk0
1 (X, p), let F : (X, p) ×

[0,m]Z → (X, p) be a digital k0-homotopy between f and f ′. Then h ◦ F is a
digital k1-homotopy between the k1-loops h ◦ f and h ◦ f ′. Thus h ◦ f ′ ∈ [h ◦ f ].

Second, the induced map h∗ is a homomorphism.
For any maps f, g ∈ F k0

1 (X, p), the digitally (2, k0)-continuous maps f :
[0,m1]Z → (X, p) and g : [0,m2]Z → (X, p), the map h◦(f ∗g) : [0,m1 +m2]Z →
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(Y, q) is defined as follows:

h ◦ (f ∗ g) :[0,m1 +m2]Z → (Y, q)

h ◦ (f ∗ g)(t) =

{
h(f(t)), (0 ≤ t ≤ m1),

h(g(t−m1)), (m1 ≤ t ≤ m1 +m2)

Thus h ◦ (f ∗ g) = (h ◦ f) ∗ (h ◦ g) and h∗([f ] · [g]) = h∗([f ∗ g]) = [h ◦ (f ∗
g)][(h ◦ f) ∗ (h ◦ g)] = [h ◦ f ] · [h ◦ g] = h∗([f ]) · h∗([g]).

The induced map h∗ depends not only on the digitally (k0, k1)-continuous
map h : (X, p) → (Y, q) but also on the choice of the base points p and q.

Second, h∗ is surjective: for any [g] ∈ πk1
1 (Y, q), we get g : [0,m]Z → (Y, q)

is a digitally (2, k1)-continuous map such that g(0) = q = g(m). Because h is
a digital (k0, k1)-homeomorphism, there is a digitally (2, k0)-continuous map:
f1 : [0,m]Z → (X, p) such that f1(0) = p = f1(m) and h ◦ f1 = g. Thus
h∗([f1]) = [h ◦ f1] = [g].

Third, h∗ is injective: if h∗([f1]) = [h ◦ f1] = c{q} ∈ πk1
1 (Y, q), we only prove

that f1 'd·k0·h c{p}. Since h◦f1 'd·k1·h c{q}, there is a digitally (2, k0)-continuous
map f1 : [0,m]Z → (X, p) such that f1(0) = p = f1(m) and f1 'd·k0·h c{p}.

Fourth, h∗ is a homomorphism. For any [f1], [f2] ∈ πk0
1 (X, p), h∗([f1] · [f2]) =

h∗[f1∗f2] = [h◦([f1∗f2])] = [(h◦f1∗h◦f2)] = [(h◦f1]·[h◦f2]h∗[f1]·h∗[f2]. QED

A black point in a digital picture P = (Zn, k, k̄,X) is called a border point
if it is k-adjacent to one or more white points. The border of X in the above
digital picture P is the set of all border points and it is denoted by Bd(X).

7 Example. The group π4
1(MSC4, x0) ' π8

1(Bd(B2(p, 2))).

Proof. Since Bd(B2(p, 2)) is (8, 4)-homeomorphic to MSC4, the proof is
completed. QED

8 Example. For the image W1 = B2(p1, 2) − {p1, (x1 + 1, y1)} ∪ N8(p3),
where p1 = (x1, y1), p2 = (x1 + 2, y1) and p3 = (x1 + 3, y1), π

8
1(W1, p2) ∼=

π8
1(MSC8). Assume that N8(p3) = {q0 = (x1 + 4, y1), q1 = (x1 + 4, y1 + 1), q2 =

(x1 + 3, y1 + 1), q3 = (x1 + 2, y1 + 1), q4 = (x1 + 2, y1), q5 = (x1 + 2, y1 − 1), q6 =
(x1 + 3, y1 − 1), q6 = (x1 + 4, y1 − 1)}.

Proof. (Step 1): Without loss of generality, assume that MSC8 is a subset
of B2(p1, 2) − {p1, (x1 + 1, y1)}. We get easily B2(p1, 2) − {p1, (x1 + 1, y1)} is
8-deformable into W2(≈d·8·h MSC8), where W2 = {(x1 + 2, y1), (x1 + 1, y1 +
1), (x1, y1 + 1), (x1 − 1, y1), (x1, y1 − 1), (x1 + 1, y1 − 1)}.

(Step 2): We prove that N8(p3) is pointed 8-contractible into {p2}. Namely,
there is a digital 8-homotopy H : N8(p3) × [0, 3]Z → N8(p3) as follows:

First, H(qi, 0) = qi, for any qi ∈ N8(p3).
Second, H(q2i+1, 1) = q2i, H(q2i, 1) = q2i, i ∈ [0, 3]Z,
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Third, H(qi, 2) = q4, i ∈ {2, 3, 4, 5} and H(qj , 2) = q6, j ∈ {0, 1, 6, 7}.
Finally H(qi, 3) = q4, i ∈ [0, 7]Z.
Therefore π8

1(W1, p2) ∼= π8
1(MSC8) from (Step 1) and (Step 2). QED

9 Corollary. If there are k0, k1 such that πk0
1 (X, p) is not isomorphic to

πk1
1 (Y, q) then X and Y are not digitally (k0, k1)-homeomorphic to each other.

Proof. A digital (k0, k1)-continuous map h : (X, p) → (Y, q) induces a
digital fundamental group homomorphism h∗ : πk0

1 (X, p) → πk1
1 (Y, q) defined by

h∗([f ]) = [h◦f ]. It is easy to see that h∗ and h−1
∗ are bijective homomorphisms.

Thus a digital (k0, k1)-homeomorphism h : (X, p) → (Y, q) induces a digital
fundamental group isomorphism. By the contraposition of the above statement
we get the proof. QED
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