Note di Matematica 22, n. 2, 2003, 157–166.

Generalized digital (k_0, k_1) -homeomorphism

Sang-Eon Han

Department of Computer and Applied Mathematics College of Natural Science, Honam University Gwangju, 506-714, Korea sehan@honam.ac.kr

Received: 13/01/2003; accepted: 17/03/2004.

Abstract. The aim of this paper is to introduce a generalized digital (k_0, k_1) -homeomorphism of the digital curve and the digital surface in \mathbb{Z}^n . The generalized digital (k_0, k_1) -continuity is studied with the *n* kinds of *k*-adjacency relations in \mathbb{Z}^n . The *k*-type digital fundamental group of the digital image comes from the generalized digital (k_0, k_1) -homotopy, $i \in \{0, 1\}$. Furthermore, we show how a digital (k_0, k_1) -homeomophism induces a digital fundamental group (k_0, k_1) -isomorphism.

Keywords: digital (k_0, k_1) -continuity, digital (k_0, k_1) -homeomorphism, digital curve, digital surface.

MSC 2000 classification: primary: 55P10; secondary 55P15.

Introduction

The digital k-adjacency on digital curves and digital surfaces in \mathbb{Z}^3 are investigated in [7, 8, 9]. The digital continuity was introduced in [1, 2, 10] and further an advanced concept of the digital continuity was also introduced [1].

Recently, the digital (k_0, k_1) -continuity was investigated with relation to the digital (k_0, k_1) -homeomorphism, and further it is a generalization of the concepts from [1, 2, 10] relative to the dimension and the adjacency.

By virtue of a generalization of the k-adjacency relations, we consider the generalized digital (k_0, k_1) -continuity and the generalized digital (k_0, k_1) -homeomorphism in \mathbb{Z}^4 and \mathbb{Z}^5 .

We work in the category of finite digital images and digitally (k_0, k_1) -continuous maps.

1 Notation and basic terminology

In the set \mathbb{Z}^n of points in the Euclidean *n*-dimensional space, n = 4, 5, that have integer coordinates, two metric spaces (\mathbb{Z}^n, d_n) and (\mathbb{Z}^n, d_*) are considered with the following metric functions:

 $d_n, d_* : \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{N} \cup \{0\}$ are defined by (M1) $d_n(p, q) = \sum_{i=1}^n |p_i - q_i|$ and (M2) $d_*(p,q) = max\{|p_i - q_i|\}_{i \in M}, M = \{1, 2, \dots, n\}$, respectively for two points $p, q \in \mathbb{Z}^n$, \mathbb{N} is the set of natural numbers.

or two points $p, q \in \mathbb{Z}^+$, is the set of natural numbers.

By use of the above two metric functions we get the k-adjacency relations of a digital image in \mathbb{Z}^4 and \mathbb{Z}^5 .

Basically, two pixels $(p_1, p_2), (q_1, q_2) \in \mathbb{Z}^2$ are called 4-adjacent if $|p_1 - q_1| + |p_2 - q_2| = 1$. And they are called 8-adjacent if max $\{|p_1 - q_1|, |p_2 - q_2|\} = 1$ [7, 8]. Two voxels $(p_1, p_2, p_3), (q_1, q_2, q_3) \in \mathbb{Z}^3$) are called 6-adjacent if

$$|p_1 - q_1| + |p_2 - q_2| + |p_3 - q_3| = 1.$$

They are called 26-adjacent if $max\{|p_1 - q_1|, |p_2 - q_2|, |p_3 - q_3|\} = 1$ [8, 9]. Furthermore, two points are 18 adjacent if they are 26 adjacent and differ

Furthermore, two points are 18-adjacent if they are 26-adjacent and differ in at most two of their coordinates [8].

Concretely, a digital picture is considered as a quadruple $P = (V, k, \bar{k}, X)$ with black points set $X \subset V$ and white points set V - X. If $V = \mathbb{Z}^2$, $(k, \bar{k}) =$ (4, 8) or (8, 4), and if $V = \mathbb{Z}^3$, $(k, \bar{k}) = (6, 26), (26, 6), (6, 18)$ or (18, 6)[11, 8, 9].

The point $p = (p_1, p_2, p_3, p_4, p_5) \in \mathbb{Z}^5$ is considered as a 5-cube $\{(p_1 \pm 1/2, p_2 \pm 1/2, p_3 \pm 1/2, p_4 \pm 1/2, p_5 \pm 1/2)\}$ with a center p, whose edges are parallel to each axes.

Now in \mathbb{Z}^5 , we consider the following equations which are relevant for the *k*-neighborhood and the *k*-adjacency relations.

For two 5-xels $p = (p_1, p_2, p_3, p_4, p_5), q = (q_1, q_2, q_3, q_4, q_5) \in \mathbb{Z}^5$

(1) $d_5(p,q) = 5, d_*(p,q) = 1 \Rightarrow$ then p shares a point with q,

(2) $d_5(p,q) = 4, d_*(p,q) = 1 \Rightarrow$ then p shares an edge with q,

(3) $d_5(p,q) = 3, d_*(p,q) = 1 \Rightarrow$ then p shares a face with q,

(4) $d_5(p,q) = 2, d_*(p,q) = 1 \Rightarrow$ then p shares a cube with q,

(5) $d_5(p,q) = 1, d_*(p,q) = 1 \Rightarrow$ then p shares a 4-cube with q.

Consequently, in \mathbb{Z}^5 , the 5 kinds of digital k-neighborhoods are obtained from (1) ~ (5) above and by the properties of the combination as follows:

(1)' $N_{242}(p) = \{q \in \mathbb{Z}^5 | d_5(p,q) \le 5, d_*(p,q) = 1\}$ from the above formula (1) such that $\sharp\{q \in \mathbb{Z}^5 | d_5(p,q) \le 5, d_*(p,q) = 1\} = 242$, where \sharp means the cardinality of the set.

 $(2)' N_{210}(p) = \{q \in \mathbb{Z}^5 | d_5(p,q) \le 4, d_*(p,q) = 1\}$ from the above formula (2).

Namely, for $p = (p_1, p_2, p_3, p_4, p_5) \in \mathbb{Z}^5$, $N_{210}(p) = N_{242}(p) - X_5(p)$, where $X_5(p) = \{q \in \mathbb{Z}^5 | d_5(p,q) = 5, d_*(p,q) = 1\}$. In fact, $X_5(p) = \{(p_1 \pm 1, p_2 \pm 1, p_3 \pm 1, p_4 \pm 1, p_5 \pm 1)\}$. Now we use the notation, $X_5(p) = \bigcup_{i=0}^5 X_5(p)^i$ in terms of the following notations:

 $X_5(p)^0 = \{(p_1 + 1, p_2 + 1, p_3 + 1, p_4 + 1, p_5 + 1)\}$ with $\sharp X_5(p)^0 = C_0^5 = 1$, where C_i^5 stands for the combination of 5 objects taken *i*.

158

Generalized digital (k_0, k_1) -homeomorphism

 $X_5(p)^1 = \{(p_1+1, p_{i-1}+1, p_i-1, p_{i+1}+1, p_5+1) | i \in [1, 5]_{\mathbb{Z}}\}$ and $\sharp X_5(p)^1 = C_1^5$, i.e., $X_5(p)^1$ consists of the elements which have the coordinates with only one element $p_i - 1(1 \le i \le 5)$ and the others are $p_j + 1(i \ne j)$.

 $X_5(p)^2 = \{(p_{i-1}+1, p_i-1, p_j-1, p_{j+1}+1, p_{j+2}+1)\},$ where $i \neq j \in [1, 5]_{\mathbb{Z}}$ and $\sharp X_5(p)^2 = C_2^5$, i.e., $X_5(p)^2$ consists of the elements which have the coordinates with only two elements, $p_i - 1, p_j - 1, 1 \leq i, j \leq 5$, and the others $p_k + 1(k \neq i, j)$.

 $X_5(p)^3 = \{(p_i - 1, p_{i+1} + 1, p_j - 1, p_k - 1, p_{k+1} + 1)\}$, where $i \neq j \neq k \in [1, 5]_{\mathbb{Z}}$ with $\sharp X_5(p)^3 = C_3^5$, i.e., $X_5(p)^3$ consists of the elements which have the coordinates with only three elements, $p_i - 1, p_j - 1, p_k - 1, 1 \leq i, j, k \leq 5$, and the others are $p_l + 1, 1 \leq l \leq 5, l \neq i, j, k$.

$$\begin{split} X_5(p)^4 &= \{(p_1+1, p_2-1, p_3+1, p_4+1, p_5-1), (p_1-1, p_2+1, p_3-1, p_4-1, p_5-1), \cdots, (p_1-1, p_2-1, p_3-1, p_4-1, p_5+1)\} \text{ with } \sharp X_5(p)^4 = C_4^5. \\ \text{Finally,} \\ X_5(p)^5 &= \{(p_1-1, p_2-1, p_3-1, p_4-1, p_5-1)\} \text{ with } \sharp X_5(p)^5 = C_5^5. \\ \text{Then } X_5(p)^i \text{ and } X_5(p)^j \text{ are disjoint for } i \neq j \in \{0, 1, 2, 3, 4, 5\}. \\ \text{Thus we get } \sharp X_5(p) = \sum_{i=0}^5 C_i^5. \\ \text{Consequently, } \sharp \{q \in \mathbb{Z}^5 | d_5(p, q) \leq 4, d_*(p, q) = 1\} \\ &= \sharp (N_{242}(p) - X_5(p)) = 242 - (C_0^5 + C_1^5 + C_2^5 + \cdots + C_5^5) = 210. \\ (3)' N_{130}(p) &= \{q \in \mathbb{Z}^5 | d_5(p, q) \leq 3, d_*(p, q) = 1\} \\ &= N_{210}(p) - X_4(p) \text{ from } (3) \text{ above, where } X_4(p) = \{q \in \mathbb{Z}^5 | d_5(p, q) = 4, d_*(p, q)1\}. \\ \text{Actually, } X_4(p) &= \{(p_{i-2}\pm 1, p_{i-1}\pm 1, p_i, p_{i+1}\pm 1, p_{i+2}\pm 1)\} \text{ } (i \in \{1, 2, 3, 4, 5\}) \\ &= \cup_{i=0}^4 X_4(p)^i \text{ via the following notations:} \\ X_4(p)^0 &= \{(p_{j-1}+1, p_j+1, p_{j+1}+1, p_i, p_{i+1}+1) | i \neq j \in [1, 5]_{\mathbb{Z}}\} \text{ with } \\ \sharp X_4(p)^0 &= C_0^6. \end{split}$$

 $X_4(p)^1 = \{(p_{j-1}+1, p_j-1, p_{i-1}+1, p_i, p_{i+1}+1) | i \neq j \in [1,5]_{\mathbb{Z}}\}, \text{ i.e., } X_4(p)^1$ consists of the elements which have the coordinates with only one $p_j - 1, 1 \leq j \neq i$ and the others are $p_k + 1, 1 \leq k \leq 5, i \neq j \neq k$, except p_i with $\sharp X_4(p)^1 = C_1^4$.

····, Finally,

 $\begin{aligned} X_4(p)^4 &= \{(p_{i-2} - 1, p_{i-1} - 1, p_i, p_{i+1} - 1, p_{i+2} - 1)\} \text{ with } \sharp X_4(p)^4 = C_4^4. \\ \text{Then } X_4(p)^i \text{ and } X_4(p)^j \text{ are disjoint for } i \neq j \in \{0, 1, 2, 3, 4\}. \\ \text{Therefore } \sharp X_4(p) &= C_1^5(C_0^4 + C_1^4 + C_2^4 + C_3^4 + C_4^4). \\ \text{Thus we get the following:} \\ \sharp \{q \in \mathbb{Z}^5 | d_5(p,q) \leq 3, d_*(p,q) = 1\} = \sharp (N_{210}(p) - X_4(p)) \\ &= 210 - C_1^5(C_0^4 + C_1^4 + C_2^4 + C_3^4 + C_4^4) = 130. \\ \text{Similarly,} \\ (4)' N_{50}(p) &= N_{130}(p) - X_3(p) = \{q \in \mathbb{Z}^5 | d_5(p,q) \leq 2, d_*(p,q) = 1\} \text{ from } (4) \end{aligned}$

above,

where $X_3(p) = \{q \in \mathbb{Z}^5 | d_5(p,q) = 3, d_*(p,q) = 1\}$

 $= \{(p_{i-1} \pm 1, p_i, p_{i+1} \pm 1, p_j, p_{j+1} \pm 1)\} = \bigcup_{i=0}^3 X_3(p)^i.$ By the same method above, we get $\sharp X_3(p) = C_2^5(C_0^3 + C_1^3 + C_2^3 + C_3^3) = 50.$ (5)' $N_{10}(p) = \{q \in \mathbb{Z}^5 | d_5(p,q) \le 1\}$ from (5) above such that $\sharp N_{10}(p) = 10.$

At last, 5 kinds of k-adjacency relations in \mathbb{Z}^5 are obtained from the above formulas $(1)' \sim (5)'$:

We now say that p and q are called k-adjacent if $q \in N_k(p)$ in \mathbb{Z}^5 , where $k \in \{242, 210, 130, 50, 10\}$.

Similarly, by the same method above, we get 4 kinds of k- adjacency relations in \mathbb{Z}^4 are followed. Namely, for two 4-xels $p = (p_1, p_2, p_3, p_4), q = (q_1, q_2, q_3, q_4) \in \mathbb{Z}^4$, the following equations are considered,

(6) $d_4(p,q) = 4, d_*(p,q) = 1 \Rightarrow$ then p shares a point with q,

(7) $d_4(p,q) = 3, d_*(p,q) = 1 \Rightarrow$ then p shares an edge with q,

(8) $d_4(p,q) = 2, d_*(p,q) = 1 \Rightarrow$ then p shares a face with q,

(9) $d_4(p,q) = 1, d_*(p,q) = 1 \Rightarrow$ then p shares a cube with q.

From (6) ~ (9) above, the following equations are taken by the same method as \mathbb{Z}^5 .

We now say that p and q are called k-adjacent if $q \in N_k(p)$ in \mathbb{Z}^4 , where $k \in \{80, 64, 32, 8\}$.

Consequently, we get the following:

1 Proposition. There are 4 kinds of k-adjacency relations in \mathbb{Z}^4 , $k \in \{80, 64, 32, 8\}$ and 5 kinds of k-adjacency relations in \mathbb{Z}^5 , $k \in \{242, 210, 130, 50, 10\}$.

Thus in \mathbb{Z}^4 , the digital pictures $(\mathbb{Z}^4, k, \bar{k}, X)$ are considered for the following cases: $(k, \bar{k}) \in \{(80, 8), (8, 80), (64, 8), (8, 64), (32, 8), (8, 32)\}$.

Furthermore, in \mathbb{Z}^5 , the digital pictures $(\mathbb{Z}^5, k, \bar{k}, X)$ are obtained for the following cases as follows: $(k, \bar{k}) \in \{(242, 10), (10, 242), (210, 10), (10, 210), (130, 10), (10, 130), (50, 10), (10, 50)\}.$

For a digital image $X(\subset \mathbb{Z}^n)$, two points $x(\neq)y(\in X)$ are called k-connected [1, 6] if there is a k-path $f : [0,m]_{\mathbb{Z}} \to X$ where the image is a sequence (x_0, x_1, \ldots, x_m) from the set of points $\{f(0) = x_0 = x, f(1) = x_1, \ldots, f(m) = x_m = y\}$ such that x_i and x_{i+1} are k-adjacent, $i \in \{0, 1, \ldots, m-1\}, m \geq 1[1, 10]$.

And a simple closed k-curve is considered as a sequence (x_0, x_1, \ldots, x_m) of the k-path where x_i and x_j are k-adjacent if and only if $j = i + 1 \pmod{m}$ or $i = j - 1 \pmod{[1, 3]}$.

2 Digital (k_0, k_1) -homotopy

On the basis of the digital continuity and the digital (k_0, k_1) -continuity [1, 10], the convenient digital (k_0, k_1) -continuity in terms of the digital k-connectedness was introduced in [2]. But for the study of pointed digital homotopy

160

theory, we need some reformations. Furthermore, the former digital (k_0, k_1) continuity with the standard k_i -adjacency relations will be generalized to the
digital (k_0, k_1) -continuity with the *n* types of k_i -adjacency relations in \mathbb{Z}^n , $i \in \{0, 1\}, n \in \{4, 5\}.$

Now we define a digital (k_0, k_1) -continuity as a generalization of the digital (k_0, k_1) -continuity of [2]; such an approach is essential in studying the pointed digital (k_0, k_1) -homotopy theory [2].

2 Definition. For two digital pictures $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, X)$ and $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, Y)$, we say that a map $f: X \to Y$ is digitally (k_0, k_1) -continuous at the point $x \in X$ if for every k_0 -connected subset $O_{k_0}(x)$ containing $x, f(O_{k_0}(x))$ is k_1 -connected, where $k_i \in \{242, 210, 130, 50, 10\}$ in $\mathbb{Z}^5, k_i \in \{80, 64, 32, 8\}$ in $\mathbb{Z}^4, k_i \in \{26, 18, 6\}$ in $\mathbb{Z}^3, k_i \in \{8, 4\}$ in \mathbb{Z}^2 and so on.

If f is digitally (k_0, k_1) -continuous at any point $x \in X$ then f is called a digitally (k_0, k_1) -continuous map.

From now on, all spaces are considered under the following k_i -adjacency relations,

 $k_i \in \{242, 210, 130, 50, 10\}$ in \mathbb{Z}^5 , $k_i \in \{80, 64, 32, 8\}$ in \mathbb{Z}^4 , $k_i \in \{26, 18, 6\}$ in \mathbb{Z}^3 , $k_i \in \{8, 4\}$ in \mathbb{Z}^2 and so on.

For two digital pictures $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, (X, A))$ and $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, (Y, B))$, we say that a map $f : (X, A) \to (Y, B)$ is digitally (k_0, k_1) -continuous if $f : X \to Y$ is digitally (k_0, k_1) -continuous and $f(A) \subset B$, respectively.

In [1, 2], the digital homotopy was introduced. Now we define the generalized digital (k_0, k_1) -homotopy.

For digital pictures $(\mathbb{Z}^{n_0}, k_0, k_0, X)$ and $(\mathbb{Z}^{n_1}, k_1, K_1, Y)$, let $f, g: X \to Y$ be digitally (k_0, k_1) -continuous functions. And suppose that there are a positive integer m and a function, $F: X \times [0, m]_{\mathbb{Z}} \to Y$ such that

- for all $x \in X$, F(x, 0) = f(x) and F(x, m) = g(x),
- for all $x \in X$, the induced map $F_x : [0, m]_{\mathbb{Z}} \to Y$ defined by $F_x(t) = F(x, t)$ for all $t \in [0, m]_{\mathbb{Z}}$ is digitally $(2, k_1)$ -continuous, and
- for all $t \in [0, m]_{\mathbb{Z}}$, the induced map F_t which is defined by $F_t(x) = F(x, t) : X \to Y$ is digitally (k_0, k_1) -continuous for all $x \in X$.

If, further, $F(x_0, t) = y_0$ for some $(x_0, y_0) \in X \times Y$ and all $t \in [0, m]_{\mathbb{Z}}$, we say F is a pointed (k_0, k_1) -homotopy.

If $X = [0, m_X]_{\mathbb{Z}}$ and for all $t \in [0, m]_{\mathbb{Z}}$ we have F(0, t) = F(0, 0) and $F(m_X, t) = F(m_X, 0)$, we say F holds the endpoints fixed.

We say an image X is k-contractible [2] if the identity map 1_X is (k, k)homotopic in X to a constant map with image consisting of some $x_0 \in X$. If
such a homotopy is a pointed homotopy, we say (X, x_0) is pointed k-contractible.

We say that f and g are digitally pointed homotopic and then we use a notation $f \simeq_{d \cdot (k_0, k_1) \cdot h} g$.

Especially, for the case of the digital pointed (k, k)-homotopy, we call it a digital pointed k-homotopy and use the notation: $f \simeq_{d \cdot k \cdot h} g$ instead of $f \simeq_{d \cdot (k,k) \cdot h} g$.

For the digital image X with a k-adjacency and its subimage A, we call (X, A) a digital image pair with a k-adjacency. Furthermore, if A is a singleton set $\{p\}$ then (X, p) is called a pointed digital image.

For a digital image (X, A) with a k-adjacency, we say that X is k-deformable into A if there is a digital pointed k-homotopy $D: X \times [0, m]_{\mathbb{Z}} \to X$ such that D(x, 0) = x and $D(x, m) \subset A$, $x \in X$. The above digital pointed k-homotopy is called a digital k-deformation. The current pointed k-homotopy means that $D(x_0, t) = x_0$ for $x_0 \in A$ and all $t \in [0, m]_{\mathbb{Z}}$.

Actually, the digital fundamental group was developed for the digital image in dimension at most three image in \mathbb{Z}^3 [6] and was derived from an approach to algebraic topology under the standard k-adjacency in \mathbb{Z}^n , where $k \in \{3^n - 1 (n \ge 2), 2n(n \ge 1), 18(n = 3)\}$ [5].

Now we make a reformation in terms of the generalized pointed digital homotopy without any restriction to the dimension and the k-adjacency of the image. The k-type digital fundamental group is induced via the generalized pointed k-homotopy. Namely, we study the image in \mathbb{Z}^n with the n-kinds of the k-adjacency in \mathbb{Z}^n , $k \in \{242, 210, 130, 50, 10\}$ in \mathbb{Z}^5 , $k \in \{80, 64, 32, 8\}$ in \mathbb{Z}^4 , $k \in \{26, 18, 6\}$ in \mathbb{Z}^3 , $k \in \{8, 4\}$ in \mathbb{Z}^2 and $k \in \{3^n - 1(n \ge 2), 2n(n \ge 1)\}$ in \mathbb{Z}^n , $n \ge 6$.

Since the preservation of the base point is essential in studying the pointed digital (k_0, k_1) -homotopy theory, the digital (k_0, k_1) -continuity is very meaning-ful.

Thus the k-type digital fundamental group is a generalization of the digital fundamental group of [2, 5, 6] relative to the adjacency and the dimension of the image.

Concretely, for a pointed digital image (X, p), a k-loop f based at p is a k-path in X with f(0) = p = f(m). And we put $F_1^k(X, p) = \{f | f \text{ is a } k\text{-loop based at } p\}$.

For maps $f, g(\in F_1^k(X, p))$, i.e., $f: [0, m_1]_{\mathbb{Z}} \to (X, p)$ with $f(0) = p = f(m_1)$ and $g: [0, m_2]_{\mathbb{Z}} \to (X, p)$ with $g(0) = p = g(m_2)$, we get a map $f * g: [0, m_1 + m_2]_{\mathbb{Z}} \to (X, p)$ as follows [5]:

 $f * g : [0, m_1 + m_2]_{\mathbb{Z}} \to (X, p)$ is defined by $f * g(t)f(t), (0 \le t \le m_1)$ and $g(t - m_1), (m_1 \le t \le m_1 + m_2)$. Then $f * g \in F_1^k(X, p)$.

We denote the digital k-homotopy class of f by [f]. Obviously, the homotopy class [f * g] depends on the homotopy classes [f] and [g].

Furthermore, for any $f_1, f_2, g_1, g_2 \in F_1^k(X, p)$ such that $f_1 \in [f_2], g_1 \in [g_2]$

Generalized digital (k_0, k_1) -homeomorphism

we get the map $f_1 * g_1 \in [f_2 * g_2]$, i.e., $[f_1 * g_1] = [f_2 * g_2]$.

Consequently, we put $\pi_1^k(X,p) = \{[f] | f \in F_1^k(X,p)\}$. And we take an operation \cdot on $\pi_1^k(X,p)$ as follows: $[f] \cdot [g] = [f * g]$.

The group structure on $\pi_1^k(X, p)$ is checked by the same method as in [1] with respect to the digital (2, k)-continuity.

For our emphasizing on the k-connectivity of the digital image X, we use the superscript k like $\pi_1^k(X, p)$.

Consequently, we get a group $\pi_1^k(X, p)$ with the above operation \cdot , which is called the k-type digital fundamental group of a pointed digital image (X, p).

Actually, if p and q belong to the same k-connected component of X, then $\pi_1^k(X, p)$ is isomorphic to $\pi_1^k(X, q)$ [1].

For digital pictures $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, X)$, $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, Y)$ and a digitally (k_0, k_1) continuous based map $h : (X, p) \to (Y, q)$, the map h induces a digital fundamental group (k_0, k_1) -homomorphism as follows.

Define $\pi_1^{(k_0,k_1)}(h) = h_* : \pi_1^{k_0}(X,p) \to \pi_1^{k_1}(Y,q)$ by the equation $h_*([f_1]) = [h \circ f_1]$, where $[f_1] \in \pi_1^{k_0}(X,p)$, which is well defined. Particularly, if $k_0 = k_1$, we use the following notation, $\pi_1^{k_0}(h)[1]$.

For digital pictures $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, X)$, $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, Y)$ and $(\mathbb{Z}^{n_2}, k_2, \bar{k}_2, Z)$, let $f: X \to Y$ be digitally (k_0, k_1) -continuous based map and $g: Y \to Z$ be digitally (k_1, k_2) -continuous function. Then obviously $\pi_1^{(k_0, k_2)}(g \circ f) = \pi_1^{(k_1, k_2)}(g) \circ \pi_1^{(k_0, k_1)}(f)[1]$. In particular, if $k_0 = k_1 = k_2$, $\pi_1^{k_0}(g \circ f) = \pi_1^{k_0}(g) \circ \pi_1^{k_0}(f)$. Actually, if a pointed image (X, p) is k-connected, for any point $q \in X$ there is an isomorphism $\phi: \pi_1^k(X, p) \cong \pi_1^k(X, q)[1]$.

3 Theorem. For a digital image picture $(\mathbb{Z}^n, k, \bar{k}, (X, A))$, if (X, p) is k-deformable into (A, p) then $\pi_1^k(X, p) \cong \pi_1^k(A, p)$.

PROOF. First, from the digital k-deformation $D: X \times [0,m]_{\mathbb{Z}} \to X$ such that $D(X \times \{m\}) \subset A$, let $r: (X,p) \to (A,p)$ be defined as follows: $(i \circ r)(x) = D(x,m), x \in X$ and $i: (A,p) \to (X,p)$ is the inclusion map. Then D makes $1_{(X,p)}$ be digitally pointed k-homotopic to $i \circ r$. And further, $D(x_0,t) = x_0$ for some $x_0 \in A$. Thus r is a right digital k-homotopy inverse of i. Namely, $i \circ r \simeq_{d \cdot k \cdot h} 1_{(X,p)}$. Therefore $\pi_1^k(i \circ r) = \pi_1^k(i) \circ \pi_1^k(r) = 1_{\pi_1^k(X,p)}$. Thus $\pi_1^k(r)$ is a monomorphism.

Second, for any $[g] \in \pi_1^k(A, p)$, there are a k-path $f \in F_1^k(X, p)$ and a set of k-paths $\{g_1, g_2, \dots, g_c\} \subset F_1^k(X, p)$, such that $f \simeq_{d \cdot k \cdot h} g_1, g_i \simeq_{d \cdot k \cdot h} g_{i+1}$ for $i \in \{1, 2, \dots, c-1\}$ and $g_c \simeq_{d \cdot k \cdot h} g$. Thus $\pi_1^k(r)([f]) = [g]$. Therefore $\pi_1^k(r)$ is an epimorphism. QED

4 Corollary. [1] If X is pointed k-contractible then $\pi_1^k(X,p)$ is trivial.

3 Digital (k_0, k_1) -homeomorphism

For our classification of digital images, we need special relations among digital images with k_i -adjacencies $i \in \{0, 1\}$. One of them is the digital (k_0, k_1) -homeomorphism as follows:

5 Definition. [1, 3, 4] For digital pictures $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, X)$ and $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, Y)$, a map $h: X \to Y$ is called a digital (k_0, k_1) -homeomorphism if h is digitally (k_0, k_1) -continuous and bijective and further $h^{-1}: Y \to X$ is digitally (k_1, k_0) -continuous. Then we write it by $X \approx_{d \cdot (k_0, k_1) \cdot h} Y$. If $k_0 = k_1$, we say that h is a digital homeomorphism [1].

The minimal simple closed curves in \mathbb{Z}^2 with three types which are not digital homeomorphic to each other are MSC_8, MSC_4 and $MSC'_8 (\subset \mathbb{Z}^2)[3, 4]$.

Let MSC_8 be the set which is digitally 8-homeomorphic to the image [4],

$$\{(x_1, y_1), (x_1 - 1, y_1 + 1), (x_1 - 2, y_1), (x_1 - 2, y_1 - 1), (x_1 - 1, y_1 - 2), (x_1, y_1 - 1)\}.$$

Let MSC_4 be the set which is digitally 4-homeomorphic to the image,

$$\{(x_1, y_1), (x_1, y_1 + 1), (x_1 - 1, y_1 + 1), (x_1 - 2, y_1 + 1), (x_1 - 2, y_1), (x_1 - 2, y_1 - 1), (x_1 - 1, y_1 - 1), (x_1, y_1 - 1)\},\$$

i.e., $MSC_4 \approx_{d \cdot 4 \cdot h} N_8(p_3), p_3 \in \mathbb{Z}^2$ [3, 4].

Let MSC'_8 be the set which is digitally 8-homeomorphic to the image,

$$\{(x_1, y_1), (x_1 - 1, y_1 + 1), (x_1 - 2, y_1), (x_1 - 1, y_1 - 1)\}$$

[1, 3].

We can classify digital images from the following induced digital fundamental group (k_0, k_1) - isomorphism.

6 Theorem. Let $(\mathbb{Z}^{n_0}, k_0, \bar{k}_0, (X, x_0))$ and $(\mathbb{Z}^{n_1}, k_1, \bar{k}_1, (Y, y_0))$ be digital pictures, where $k_i \in \{242, 210, 130, 50, 10\}$ in \mathbb{Z}^5 , $k_i \in \{80, 64, 32, 8\}$ in \mathbb{Z}^4 , $k_i \in \{26, 18, 6\}$ in $\mathbb{Z}^3, k_i \in \{8, 4\}$ in \mathbb{Z}^2 and $k_i \in \{3^n - 1, 2n\}$ in $\mathbb{Z}^n, n \ge 6$, $i \in \{0, 1\}$. If $h : (X, x_0) \to (Y, y_0)$ is a digital (k_0, k_1) -homeomorphism then the induced map $h_* : \pi_1^{k_0}(X, p) \to \pi_1^{k_1}(Y, q)$ defined by $h_*([f]) = [h \circ f], [f] \in \pi_1^{k_0}(X, p)$ is a digital fundamental group isomorphism.

PROOF. First, h_* is well-defined. If $f' \in [f] \in \pi_1^{k_0}(X, p)$, let $F : (X, p) \times [0, m]_{\mathbb{Z}} \to (X, p)$ be a digital k_0 -homotopy between f and f'. Then $h \circ F$ is a digital k_1 -homotopy between the k_1 -loops $h \circ f$ and $h \circ f'$. Thus $h \circ f' \in [h \circ f]$.

Second, the induced map h_* is a homomorphism.

For any maps $f, g \in F_1^{k_0}(X, p)$, the digitally $(2, k_0)$ -continuous maps $f : [0, m_1]_{\mathbb{Z}} \to (X, p)$ and $g : [0, m_2]_{\mathbb{Z}} \to (X, p)$, the map $h \circ (f * g) : [0, m_1 + m_2]_{\mathbb{Z}} \to (f * g)$

Generalized digital (k_0, k_1) -homeomorphism

(Y,q) is defined as follows:

$$h \circ (f * g) : [0, m_1 + m_2]_{\mathbb{Z}} \to (Y, q)$$
$$h \circ (f * g)(t) = \begin{cases} h(f(t)), & (0 \le t \le m_1), \\ h(g(t - m_1)), & (m_1 \le t \le m_1 + m_2) \end{cases}$$

Thus $h \circ (f * g) = (h \circ f) * (h \circ g)$ and $h_*([f] \cdot [g]) = h_*([f * g]) = [h \circ (f * g)][(h \circ f) * (h \circ g)] = [h \circ f] \cdot [h \circ g] = h_*([f]) \cdot h_*([g]).$

The induced map h_* depends not only on the digitally (k_0, k_1) -continuous map $h: (X, p) \to (Y, q)$ but also on the choice of the base points p and q.

Second, h_* is surjective: for any $[g] \in \pi_1^{k_1}(Y,q)$, we get $g : [0,m]_{\mathbb{Z}} \to (Y,q)$ is a digitally $(2,k_1)$ -continuous map such that g(0) = q = g(m). Because h is a digital (k_0,k_1) -homeomorphism, there is a digitally $(2,k_0)$ -continuous map: $f_1 : [0,m]_{\mathbb{Z}} \to (X,p)$ such that $f_1(0) = p = f_1(m)$ and $h \circ f_1 = g$. Thus $h_*([f_1]) = [h \circ f_1] = [g]$.

Third, h_* is injective: if $h_*([f_1]) = [h \circ f_1] = c_{\{q\}} \in \pi_1^{k_1}(Y,q)$, we only prove that $f_1 \simeq_{d \cdot k_0 \cdot h} c_{\{p\}}$. Since $h \circ f_1 \simeq_{d \cdot k_1 \cdot h} c_{\{q\}}$, there is a digitally $(2, k_0)$ -continuous map $f_1 : [0, m]_{\mathbb{Z}} \to (X, p)$ such that $f_1(0) = p = f_1(m)$ and $f_1 \simeq_{d \cdot k_0 \cdot h} c_{\{p\}}$.

Fourth, h_* is a homomorphism. For any $[f_1], [f_2] \in \pi_1^{k_0}(X, p), h_*([f_1] \cdot [f_2]) = h_*[f_1 * f_2] = [h \circ ([f_1 * f_2])] = [(h \circ f_1 * h \circ f_2)] = [(h \circ f_1] \cdot [h \circ f_2] h_*[f_1] \cdot h_*[f_2].$ QED

A black point in a digital picture $P = (\mathbb{Z}^n, k, \bar{k}, X)$ is called a border point if it is k-adjacent to one or more white points. The border of X in the above digital picture P is the set of all border points and it is denoted by Bd(X).

7 Example. The group $\pi_1^4(MSC_4, x_0) \simeq \pi_1^8(Bd(B_2(p, 2))).$

PROOF. Since $Bd(B_2(p,2))$ is (8,4)-homeomorphic to MSC_4 , the proof is completed.

8 Example. For the image $W_1 = B_2(p_1, 2) - \{p_1, (x_1 + 1, y_1)\} \cup N_8(p_3),$ where $p_1 = (x_1, y_1), p_2 = (x_1 + 2, y_1)$ and $p_3 = (x_1 + 3, y_1), \pi_1^8(W_1, p_2) \cong \pi_1^8(MSC_8)$. Assume that $N_8(p_3) = \{q_0 = (x_1 + 4, y_1), q_1 = (x_1 + 4, y_1 + 1), q_2 = (x_1 + 3, y_1 + 1), q_3 = (x_1 + 2, y_1 + 1), q_4 = (x_1 + 2, y_1), q_5 = (x_1 + 2, y_1 - 1), q_6 = (x_1 + 3, y_1 - 1), q_6 = (x_1 + 4, y_1 - 1)\}.$

PROOF. (Step 1): Without loss of generality, assume that MSC_8 is a subset of $B_2(p_1, 2) - \{p_1, (x_1 + 1, y_1)\}$. We get easily $B_2(p_1, 2) - \{p_1, (x_1 + 1, y_1)\}$ is 8-deformable into $W_2(\approx_{d\cdot 8\cdot h} MSC_8)$, where $W_2 = \{(x_1 + 2, y_1), (x_1 + 1, y_1 + 1), (x_1, y_1 + 1), (x_1, y_1 - 1), (x_1 + 1, y_1 - 1)\}$.

(Step 2): We prove that $N_8(p_3)$ is pointed 8-contractible into $\{p_2\}$. Namely, there is a digital 8-homotopy $H: N_8(p_3) \times [0,3]_{\mathbb{Z}} \to N_8(p_3)$ as follows:

First, $H(q_i, 0) = q_i$, for any $q_i \in N_8(p_3)$. Second, $H(q_{2i+1}, 1) = q_{2i}, H(q_{2i}, 1) = q_{2i}, i \in [0, 3]_{\mathbb{Z}}$, Third, $H(q_i, 2) = q_4, i \in \{2, 3, 4, 5\}$ and $H(q_j, 2) = q_6, j \in \{0, 1, 6, 7\}$. Finally $H(q_i, 3) = q_4, i \in [0, 7]_{\mathbb{Z}}$. Therefore $\pi_1^8(W_1, p_2) \cong \pi_1^8(MSC_8)$ from (Step 1) and (Step 2). QED

9 Corollary. If there are k_0, k_1 such that $\pi_1^{k_0}(X, p)$ is not isomorphic to $\pi_1^{k_1}(Y, q)$ then X and Y are not digitally (k_0, k_1) -homeomorphic to each other.

PROOF. A digital (k_0, k_1) -continuous map $h : (X, p) \to (Y, q)$ induces a digital fundamental group homomorphism $h_* : \pi_1^{k_0}(X, p) \to \pi_1^{k_1}(Y, q)$ defined by $h_*([f]) = [h \circ f]$. It is easy to see that h_* and h_*^{-1} are bijective homomorphisms. Thus a digital (k_0, k_1) -homeomorphism $h : (X, p) \to (Y, q)$ induces a digital fundamental group isomorphism. By the contraposition of the above statement we get the proof. QED

Acknowledgements. The many corrections and helpful suggestions of the anonymous referee are gratefully acknowledged.

References

- L. BOXER: A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision, 10, (1999), 51–62.
- [2] L. BOXER: Digitally continuous functions, Pattern Recognition Letters, 15, (1994), 833– 839.
- [3] S. E. HAN: Digital (k₀, k₁)-covering map and its properties, Honam Math. Jour., 26(2), (2004), 107–117.
- [4] S. E. HAN: Computer Topology and Its Applications, Honam Math. Jour., 25, (2003), 153-162.
- [5] E. KHALIMSKY: Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics, (1987), 227–234.
- [6] T. Y. KONG: A digital fundamental group, Computers and Graphics, 13, (1989), 159–166.
- [7] T. Y. KONG R. KOPPERMAN, P. R. MEYER: Guest Editor's preface to special issue on digital topology, Topology and Its Applications, 46, (1992), 173–179.
- [8] T. Y. KONG, A. W. ROSCOE, A. ROSENFELD: Concepts of digital topology, Topology and Its Applications, 46, (1992), 219–262.
- T. Y. KONG, A. ROSENFELD: Digital topology A brief introduction and bibliography, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
- [10] A. ROSENFELD: Continuous functions on digital pictures, Pattern Recognition Letters, 4, (1986), 177–184.