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Abstract. In this paper we consider classes consisting of pairs (B, X), where B is a base of
cardinality ≤ τ for the open subsets of a space X. Such classes are called classes of bases. For
such a class IP we define the notion of a universal element: an element (BT , T ) of IP is said to
be universal in IP if for every (BX , X) ∈ IP there exists an embedding iX

T of X into T such that
BX = {(iXT )−1(U) : U ∈ BT }. We define also the notion of a (weakly) saturated class of bases
similar to that of a saturated class of spaces in [2] and a saturated class of subsets in [3]. For
the (weakly) saturated classes of bases we prove the universality property (that is, in any such
class there exist universal elements) and the intersection property (that is, the intersection of
not more than τ many saturated classes of bases is also saturated). We give some relations
between these classes and the classes of spaces and classes of subsets. Furthermore, we give a
method of construction of saturated classes of bases by saturated classes of subsets.

Also, we consider classes consisting of triads (Q, B, X), where Q is a subset of a space
X and B is a set of open subsets of X such that the set {Q ∩ U : U ∈ B} is a base for the
open subsets of the subspace Q. Such classes are called classes of p-bases (positional bases).
For such classes we also define the notion of a universal element and the notion of a saturated
class of p-bases and prove the universality and the intersection properties. Some examples are
given.
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Introduction

Agreement. All spaces considered in the paper are assumed to be T0-spaces of
weight less than or equal to a given infinite cardinal denoted by τ . The notions
and notations introduced in the papers [2] and [3] are assumed to be known.

The universality problem is to determine whether there are universal ele-
ments in a given class of spaces. Problems concerning universal and containing
spaces appeared in topology in its early development, when special classes of
separable metrizable spaces were considered. At first, the construction of uni-
versal elements had more or less a heuristic nature. With the consideration of
more general classes of spaces, some methods of construction of universal ele-
ments appeared. The methods using factorization theorems seem to be the most
important.
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The containing spaces constructed in [2] provide us with a new point of
view on the universality problem. Suppose that we have a class IP of T0-spaces
of weight ≤ τ . The basic idea is to find a universal element in IP among the
corresponding containing spaces, that is, for a suitable (indexed) collection S of
elements of IP to find a pair (M,R), where M is a co-mark of S and R is an M-
admissible family of equivalence relation on S, such that the containing space
T(M,R) to be an element of IP (and, therefore, T(M,R) will be a universal
element in IP ). In such a manner we can prove in a unified way the existence of
a universal element for many (well-known) classes of spaces. (A generalization
of the construction of containing spaces given in [2] is considered in [4]).

The above idea becomes more fruitful if from the class IP of spaces we
require the existence of “sufficiently many” pairs (M,R) for which T(M,R) ∈
IP . This requirement can be formulated more precisely as follows: for every
(indexed) collection S of elements of IP there exists a co-mark M+ of S with
the property that for every co-mark M, which is a co-extension of M+, there
exists an M-admissible family R+ of equivalence relations on S such that for
every admissible family R, which is a final refinement of R+, the containing space
T(M,R) belongs to IP . Classes satisfying this condition are called saturated.
Thus, in our method of construction of universal spaces, the notion of a saturated
class of spaces is a very natural object of research. We note that many of the
well-known classes of spaces in which there are universal elements are saturated.
(However, in [2] this is proved only for the class of all T0-spaces, for the class
of all regular T0-spaces, and for the class of all completely regular T0-spaces).

Saturated classes of spaces have of course the universality property, that is,
in any such class there exist universal elements. They have also the intersection
property, that is, the intersection of not more than τ many saturated classes is
also a saturated class. (We note that in general the classes of spaces in which
there exist universal elements do not have this property). So, any “new” sat-
urated class “multiply” the number of known classes of spaces in which there
are universal elements. Saturated classes are also convenient to use for (induc-
tive) construction of other saturated classes of spaces. (In [5] saturated classes
of spaces are used for the construction of “saturated classes” of mappings and,
therefore, for the construction of classes of mappings in which there are universal
elements).

In [3] the further investigation of the method considered in [2] is given.
Suppose that for every element X of an indexed collection S of spaces a subset
QX of X is given. Then, the indexed collection Q ≡ {QX : X ∈ S} of spaces
can be considered. For any co-mark M of S the trace of M on Q, which is
a co-mark of Q denoted by M|Q, is defined by a natural way. Also, for any
family R of equivalence relation on S the trace of R on Q, which is a family
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of equivalence relations on Q denoted by R|Q, is defined. In the case, where
R|Q is an M|Q-admissible, that is, R is (M,Q)-admissible, we can consider the
containing space T|Q ≡ T(M|Q,R|Q). In [3] it is proved that this space can be
considered by a natural way as a (specific) subset of the space T ≡ T(M,R).

The specific subsets of the containing spaces can be used in order to verify
that a given class of spaces is saturated (and, therefore, in order to verify that
in this class there is a universal space). This can be done as follows. Suppose
that the elements of a class IP of spaces is defined by a property P , that is, a
space X belongs to IP if and only if X satisfies property P . For the formulation
of this property we use some subsets of a space, whose “composition” can be
considered as a “structure” on this space. If for “sufficiently many” pairs (M,R),
where M is a co-mark of an indexed collection S of elements of IP and R is an
M-admissible family of equivalence relations on S, the “composition” of the
corresponding specific subsets defines the same “structure” on the containing
spaces T(M,R), then these containing spaces belong to IP , which means that
the class IP is saturated.

The universal spaces in IP constructed in such a manner (that is, by trans-
fered the given “structure” on elements of IP to the corresponding containing
spaces) have some additional property: the embeddings of elements of IP into
these universal spaces “preserve” the “structure”. Thus, we obtain new type
of universal elements. The consideration of such universal elements suggest an
idea to us to consider classes of spaces with a given “structure”. For example,
in parallels to the class of all separable metrizable countable-dimensional spaces
(in which there exist universal elements) we can consider the class IP of all pairs
({Qi : i ∈ ω}, X), where {Qi : i ∈ ω} is a countable set of zero-dimensional sub-
sets of a separable metrizable space X (the “structure” on X), whose union is
X. We can define the notion of a universal element in this class preserving the
“structure” as follows: an element ({QT

i : i ∈ ω}, T ) of IP is said to be univer-
sal (respectively, properly universal) in IP if for every ({QX

i : i ∈ ω}, X) ∈ IP
there exists an embedding iXT of X into T such that iXT (QX

i ) ⊂ QT
i (respectively,

(iXT )−1(QT
i ) = QX

i ), i ∈ ω. Of course, such universal elements are “more strong”
than the usual universal spaces in the class of all countable-dimensional spaces.
(Although in the present paper we do not consider such kind of classes we note
that the class IP is “saturated” and, therefore, in this class there exist universal
elements preserving the “structure”).

The simplest “structure” is that, which is defined by a subset of a space.
In [3] classes consisting of pairs (Q,X), where Q is a subset of a space X,
is considered. Such a class is called a class of subsets. The investigation of
such classes actually means the investigation of relative properties of subsets of
spaces. For a class of subsets a new notion of a universal element and a notion
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of a saturated class of subsets are defined and the universality and intersection
properties are proved. It is also proved that the classes consisting of all pairs
(Q,X) such that: (a) Q is a closed subset of X, (b) Q is an open subset of
X, and (c) Q is a nowhere dense subset of X, are saturated classes of spaces.
(In [3] it is announced also the following result: the class of all pairs (Q,X),
where Q is a Borel set of the multiplicative (additive) class α in a separable
metrizable space X, is a saturated class of subsets. It is interesting to compare
the existence of universal elements in this class with the result of [6] (see also
[1]).

An other simple “structure” on a space is the given base for the open subsets
of the space. In Section 1 of the present paper we consider classes consisting
of pairs (B,X), where B is a base for the open subsets of a space X. Such
classes are called classes of bases. For the classes of bases, as for the classes of
spaces in [2] and for the classes of subsets in [3], we define a new notion of a
universal element: an element (BT , T ) of a class IP of bases is called universal
if for every (BX , X) ∈ IP there exists an embedding iXT of X into T such that
BX = {(iXT )−1(U) : U ∈ BT }. Also we define the notion of a (weakly) saturated
class of bases and prove the universality and intersection properties for such
classes. We give some relations between the (weakly) saturated classes of bases
and the saturated classes of spaces and subsets. In particular, we prove that the
class of bases consisting of all pairs (B,X) such that the pair (U,X) belongs to
a given saturated class of subsets for any element U of B, is a saturated class
of bases.

In Section 2 we consider the so-called classes of p-bases consisting of triads
(Q,B,X), where Q is a subset of a space X and B is a set of open subsets of X
such that the set {Q∩U : U ∈ B} is a base for the open subsets of the subspace
Q. (Such a set B is called p-base (positional base) for Q in X). For such classes
we define the notion of a universal element and the notion of a saturated class of
p-base and give some results, which are similar to that of the classes of spaces.
Some examples of the saturated classes of p-bases are given.

Although, the dimensional-like functions are not investigated in the present
paper we note that the saturated classes of bases and saturated classes of p-
bases are convenient to use for the construction of different such functions df
having the “saturation property”, that is, for any ordinal α ∈ τ+ or integer
n ∈ ω the class of all spaces X such that df(X) ≤ α or df(X) ≤ n is a saturated
class of spaces. Moreover, it is possible to construct dimensional-like functions
having the “saturation property” with the domain not only the class of spaces
but, for example, the class of all subsets, the class of all bases or the class of all
p-bases.

Below, we define some specific notions and notations, which are used in the
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paper. This definition is slightly more general than the corresponding definition
of [2].

1 Definition. Let S be an indexed collection of spaces. An S-indexed set of
families is an indexed set F ≡ {FX : X ∈ S}, where FX is a family of subsets
of X. The family FX is denoted also by F(X).

An S-indexed set F ≡ {FX : X ∈ S} of families is said to be a co-base for S
if FX is a base for X of cardinality less than or equal to τ containing the empty
set. (We underline the fact that the cardinality of FX is ≤ τ).

An S-indexed set of τ -indexed families is an indexed set

N ≡ {NX : X ∈ S},

where NX is a τ -indexed family {NX
δ : δ ∈ τ} of subsets of X. The indexed

family NX is denoted also by N(X).

An S-indexed set N ≡ {NX : X ∈ S} of τ -indexed families is said to be a
co-indication of an S-indexed set F ≡ {FX : X ∈ S} of families if NX is an
indication of FX for every X ∈ S. (We underline the fact that the indexing set
of NX is the set τ). The above notion is frequently used in the case, where F is
a co-base for S. In this case N is said to be a co-mark of S.

Let N0 ≡ {{N0,X
δ : δ ∈ τ} : X ∈ S} and N1 ≡ {{N1,X

δ : δ ∈ τ} : X ∈ S} be
two S-indexed sets of τ -indexed families. It is said that N1 is a co-extension of
N0 if there exists an one-to-one mapping θ of τ into itself such thatN 0,X

δ = N1,X
θ(δ)

for every X ∈ S. The mapping θ is called an indicial mapping of this co-
extension or an indicial mapping from N0 to N1. (We note that in general θ is
not unique).

Suppose that for every X ∈ S a subset QX of X is given. Then, the S-
indexed set Q ≡ {QX : X ∈ S} is called a restriction of S. The set QX is
denoted also by Q(X).

2 Remark. According to our agreement all notions and notations of the
papers [2] and [3] are assumed to be known. Below, we indicate some of these
specific notion and notations, which are used in the present paper:

An admissible family R ≡ {∼s: s ∈ F} of equivalence relations on S (see
[2]).

The set C♦(R) and its elements L (see [2]).

An M-admissible family R of equivalence relations on S (see [2]).

A family R is a final refinement of a family R+ (see [2]).

The space T and an element or point a of T (see [2]).

The natural embedding of X ∈ S into T (see [2]).

The subset T(L) of T (see [2]).

The subset T(L|Q) of T (see [3]).



146 S. D. Iliadis

The θ(τ)-standard base BL
θ(τ) for T(L) and its elements UL

δ (L) (see [2]).

A IK-restriction Q of S (see [3]).

An (M,Q)-admissible family R of equivalence relations on S (see [3]).

A complete restriction Q of S (see [3]).

An (M,R)-complete restriction Q of S (see [3]).

The operators Cl, Bd, and Int (see [3]).

A saturated class of spaces and a saturated class of subsets (see [2] and [3]).

A complete saturated class of subsets (see [3]).

A marked space and a mark of a marked space (see [2]).

The minimal algebra of X containing the given set of subset of X (see [2]).

The s-algebra AX
s of X, s ∈ F (see [2]).

The natural isomorphism i of AX
s onto AY

s (see [2]).

The mapping dX
s (see [2]).

1 Saturated classes of bases

3 Definition. The class consisting of all pairs (B,X), where B is a base of
cardinality ≤ τ for the open subsets of a space X containing the empty set, is
called the class of all bases and is denoted by IP(base). Any subclass of IP(base)
is called a class of bases. Such a class IP is said to be topological if for every
homeomorphism h of a space X onto a space Y the condition (B,X) ∈ IP
implies that ({h(V ) : V ∈ B}, Y ) ∈ IP . In what follows, an arbitrary considered
class of bases is assumed to be topological.

4 Definition. Let IP be a class of bases. We say that a base B for a space
X is a IP -base if (B,X) ∈ IP .

A co-base B for an indexed collection S of spaces is said to be a IP -co-base
if for every X ∈ S, B(X) is a IP -base for X.

5 Definition. A non-empty class IP of bases is said to be saturated (re-
spectively, weakly saturated) if for every indexed collection S of spaces, a IP -co-
base B for S, and for every (respectively, for some) co-indication N of B there
exists a co-extension M+ of N satisfying the following condition: for every co-
extension M of M+ there exists an M-admissible family R+ of equivalence
relations on S such that for every admissible family R of equivalence relations
on S, which is a final refinement of R+, and for every element L ∈ C♦(R), we
have (BL

θ(τ),T(L)) ∈ IP , where θ is an indicial mapping from N to M.

The considered co-mark M+ is called an initial co-mark (corresponding to
the co-indication N of B and the class IP ), and the family R+ is called an initial
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family (corresponding to the co-mark M, the co-indication N of B, and the class
IP ).

Obviously, the class of all bases is saturated and any saturated class of bases
is weakly saturated.

The following lemma shows that the base BL
θ(τ) of the definition of a (weakly)

saturated class of bases is independent of the choice of the indicial mapping θ.
This lemma is easily proved.

6 Lemma. Let S be an indexed collection of spaces, M a co-mark of S, and
R an M-admissible family of equivalence relations on S. Suppose that M is a
co-extension of a co-indexed S-family N. If θ0 and θ1 are two indicial mappings
from N to M, then for every L ∈ C♦(R), BL

θ0(τ)B
L
θ1(τ).

The following proposition is the intersection property of the saturated classes
of basses.

7 Proposition. The non-empty intersection of not more than τ many sat-
urated classes of bases is also a saturated class of bases.

Proof. Suppose that for every δ ∈ τ , IPδ is a saturated class of bases and
let

IP = ∩{IPδ : δ ∈ τ}.
Let S be an indexed collection of spaces and B a IP -co-base for S. It is clear
that B is a IPδ-co-base for every δ ∈ τ . Consider an arbitrary co-indication N
of B.

For every δ ∈ τ denote by M+
δ an initial co-mark of S corresponding to the

co-indication N of B and the class IPδ, and let M+ be a co-extension of all Mδ

(see Lemma 3.2 of [2]). Consider an arbitrary co-extension

M ≡ {{UX
δ : δ ∈ τ} : X ∈ S}

of M+. Then, M is also a co-extension of N. We denote by θ an indicial mapping
from N to M.

Let R+
δ be an initial family of equivalence relations on S corresponding to

the co-mark M, the co-indication N of B, and the class IPδ. Let also R+ be a
family of equivalence relations on S, which is a final refinement of all R+

δ (see
Lemma 3.1 of [2]). Consider an arbitrary admissible family R of equivalence
relations on S, which is a final refinement of R+, and let L be an element of
C♦(R).

Since IPδ, δ ∈ τ , is saturated, the base BL
θ(τ) for the space T(L) is a IPδ-base.

By the definition of IP , BL
θ(τ) is also a IP -base. Hence, M+ is an initial co-mark

corresponding to the co-indication N of B and the class IP , and R+ is an initial
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family corresponding to the co-mark M, the co-indication N of B, and the class
IP . Thus, IP is a saturated class of bases. QED

Similarly we can prove the following proposition.

8 Proposition. The non-empty intersection of a saturated class of bases
and a weakly saturated class of bases is a weakly saturated class of bases.

9 Definition. An element (BT , T ) of a class IP of bases is said to be uni-
versal in IP if for every element (BX , X) of IP there exists an embedding h of
X into T such that BX = {h−1(V ) : V ∈ BT }.

The following proposition is proved similarly to the Proposition 3.4 of [2].

10 Proposition. In any weakly saturated class of bases there exist universal
elements.

11 Definition. Let IP be a class of bases. The class of all spaces X such
that (B,X) ∈ IP for some base B for X is said to be the space-component of
IP .

The following two propositions are easily proved. They give some relations
between the (weakly) saturated classes and saturated classes of spaces.

12 Proposition. The space-component of any weakly saturated class of
bases is a saturated class of spaces.

13 Proposition. Let IP be a (weakly) saturated class of bases and IE a
saturated class of spaces. Then, the class

{(B,X) ∈ IP : X ∈ IE}
is a (weakly) saturated class of bases.

In the next proposition we give a method of construction of saturated classes
of bases by a given saturated class of subsets.

14 Proposition. Let IK be a saturated class of subsets. Then, the class IP
of bases consisting of all pairs (B,X) ∈ IP(base) such that (U,X) ∈ IK for every
element U of B, is a saturated class.

Proof. Let S be an indexed collection of spaces, B a IP -co-base for S, and
let

N ≡ {{V X
η : η ∈ τ} : X ∈ S}

be an arbitrary co-indication of B.
For every η ∈ τ we consider the restriction

Vη ≡ {V X
η : X ∈ S}

of S. Since B is a IP -co-base, this restriction is a IK-restriction of S. Since IK
is a saturated class there exists a co-mark M+ of S such that for every η ∈ τ ,
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M+ is an initial co-mark corresponding to the IK-restriction Vη. We can also
suppose that M+ is a co-extension of N. Let

M ≡ {{UX
δ : δ ∈ τ} : X ∈ S}

be an arbitrary co-extension of M+. Then, M is also a co-extension of N. Denote
by θ an indicial mapping from N to M.

Let R+ be a family of equivalence relations on S such that for every η ∈ τ ,
R+ is an initial family corresponding to the co-mark M and the IK-restriction
Vη. Let R be an arbitrary admissible family of equivalence relations on S,
which is a final refinement of R+. We prove that M+ is an initial co-mark
of S corresponding to the co-indication N of B and the class IP , and R+ is
an initial family corresponding to the co-mark M, the co-indication N of B,
and the class IP . For this purpose, we denote by L an arbitrary element of
C♦(R) and consider the base BL

θ(τ) for T(L). Any element UT
δ (H) of this base

coincides with the subset T(H|Vη) of T(L), where η = θ−1(δ). By construction,
(T(H|Vη),T(L)) ∈ IK. Therefore, (BL

θ(τ),T(L)) ∈ IP . Hence, M+ is an initial co-

mark and R+ is an initial family. Thus, IP is a saturated class of bases. QED

The given below Proposition based on Corollaries 4.5–4.7 of [3] and the
following unpublished result of the author:

The class IP(Fσ) (respectively, IP(Gδ)) of subsets consisting of all pairs
(Q,X) such that Q is an Fσ-subset of X (respectively, a Gδ-subset of X) is
a complete saturated class of subsets. (This result is a consequence of a more
general result concerning the Borel type sets).

15 Proposition. The non-empty class consisting of all pairs (B,X) of IP
(base) satisfying one of the following conditions:

(1) (U,X) ∈ IP(Fσ) for every U ∈ B,
(2) (U,X) ∈ Cl−1(IP(Gδ)) for every U ∈ B,
(3) (U,X) ∈ Bd−1(IP(Gδ)) for every U ∈ B,
(4) (U,X) ∈ Int(Cl(IP(Op))) for every U ∈ B,

is a saturated class of bases. Therefore, in such a class there exist universal
elements.

16 Corollary. The class of all spaces having a base B satisfying one of the
given below conditions is saturated and, therefore, in this class there exists a
universal space:

(1) The elements of B are Fσ-sets,
(2) The boundaries of elements of B are Gδ-sets,
(3) The closures of elements of B are Gδ-sets,
(4) The elements of B are regular open. (An open subset U of a space X is

said to be regular open if U = IntX(Cl(U))).
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Proof. We prove only the second case. The other cases are proved sim-
ilarly. Let IE be the class of all spaces having a base B satisfying condition
(2) of the corollary. Denote by IP the class of subsets consisting of all pairs
(B,X) ∈ IP(base) such that the closure of each element of B is a Gδ-set. By
Proposition 15, IP is a saturated class. Obviously, the space-component of IP
coincides with IE. By Proposition 12 the class IE is saturated. QED

2 Saturated classes of p-bases

17 Definition. Let Q be a subset of a space X. A set B of open subsets of a
space X containing the empty set is said to be p-base if the set {Q∩U : U ∈ B}
is a base for the open subsets of the subspace Q.

A p-base B for Q in X is said to be pos-base if for every x ∈ Q and an open
neighbourhood U of x in X there exists an element V of B such that x ∈ V ⊂ U .

A p-base B for Q in X is said to be ps-base if B is base for the open subsets
of X.

18 Definition. The class consisting of all triads (Q,B,X), where Q is a
subset of a space X and B is a p-base for Q in X of cardinality ≤ τ , is called the
class of all p-bases and is denoted by IP(p-base). Any subclass IP of IP(p-base)
is called a class of p-bases. Such a class IP is said to be topological if for every
homeomorphism h of a space X onto a space Y the condition (Q,B,X) ∈ IP
implies that (h(Q), {h(V ) : V ∈ B}, Y ) ∈ IP .

In what follows an arbitrary considered class of p-bases is assumed to be
topological.

19 Definition. The class of all elements (Q,B,X) of IP(p-base), where B
is a pos-base for Q in X (respectively, a base for X), is called the class of all
pos-bases (respectively, the class of all ps-bases) and is denoted by IP(pos-base)
(respectively, by IP(ps-base)).

20 Definition. Let S is an indexed collection of spaces and Q a restriction
of S. The S-indexed family B ≡ {B(X) : X ∈ S} is said to be a co-p-base for
Q in S if B(X) is a p-base for Q(X) in X.

21 Definition. Let IP be a class of p-bases. We say that a p-base B for a
subset Q in a space X is a IP -p-base if (Q,B,X) ∈ IP .

A co-p-base B for a restriction Q of an indexed collection S of spaces is
called a IP -co-p-base if for every X ∈ S, B(X) is a IP -p-base for Q(X) in X.

22 Definition. A non-empty class IP of p-bases is said to be saturated
(respectively, weakly saturated) if for every indexed collection S of spaces, a
restriction Q of S, a IP -co-p-base B for Q in S, and for every (respectively, for
some) co-indication N of B there exists a co-mark M+, which is a co-extension
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of N, satisfying the following condition: for every co-extension M of M+ there
exists an (M,Q)-admissible family R+ of equivalence relations on S such that
for every admissible family R of equivalence relations on S, which is a final
refinement of R+, and for every elements L, H, and E of C♦(R) for which
E ⊂ H ⊂ L, we have (T(E|Q),BH

θ(τ),T(L)) ∈ IP , where θ is an indicial mapping
from N to M.

The considered co-mark M+ is called an initial co-mark ( corresponding to
the restriction Q, the co-indication N of B, and the class IP ) and the family
R+ is called an initial family (corresponding to the co-mark M, the restriction
Q, the co-indication N of B, and the class IP ).

It is easy to see that the classes IP(p-base), IP(pos-base), and IP(ps-base)
are saturated and that any saturated class of p-bases is also weakly saturated.

The following proposition, which is the intersection property of the (weakly)
saturated classes of p-bases, is proved similarly to Proposition 7.

23 Proposition. The following statements are true:

(1) The non-empty intersection of not more than τ many saturated classes
of p-bases is also a saturated class of p-bases.

(2) The non-empty intersection of a saturated class of p-bases and a weakly
saturated class of p-bases is weakly saturated.

24 Definition. Let IP be a class of p-bases. The class consisting of all spaces
X such that (Q,B,X) ∈ IP for some subset Q of X and some p-base B for Q
in X is said to be the space-component of IP .

The class consisting of all spaces Q such that (Q,B,X) ∈ IP for some space
X (therefore, Q ⊂ X) and some p-base B for Q in X is said to be the subset-
component of IP .

The class of subsets consisting of all pairs (Q,X) such that (Q,B,X) ∈ IP
for some p-base B for Q in X is called the adjacent to IP class of subsets.

25 Definition. A class IP of p-bases is said to be complete if the adjacent
to IP class of subsets is complete.

26 Definition. An element (QT , BT , T ) of a class IP of p-bases is said to
be universal in IP (respectively, properly universal in IP ) if for every element
(QZ , BZ , Z) ∈ IP there exists an embedding h of Z into T such that QZ ⊂
h−1(QT ) (respectively, QZ = h−1(QT )) and BZ = {h−1(V ) : V ∈ BT }.

27 Proposition. In any (complete) weakly saturated class of p-bases there
exist (properly) universal elements.

Proof. Let IP be a complete weakly saturated class of p-bases. Since IP is
a topological class there exists a set IP0 of elements of IP such that for every
element (QY , BY , Y ) ∈ IP there exists an element (QX , BX , X) ∈ IP0 and a
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homeomorphism h of Y onto X such that h(QY ) = QX and

BY = {h−1(V ) : V ∈ BX}.

Denote by S the indexed collection of spaces, which is defined as follows.
The indexing set of S is the set IP0 and the element of S having as index an
element (QX , BX , X) of IP0 is the space X. Therefore, for every X ∈ S there
exist a unique determined subset QX of X and a unique determined p-base BX

for QX in X such that (QX , BX , X) ∈ IP0.
Consider the restriction

Q ≡ {QX : X ∈ S} ofS

and the IP -co-p-base
B ≡ {BX : X ∈ S}

for Q in S. Since IP is a weakly saturated class there exists a co-indication N
of B and an initial co-mark M+ of S corresponding to the restriction Q, the
co-indication N of B, and the class IP . (Therefore, M+ is a co-extension of N).
Let M be an arbitrary co-extension of M+. Then, M is also a co-extension of
N. Denote by θ an indicial mapping from N to M.

Let R+ be an initial family of equivalence relations on S corresponding to
the co-mark M, the restriction Q, the co-indication N of B, and the class IP .
Let also R be an arbitrary family of equivalence relations on S, which is a final
refinement of R+.

Since IP is a complete class by Lemma 3.4 of [3] we can suppose that M and
R are chosen in such a manner that Q is an (M,R)-complete restriction.

By construction, (T|Q,BT
θ(τ),T) ∈ IP . We prove that this element is prop-

erly universal in IP . Indeed, let (QY , BY , Y ) ∈ IP . There exists an element
(QX , BX , X) of IP0 and a homeomorphism h of Y ontoX such that h(QY ) = QX

and BY = {h−1(V ) : V ∈ BX}. Denote by eX
T the natural embedding of X into

T and set f = eX
T ◦ h.

We prove that f−1(QT) = QY and BY = {f−1(V ) : V ∈ BT
θ(τ)}. For this it

suffices to prove that (eX
T )−1(QT) = QX and BX = {(eX

T )−1(V ) : V ∈ BT
θ(τ)}.

However, the first relation follows immediately by the fact that Q is an (M,R)-
complete restriction and the second by the fact that IP is a weakly saturated
class. Thus, in IP there exists a properly universal element. The case, where the
considered class is weakly saturated is proved similarly. QED

The next proposition is proved similarly to Proposition 14.

28 Proposition. Let IP be a saturated class of p-bases and IK a saturated
class of subsets. Then, the class of p-bases consisting of all elements (Q,B,X) ∈
IP(p-base) such that (U,X) ∈ IK for every U ∈ B is a saturated class.
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The following two propositions are easily proved.

29 Proposition. Let IP be a (complete) (weakly) saturated class of p-bases,
IF a saturated class of subsets, and IE a saturated class of spaces. Then, the
classes

{(Q,B,X) ∈ IP : (Q,X) ∈ IF},
{(Q,B,X) ∈ IP : Q ∈ IE},
{(Q,B,X) ∈ IP : X ∈ IE},
{(Q,B,X) ∈ IP : B is a pos-base for Q in X},
{(Q,B,X) ∈ IP : B is a base for X}

are also (complete) (weakly) saturated classes of p-bases.

30 Proposition. Let IP be a weakly saturated class of p-bases. Then, the
space-component of IP , the subset-component of IP , and the adjacent to IP class
of subsets are saturated classes.

Now, we define different kinds of “regularity” of p-bases.

31 Definition. Let B be a p-base for a subset Q in a space X. Then, B is
said to be: (a) a T3-p-base, (b) a Ts

3-p-base, (c) a Tc
3-p-base, and (d) a Th

3 -p-base
if for every point x ∈ Q and for every neighbourhood U ∈ B of x there exists
an element V ∈ B such that x ∈ V ⊂ U and

(a) ClX(V ) ⊂ U ,
(b) ClX(V ) ∩Q ⊂ U ,
(c) ClX(V ∩Q) ⊂ U , and
(d) ClQ(V ∩Q) ⊂ U , respectively.

We denote by IP(T3-p-base) (respectively, by IP(Ts
3-p-base), IP(Tc

3-p-base),
and by IP(Th

3 -p-base)) the class of p-bases consisting of all triads (Q,B,X) ∈
IP (p-base) such that Q is a subset of a space X and B is a T3-p-base (respec-
tively, a Ts

3-p-base, a Tc
3-p-base, and a Th

3 -p-base).

32 Proposition. The classes

IP(T3-p-base),

IP(Ts
3-p-base),

IP(Tc
3-p-base),

and

IP(Th
3-p-base)

are saturated classes of p-bases.
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Proof. We prove the proposition for the class IP ≡ IP(Ts
3-p-base). The

proofs for the other classes are similar.
Let S be an indexed collection of spaces, Q ≡ {QX : X ∈ S} a restriction

of S, and B a IP-co-p-base for Q in S. Denote by

N ≡ {{V X
δ : δ ∈ τ} : X ∈ S}

an arbitrary co-indication of B. Let ϑ0 and ϑ1 be two one-to-one mappings of
τ into itself such that ϑ0(τ) ∩ ϑ1(τ) = ∅. Let

M+ ≡ {{WX
δ : δ ∈ τ} : X ∈ S}

be a co-mark of S such that V X
δ = WX

ϑ0(δ) andX\ClX(V X
δ ) = WX

ϑ1(δ). Obviously,

M+ is a co-extension of N. Let also

M ≡ {{UX
δ : δ ∈ τ} : X ∈ S}

be an arbitrary co-extension of M+ and θ an inditial mapping from M+ to M.
Set θ0 = θ ◦ ϑ0 and θ1 = θ ◦ ϑ1. Then, M is also a co-extension of N and θ0 is
an indicial mapping from N to M.

Now, we consider the elements of S as marked spaces. The chosen mark of
an element X ∈ S is considered to be the mark M(X). For every s ∈ F \ {∅}
and for every X ∈ S denote by ÃX

s the minimal algebra of X containing the set
AX

s ∪ {QX ∩A : A ∈ AX
s }, where AX

s is the s-algebra of the marked space X.
For every s ∈ F we define an equivalence relation ∼s

+ on S considering that
two elements X and Y of S are ∼s

+-equivalent if either s = ∅ or s 6= ∅ and:
(a) X ∼s

M Y and dX
s (QX) = dY

s (QY ) (therefore, we can consider the natural

isomorphism i of AX
s onto AY

s ), and (b) there exists an isomorphism ĩ of ÃX
s

onto ÃY
s such that ĩ(A) = i(A) and ĩ(QX ∩ A) = QY ∩ i(A) for every A ∈ AX

s .
It is easy to verify that ∼s

+ is really an equivalence relation on S. Moreover,
the family R+ ≡ {∼s

+: s ∈ F} is an (M,Q)-admissible family of equivalence
relations on S.

We prove that M+ is an initial co-mark corresponding to the restriction
Q, the co-indication N of B, and the class IP, and R+ is an initial family
corresponding to the co-mark M, the restriction Q, the co-indication N of B,
and the class IP. Indeed, let R ≡ {∼s: s ∈ F} be an arbitrary admissible
family of equivalence relations on S, which is a final refinement of R+. Consider
elements L, H, and E of C♦(R) such that E ⊂ H ⊂ L. We need to prove that
the p-base BH

θ0(τ) for T(E|Q) in T(L) is a Ts
3-p-base. For this it suffices to prove

that the p-base BT
θ0(τ) for T|Q in T is a Ts

3-p-base.

Let a be a point of T|Q and U ∈ BT
θ0(τ) an open neighbourhood of a. We

need to find an element V of BT
θ0(τ) such that a ∈ V ⊂ ClT(V ) ∩ T|Q ⊂ U .
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Without loss of generality we can suppose that U = UT
θ0(δ)(K) ∈ BT

θ0(τ), where

δ ∈ τ and K ∈ C(∼t) for some t ∈ F . Hence, UX
θ0(δ) = V X

δ ∈ N(X) for every

X ∈ K. There exists an element (x,X) of a such that x ∈ QX ∩V X
δ and X ∈ K

(see Lemma 2.7 of [2]). Since B(X) is a Ts
3-base for QX in X there exists an

element ε of τ such that x ∈ V X
ε and

ClX(V X
ε ) ∩QX ⊂ V X

δ

or, equivalently, x ∈ UX
θ0(ε) and

ClX(UX
θ0(ε)) ∩QX ⊂ UX

θ0(δ)
.

Let s = {θ0(δ), θ0(ε), θ1(ε)}. Since the family R is a final refinement of R+

there exists an element q of F such that ∼q⊂∼s
+ and t ⊂ q. Let F be the ∼q-

equivalence class of X. Then, F ⊂ K. We prove that the set V ≡ UT
θ0(ε)(F)

satisfies the above mentioned conditions, that is, a ∈ UT
θ0(ε)(F) and

ClT(UT
θ0(ε)(F)) ∩ T|Q ⊂ UT

θ0(δ)(F) ⊂ UT
θ0(δ)(K).

It is suffices to prove the first inclusion. Let b ∈ ClT(UT
θ0(ε)(F)) ∩ T|Q. There

exists an element (y, Y ) of b such that y ∈ QY and Y ∈ F. By Lemma 2.7 of
[2], y ∈ ClY (UY

θ0(ε)) and, therefore, y ∈ ClY (UY
θ0(ε)) ∩ QY . By construction, the

sets UY
θ0(δ) and ClY (UY

θ0(ε)) = Y \ UY
θ1(ε) are elements of AY

s . Moreover,

i(UX
θ0(δ)) = UY

θ0(δ)

and
i(ClX(UX

θ0(ε)))i(X \ UX
θ1(ε))Y \ UY

θ1(ε)ClY (UY
θ0(ε)),

where i is the natural isomorphism of AX
s onto AY

s . Therefore,

ĩ(ClX(UX
θ0(ε)) ∩QX)ClY (UY

θ0(ε)) ∩QY .

Since ĩ is an isomorphism, by Lemma 1.1 of [2] relation (1∗) implies that

ClY (UY
θ0(ε)) ∩QY ⊂ UY

θ0(δ),

which means that y ∈ UY
θ0(δ). Therefore, b ∈ UT

θ0(δ)(F), which proves relation

(2∗).
The above show that BT

θ0(τ) is a Ts
3-p-base. Hence, R+ is an initial family

and, therefore, M+ is an initial co-mark. Thus, IP is a saturation class of p-
bases. QED
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