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Abstract. We study diagonalizations of covers using various selection principles, where the
covers are related to linear quasiorderings (τ -covers). This includes: equivalences and nonequiv-
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lems for this variant which are still open in the case of τ -covers. This new variant introduces
new (and tighter) topological and combinatorial lower bounds on the Minimal Tower problem.

Keywords: Gerlits-Nagy property γ-sets, γ-cover, ω-cover, τ -cover, tower, selection princi-
ples, Borel covers, open covers.

MSC 2000 classification: 03E05, 54D20, 54D80.

1 Introduction

1.1 Combinatorial spaces

We consider zero-dimensional sets of real numbers. For convenience, we may
consider other spaces with more evident combinatorial structure, such as the
Baire space NN of infinite sequences of natural numbers, and the Cantor space
N{0, 1} of infinite sequences of “bits” (both equipped with the product topol-
ogy). The Cantor space can be identified with P (N) using characteristic func-
tions. We will often work in the subspace P∞(N) of P (N), consisting of the
infinite sets of natural numbers. These spaces, as well as any separable, zero-
dimensional metric space, are homeomorphic to sets of reals, thus our results
about sets of reals can be thought of as talking about this more general case.

iThis paper constitutes a part of the author’s doctoral dissertation at Bar-Ilan University.
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1.2 Selection principles

Let U and V be collections of covers of a space X. The following selection
hypotheses have a long history for the case when the collections U and V are
topologically significant.

S1(U,V): For each sequence {Un}n∈N of members of U, there is a sequence {Vn}n∈N

such that for each n Vn ∈ Un, and {Vn}n∈N ∈ V.

Sfin(U,V): For each sequence {Un}n∈N of members of U, there is a sequence {Fn}n∈N

such that each Fn is a finite (possibly empty) subset of Un, and
⋃

n∈N
Fn ∈

V.

Ufin(U,V): For each sequence {Un}n∈N of members of U which do not contain a finite
subcover, there exists a sequence {Fn}n∈N such that for each n Fn is a
finite (possibly empty) subset of Un, and {∪Fn}n∈N ∈ V.

We make the convention that

The space X is infinite and all covers we consider are assumed not
to have X as an element.

An ω-cover of X is a cover such that each finite subset of X is contained in
some member of the cover. It is a γ-cover if it is infinite, and each element of
X belongs to all but finitely many members of the cover. Following [7] and [13],
we consider the following types of covers:

O (respectively, B): The collection of countable open (respectively, Borel)
covers of X.

Ω (respectively, BΩ): The collection of countable open (respectively, Borel)
ω-covers of X.

Γ (respectively, BΓ): The collection of countable open (respectively, Borel)
γ-covers of X.

The inclusions among these classes can be summarized as follows:

BΓ → BΩ → B
↑ ↑ ↑
Γ → Ω → O

These inclusions and the properties of the selection hypotheses lead to a compli-
cated diagram depicting how the classes defined this way interrelate. However,
only a few of these classes are really distinct. Figure 1 contains the distinct ones
among these classes, together with their critical cardinalities, which were derived
in [7] and in [13]; see definition in Section 3. The only unsettled implications in
this diagram are marked with dotted arrows.
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Figure 1. The surviving classes

1.3 τ-covers

A cover of a space X is large if each element of X is covered by infinitely
many members of the cover. Following [15], we consider the following type of
cover. A large cover U of X is a τ -cover of X if for each x, y ∈ X we have either
x ∈ U implies y ∈ U for all but finitely many members U of the cover U , or
y ∈ U implies x ∈ U for all but finitely many U ∈ U .

A quasiordering 4 on a set X is a reflexive and transitive relation on X. It
is linear if for all x, y ∈ X we have x 4 y or y 4 x. A τ -cover U of a space X
induces a linear quasiordering 4 on X by:

x 4 y ⇔ x ∈ U → y ∈ U for all but finitely many U ∈ U .

If a countable τ -cover is Borel, then the induced 4= {〈x, y〉 : x 4 y} is a Borel
subset of X×X. We let T and BT denote the collections of countable open and
Borel τ -covers of X, respectively. We have the following implications.

BΓ → BT → BΩ → B
↑ ↑ ↑ ↑
Γ → T → Ω → O
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There is a simple hierarchy between the selection principles: For each U,V
in {O,Ω,T,Γ} or in {B,BΩ,BT,BΓ}, we have that S1(U,V) → Sfin(U,V) →
Ufin(U,V). The implication Sfin(U,V) → Ufin(U,V) needs a little care when
V is T or BT: It holds due to the following lemma.

1 Lemma. Assume that U =
⋃

n∈N
Fn, where each Fn is finite, is a τ -cover

of a space X. Then either ∪Fn = X for some n, or else V = {∪Fn}n∈N is also
a τ -cover of X.

Proof. Assume that ∪Fn 6= X for all n. Then, as U is an ω-cover of X,
so is V. In particular, V is a large cover of X. Now fix any x, y ∈ X such that
x ∈ U → y ∈ U for all but finitely many U ∈ U , and let F = {n : (∃U ∈ Fn) x ∈
U and y 6∈ U}. Then F is finite and contains the set of n’s such that x ∈ ∪Fn

and y 6∈ ∪Fn. QED

1.4 Equivalences

The notion of τ -covers introduces seven new pairs—namely, (T,O), (T,Ω),
(T,T), (T,Γ), (O,T), (Ω,T), and (Γ,T)—to which any of the selection opera-
tors S1, Sfin, and Ufin can be applied. This makes a total of 21 new selection
hypotheses. Fortunately, some of them are easily eliminated, using the argu-
ments of [11] and [7]. We will repeat the reasoning briefly for our case. The
details can be found in the cited references.

First, the properties S1(O,T) and Sfin(O,T) imply Sfin(O,Ω), and thus
hold only in trivial cases (see Section 6 of [17]). Next, Sfin(T,O) is equivalent
to Ufin(T,O), since if the finite unions cover, then the original sets cover as well.
Now, since finite unions can be used to turn any countable cover which does not
contain a finite subcover into a γ-cover [7], we have the following equivalences1:

• Ufin(T,Γ) = Ufin(Γ,Γ),

• Ufin(O,T) = Ufin(Ω,T) = Ufin(T,T) = Ufin(Γ,T),

• Ufin(T,Ω) = Ufin(Γ,Ω); and

• Ufin(T,O) = Ufin(Γ,O).

In Corollary 6 we get that S1(T,Γ) = Sfin(T,Γ). We are thus left with eleven
new properties, whose positions with respect to the other properties are de-
scribed in Figure 2. In this Figure, as well as in the one to come, there still exist
quite many unsettled possible implications.

1We identify each property with the collection of sets satisfying this property. Thus, for
properties P and Q, we may write X ∈ P , P ⊆ Q, etc.
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Figure 2. The surviving classes for the open case

1.5 Equivalences for Borel covers

For the Borel case we have the diagram corresponding to Figure 2, but
in this case, more equivalences are known [13]: S1(BΓ,BΓ) = Ufin(BΓ,BΓ),
S1(BΓ,BΩ) = Sfin(BΓ,BΩ) = Ufin(BΓ,BΩ), and S1(BΓ,B) = Ufin(BΓ,B). In
addition, each selection principle for Borel covers implies the corresponding se-
lection principle for open covers.

This paper is divided into two parts. Part 1 consists of Sections 2–4, and
Part 2 consists of the remaining sections. In Section 2 we study subcover-type
properties and their applications to the study of the new selection principles.
In Section 3 we characterize some of the properties in terms of combinatorial
properties of Borel images. In Section 4 we find the critical cardinalities of most
of the new properties, and apply the results to solve a topological version of the
minimal tower problem, which was suggested to us by Scheepers and stated in
[15].

It seems that some new mathematical tools are required to solve some of the
remaining open problems, as the special properties of τ -covers usually do not
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allow application of standard methods developed during the study of classical
selection principles. For this very reason, we believe that these are the important
problems which must be addressed in the future. However, we suggest in the
second part of this paper two relaxations of the notion of τ -cover, which are
easier to work with and may turn out useful in the study of the original problems.
We demonstrate this by proving results which are still open for the case of usual
τ -covers.

Part 1: τ-covers

2 Subcovers with stronger properties

2 Definition. Let X be a set of reals, and U, V collections of covers of X.
We say that X satisfies

(
U
V

)
(read: U choose V) if for each cover U ∈ U there

exists a subcover V ⊆ U such that V ∈ V.

Observe that for any pair U,V of collections of countable covers we have
that the property Sfin(U,V) implies

(
U
V

)
. Gerlits and Nagy [6] proved that for

U = Ω and V = Γ, the converse also holds, in fact, S1(Ω,Γ) =
(
Ω
Γ

)
. But in

general the property
(

U
V

)
can be strictly weaker than Sfin(U,V).

A useful property of this notion is the following.

3 Lemma (Cancellation Laws). For collections of covers U,V,W,

(1)
(

U
V

)
∩

(
V
W

)
⊆

(
U
W

)
,

(2)
(

U
V

)
∩ Sfin(V,W) ⊆ Sfin(U,W),

(3) Sfin(U,V) ∩
(

V
W

)
⊆ Sfin(U,W); and

(4)
(

U
V

)
∩ S1(V,W) ⊆ S1(U,W),

(5) If W is closed under taking supersets, then S1(U,V) ∩
(

V
W

)
⊆ S1(U,W).

Moreover, if U ⊇ V ⊇ W, then equality holds in (1)–(5).

Proof. (1) is immediate. To prove (2), we can apply Sfin(V,W) to V-
subcovers of the given covers. (4) is similar to (2).

(3) Assume that Un ∈ U, n ∈ N, are given. Apply Sfin(U,V) to choose finite

subsets Fn ⊆ Un, n ∈ N, such that V =
⋃

n∈N
Fn ∈ V. By

(
V
W

)
, there exists a

subset W of V such that W ∈ W. Then for each n W ∩Fn is a finite (possibly
empty) subset of Un, and

⋃
n∈N

(W ∩Fn) = W ∈ W. To prove (5), observe that
the resulting cover V contains an element of W, and as W is closed under taking
supersets, V ∈ W as well.
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It is clear that reverse inclusion (and therefore equality) hold in (1)–(5) when
U ⊇ V ⊇ W. QED

4 Corollary. Assume that U ⊇ V. Then the following equivalences hold:

(1) Sfin(U,V) =
(

U
V

)
∩ Sfin(V,U).

(2) If V is closed under taking supersets, then S1(U,V) =
(

U
V

)
∩ S1(V,U).

Proof. We prove (1). Clearly Sfin(U,V) implies
(

U
V

)
and Sfin(V,U). On

the other hand, by applying the Cancellation Laws (2) and then (3) we have
that (

U

V

)
∩ Sfin(V,U) ⊆ Sfin(U,U) ∩

(
U

V

)
⊆ Sfin(U,V).

QED

2.1 When every τ-cover contains a γ-cover

5 Theorem. The following equivalences hold:

(1) S1(T,Γ) =
(
T
Γ

)
∩ Sfin(Γ,T),

(2) S1(BT,BΓ) =
(
BT
BΓ

)
∩ Sfin(BΓ,BT),

Proof. (1) By the Cancellation Laws 3,
(
T
Γ

)
∩Sfin(Γ,T) ⊆ Sfin(Γ,Γ). In [7]

it was proved that Sfin(Γ,Γ) = S1(Γ,Γ). Thus,
(
T
Γ

)
∩Sfin(Γ,T) ⊆

(
T
Γ

)
∩S1(Γ,Γ),

which by the Cancellation Laws is a subset of S1(T,Γ). The other direction is
immediate.

(2) is similar. QED

6 Corollary. The following equivalences hold:

(1) S1(T,Γ) = Sfin(T,Γ);

(2) S1(BT,BΓ) = Sfin(BT,BΓ).

Using similar arguments, we have the following.

7 Theorem. The following equivalences hold:

(1) S1(Ω,Γ) =
(
T
Γ

)
∩ Sfin(Ω,T);

(2) S1(BΩ,BΓ) =
(
BT
BΓ

)
∩ Sfin(BΩ,BT).
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2.2 When every ω-cover contains a τ-cover

8 Theorem. The following inclusions hold:

(1)
(
Ω
T

)
⊆ Sfin(Γ,T).

(2)
(
BΩ
BT

)
⊆ Sfin(BΓ,BT).

Proof. We will prove (1) (the proof of (2) is identical). Assume that X
satisfies

(
Ω
T

)
. If X is countable then it satisfies all of the properties mentioned

in this paper. Otherwise let xn, n ∈ N, be distinct elements in X. Assume that
Un = {Un

m}m∈N, n ∈ N, are open γ-covers of X. Define Ũn = {Un
m \ {xn}}m∈N.

Then U =
⋃

n∈N
Ũn is an open ω-cover of X, and thus contains a τ -cover V of

X. Let 4 be the induced quasiordering.

9 Lemma. If 〈X,4〉 has a least element, then V contains a γ-cover of X.

Proof. Write V = {Vn}n∈N. Let x0 be a least element in 〈X,4〉. Consider
the subsequence {Vnk

}k∈N consisting of the elements Vn such that x0 ∈ Vn. Since
τ -covers are large, this sequence is infinite. For all x ∈ X we have x0 4 x, thus
x0 ∈ Vn → x ∈ Vn for all but finitely many n. Since x0 ∈ Vnk

for all k, we have
that for all but finitely many k, x ∈ Vnk

. QED

There are two cases to consider.

Case 1. For some n xn is a least element in 〈X,4〉. Then V contains a γ-
cover Ṽ of X. In this case, for all n xn belongs to all but finitely many members
of Ṽ, thus Ṽ ∩ Ũn is finite for each n, and W = {U : (∃n)U \ {xn} ∈ Ṽ} is a
γ-cover of X.

Case 2. For each n there exists x 6= xn with x 4 xn. For each n, Un is a
γ-cover of X, thus x belongs to all but finitely many members of V ∩ Ũn. Since
xn does not belong to any of the members in V ∩ Ũn, V ∩ Ũn must be finite.
Thus, W = {U : (∃n)U \ {xn} ∈ Ṽ} is a τ -cover of X. QED

If
(
Ω
T

)
⊆ Sfin(T,Ω), then by Corollary 4

(
Ω
T

)
= Sfin(Ω,T).

10 Problem. Is
(
Ω
T

)
= Sfin(Ω,T)?

3 Combinatorics of Borel images

In this section we characterize several properties in terms of Borel images in
the spaces NN and P∞(N), using the combinatorial structure of these spaces.
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3.1 The combinatorial structures

A quasiorder ≤∗ is defined on the Baire space NN by eventual dominance:

f ≤∗ g if f(n) ≤ g(n) for all but finitely many n.

A subset Y of NN is called unbounded if it is unbounded with respect to
≤∗. Y is dominating if it is cofinal in NN with respect to ≤∗, that is, for each
f ∈ NN there exists g ∈ Y such that f ≤∗ g. b is the minimal size of an
unbounded subset of NN, and d is the minimal size of a dominating subset of
NN.

Define a quasiorder ⊆∗ on P∞(N) by a ⊆∗ b if a \ b is finite. An infinite set
a ⊆ N is a pseudo-intersection of a family Y ⊆ P∞(N) if for each b ∈ Y , a ⊆∗ b.
A family Y ⊆ P∞(N) is a tower if it is linearly quasiordered by ⊆∗, and it has
no pseudointersection. t is the minimal size of a tower.

A family Y ⊆ P∞(N) is centered if the intersection of each (nonempty)
finite subfamily of Y is infinite. Note that every tower in P∞(N) is centered. A
centered family Y ⊆ P∞(N) is a power if it does not have a pseudointersection.
p is the minimal size of a power.

3.2 The property
(
BT

BΓ

)

For a set of reals X and a topological space Z, we say that Y is a Borel
image of X in Z if there exists a Borel function f : X → Z such that f [X] = Y .
The following classes of sets were introduced in [8]:

P: The set of X ⊆ R such that no Borel image of X in P∞(N) is a power,

B: The set of X ⊆ R such that every Borel image of X in NN is bounded
(with respect to eventual domination);

D: The set of X ⊆ R such that no Borel image of X in NN is dominating.

For a collection J of separable metrizable spaces, let non(J ) denote the
minimal cardinality of a separable metrizable space which is not a member
of J . We also call non(J ) the critical cardinality of the class J . The critical
cardinalities of the above classes are p, b, and d, respectively. These classes have
the interesting property that they transfer the cardinal inequalities p ≤ b ≤ d

to the inclusions P ⊆ B ⊆ D.

11 Definition. For each countable cover of X enumerated bijectively as
U = {Un}n∈N we associate a function hU : X → P (N), defined by hU (x) = {n :
x ∈ Un}.
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U is a large cover of X if, and only if, hU [X] ⊆ P∞(N). As we assume that X
is infinite and is not a member of any of our covers, we have that each ω-cover
of X is a large cover of X. The following lemma is a key observation for the rest
of this section. Note that hU is a Borel function whenever U is a Borel cover of
X, and hU is continuous whenever all elements of U are clopen.

12 Lemma ([15]). Assume that U is a countable large cover of X.

(1) U is an ω-cover of X if, and only if, hU [X] is centered.

(2) U contains a γ-cover of X if, and only if, hU [X] has a pseudointersection.

(3) U is a τ -cover of X if, and only if, hU [X] is linearly quasiordered by ⊆∗.

Moreover, if f : X → P (N) is any function, and A = {On}n∈N is the clopen
cover of P (N) such that x ∈ On ⇔ n ∈ x, then for U = {f−1[On]}n∈N we have
that f = hU .

This Lemma implies that P =
(
BΩ
BΓ

)
[13].

13 Corollary. P =
(
BΩ
BT

)
∩

(
BT
BΓ

)
.

It is natural to define the following notion.

T: The set of X ⊆ R such that no Borel image of X in P∞(N) is a tower.

14 Theorem. T =
(
BT
BΓ

)
.

Proof. See [15] for the clopen version of this theorem (a straightforward
usage of Lemma 12). The proof for the Borel case is similar. QED

15 Corollary. non(
(
BT
BΓ

)
) = non(

(
T
Γ

)
) = t.

Proof. By Theorem 14, t ≤ non(
(
BT
BΓ

)
). In [15] we defined T to be the

collection of sets for which every countable clopen τ -cover contains a γ-cover,
and showed that non(T ) = t. But

(
BT
BΓ

)
⊆

(
T
Γ

)
⊆ T . QED

Clearly, P ⊆ T. The cardinal inequality p ≤ t ≤ b suggests pushing this
further by showing that T ⊆ B; unfortunately this is false. Sets which are
continuous images of Borel sets are called analytic.

16 Theorem. Every analytic set satisfies T. In particular, NN ∈ T.

Proof. According to [15], no continuous image of an analytic set is a tower.
In particular, towers are not analytic subsets of P∞(N). Since Borel images of
analytic sets are again analytic sets, we have that every analytic set satisfies
T. QED

The following equivalences hold [13]:

• S1(BΓ,BΓ) = B,
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• S1(BΓ,B) = D;

• S1(BΩ,BΓ) = P.

Theorem 16 rules out an identification of T with any of the selection principles.
However, we get the following characterization of S1(BT,BΓ) in terms of Borel
images.

17 Theorem. S1(BT,BΓ) = T ∩ B.

Proof. By the Cancellation Laws and Theorem 14,

S1(BT,BΓ) =

(BT

BΓ

)
∩ S1(BΓ,BΓ) = T ∩ B.

QED

3.3 The property
(
BΩ

BT

)

For a subset Y of P∞(N) and a ∈ P∞(N), define

Y � a = {y ∩ a : y ∈ Y }.

If all sets in Y � a are infinite, we say that Y � a is a large restriction of Y .

18 Theorem. For a set X of real numbers, the following are equivalent:

(1) X satisfies
(
BΩ
BT

)

(2) For each Borel image Y of X in P∞(N), if Y is centered, then there exists
a large restriction of Y which is linearly quasiordered by ⊆∗.

Proof. 1 ⇒ 2: Assume that Ψ : X → P∞(N) is a Borel function, and let
Y = Ψ[X]. Assume that Y is centered, and consider the collection A = {On}n∈N

where On = {a : n ∈ a} ∩ Y for each n ∈ N. If the set a = {n : Y = On} is
infinite, then a is a pseudointersection of Y and we are done. Otherwise, by
removing finitely many elements from A we get that A is an ω-cover of Y .

Setting Un = Ψ−1[On] for each n, we have that U = {Un}n∈N is a Borel
ω-cover of X, which thus contains a τ -cover {Uan}n∈N of X. Let a = {an}n∈N,
and define a cover V = {Vn}n∈N of X by

Vn =

{
Un n ∈ a

∅ otherwise

Then V is a τ -cover of X, and by Lemma 12, Ψ[X] � a = hU [X] � a = hV [X] is
linearly quasiordered by ⊆∗.
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2 ⇒ 1: Assume that U = {Un}n∈N is an ω-cover of X. By Lemma 12, hU [X]
is centered. Let a = {an}n∈N be a large restriction of hU [X] which is linearly
quasiordered by ⊆∗, and define V as in 1 ⇒ 2. Then hU [X] � a = hV [X]. Thus
all elements in hV [X] are infinite (i.e., V is a large cover of X), and hV [X] is
linearly quasiordered by ⊆∗ (i.e., V is a τ -cover of X). Then V \ {∅} ⊆ U is a
τ -cover of X. QED

19 Remark. Replacing the “Borel sets” by “clopen sets” and “Borel func-
tions” by “continuous functions” in the last proof we get that the following
properties are equivalent for a set X of reals:

(1) Every countable clopen ω-cover of X contains a τ -cover of X.

(2) For each continuous image Y of X in P∞(N), if Y is centered, then there
exists a large restriction of Y which is linearly quasiordered by ⊆∗.

We do not know whether the open version of this result is true.

3.4 The property Ufin(BΓ,BT)

20 Definition. A family Y ⊆ NN satisfies the excluded middle property if
there exists g ∈ NN such that:

(1) For all f ∈ Y , g 6<∗ f ;

(2) For each f, h ∈ Y , one of the situations f(n) ≤ g(n) < h(n) or h(n) ≤
g(n) < f(n) is possible only for finitely many n.

21 Theorem. For a set X of real numbers, the following are equivalent:

(1) X satisfies Ufin(BΓ,BT);

(2) Every Borel image of X in NN satisfies the excluded middle property.

Proof. 1 ⇒ 2: For each n, the collection Un = {Un
m : m ∈ N}, where

Un
m = {f ∈ NN : f(n) ≤ m}, m ∈ N, is an open γ-cover of NN. Assume that

Ψ is a Borel function from X to NN. By standard arguments we may assume
that Ψ−1[Un

m] 6= X for all n and m. Then the collections Un = {Ψ−1[Un
m] :

m ∈ N}, n ∈ N, are Borel γ-covers of X. For all n, the sequence {Un
m}m∈N

is monotonically increasing with respect to ⊆, therefore—as large subcovers of
τ -covers are also τ -covers—we may use S1(BΓ,BT) instead of Ufin(BΓ,BT) to
get a τ -cover U = {Ψ−1[Un

mn
]}n∈N for X.

Let g ∈ NN be such that g(n) = mn for all n. For all x ∈ X, as U is a large
cover of X, we have that Ψ(x) ∈ Un

g(n) (that is, Ψ(x)(n) ≤ g(n)) for infinitely
many n. Let 4 be the linear quasiordering of X induced by the τ -cover U . Then
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for all x, y ∈ X, either x 4 y or y 4 x. In the first case we get that for all but
finitely many n Ψ(x)(n) ≤ g(n) → Ψ(y)(n) ≤ g(n), and in the second case we
get the same assertion with x and y swapped. This shows that Ψ[X] satisfies
the excluded middle property.

2 ⇒ 1: Assume that Un = {Un
m : m ∈ N}, n ∈ N, are Borel covers of X

which do not contain a finite subcover. Replacing each Un
m with the Borel set⋃

k≤m Un
k we may assume that the sets Un

m are monotonically increasing with

m. Define a function Ψ from X to NN so that for each x and n:

Ψ(x)(n) = min{m : x ∈ Un
m}.

Then Ψ is a Borel map, and so Ψ[X] satisfies the excluded middle property. Let
g ∈ NN be a witness for that. Then the sequence U = {Un

g(n)}n∈N is a τ -cover

of X: For each x ∈ X we have that g 6<∗ Ψ(x), thus U is a large cover of X.
Moreover, for all x, y ∈ X, we have by the excluded middle property that at least
one of the assertions Ψ(x)(n) ≤ g(n) < Ψ(y)(n) or Ψ(y)(n) ≤ g(n) < Ψ(y)(n)
is possible only for finitely many n. Then the first assertion implies that x 4 y,
and the second implies y 4 x with respect to U . QED

22 Remark. The analogue clopen version of Theorem 21 also holds. We do
not know whether there exist an analogue characterization of Ufin(Γ,T) (the
open version) in terms of continuous images.

4 Critical cardinalities

23 Theorem. non(Sfin(BT,BΩ)) = non(Sfin(T,Ω)) = d.

Proof. Sfin(BΩ,BΩ) ⊆ Sfin(BT,BΩ) ⊆ Sfin(T,Ω) ⊆ Sfin(Γ,Ω), and ac-
cording to [7] and [13], non(Sfin(BΩ,BΩ)) = non(Sfin(Γ,Ω)) = d. QED

24 Theorem. non(S1(BT,BΓ)) = non(S1(T,Γ)) = t.

Proof. By Theorem 5, S1(T,Γ) =
(
T
Γ

)
∩ S1(Γ,Γ), thus by Corollary 15,

non(S1(T,Γ)) = min{non(
(
T
Γ

)
), non(S1(Γ,Γ))} = min{t, b} = t. The proof for

the Borel case is similar. QED

25 Definition. x is the minimal cardinality of a family Y ⊆ NN which does
not satisfy the excluded middle property.

Therefore b ≤ x ≤ d. A family Y ⊆ P∞(N) is splitting if for each infinite
a ⊆ N there exists s ∈ Y which splits a, that is, such that the sets a ∩ s and
a \ s are infinite. s is the minimal size of a splitting family. In [14] it is proved
that x = max{s, b}.

26 Theorem. non(Ufin(BΓ,BT)) = non(Ufin(Γ,T)) = x.
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Proof. By Theorem 21, non(Ufin(BΓ,BT)) = x. Thus, our theorem will
follow from the inclusion Ufin(BΓ,BT) ⊆ Ufin(Γ,T) once we prove that non

(Ufin(Γ,T)) ≤ x. To this end, consider a family Y ⊆ NN of size x which does
not satisfy the excluded middle property, and consider the monotone γ-covers
Un, n ∈ N, of NN defined in the proof of Theorem 21. Then, as in that proof,
we cannot extract from these covers a τ -cover of Y . Thus, Y does not satisfy
Ufin(Γ,T). QED

27 Definition. Let κωτ be the minimal cardinality of a centered set Y ⊆
P∞(N) such that for no a ∈ P∞(N), the restriction Y � a is large and linearly
quasiordered by ⊆∗.

It is easy to see (either from the definitions or by consulting the involved
selection properties) that κωτ ≤ d and p = min{κωτ , t}. In [14] it is proved that
in fact κωτ = p.

28 Lemma. non(
(
BΩ
BT

)
) = non(

(
Ω
T

)
) = p.

Proof. Let Pωτ denote the property that every clopen ω-cover contains a
γ-cover. Then

(
BΩ
BT

)
⊆

(
Ω
T

)
⊆ Pωτ . By Theorem 18 and Remark 19, non(

(
BΩ
BT

)
) =

non(Pωτ ) = κωτ = p. QED

29 Theorem. non(Sfin(BΩ,BT)) = non(Sfin(Ω,T)) = p.

Proof. By Corollary 4 and Theorem 23,

non(Sfin(Ω,T)) = min{non(

(
Ω

T

)
), non(Sfin(T,Ω))} =

= min{κωτ , d} = κωτ = p. (1)

The proof for the Borel case is the same. QED

5 Topological variants of the Minimal Tower prob-
lem

Let c denote the size of the continuum. The following inequalities are well
known [4]:

p ≤ t ≤ b ≤ d ≤ c.

For each pair except p and t, it is well known that a strict inequality is consistent.

30 Problem (Minimal Tower). Is it provable that p = t?

This is one of the major and oldest problems of infinitary combinatorics.
Allusions to this problem can be found in Rothberger’s works (see, e.g., [10]).

We know that S1(Ω,Γ) ⊆ S1(T,Γ), and that non(S1(Ω,Γ)) = p, and
non(S1(T,Γ)) = t. Thus, if p < t is consistent, then it is consistent that
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S1(Ω,Γ) 6= S1(T,Γ). Thus the following problem, which was suggested to us
by Scheepers, is a logical lower bound on the difficulty of the Minimal Tower
problem.

31 Problem ([15]). Is it consistent that S1(Ω,Γ) 6= S1(T,Γ)?

We also have a Borel variant of this problem.

32 Problem. Is it consistent that S1(BΩ,BΓ) 6= S1(BT,BΓ)?

We will solve both of these problems.
For a class J of sets of real numbers with ∪J 6∈ J , the additivity number

of J is the minimal cardinality of a collection F ⊆ J such that ∪F 6∈ J . The
additivity number of J is denoted add(J ).

33 Lemma ([15]). Assume that Y ⊆ P∞(N) is linearly ordered by ⊆∗, and
for some κ < t, Y =

⋃
α<κ Yα where each Yα has a pseudointersection. Then Y

has a pseudointersection.

34 Theorem. add(
(
BT
BΓ

)
) = add(

(
T
Γ

)
) = t.

Proof. By Theorem 14 and Lemma 33, we have that add(
(
BT
BΓ

)
) = add(T) =

t. The proof that add(
(
T
Γ

)
) = t is not as elegant and requires a back-and-forth

usage of Lemma 12. Assume that κ < t, and let Xα, α < κ, be sets satisfying(
T
Γ

)
. Let U be a countable open τ -cover of X =

⋃
α<κXα. Then hU [X] =⋃

α<κ hU [Xα] is linearly quasiordered by ⊆∗. Since each Xα satisfies
(
T
Γ

)
, for

each α U contains a γ-cover of Xα, that is, hU [Xα] has a pseudo-intersection.
By Lemma 33, hU [X] has a pseudo-intersection, that is, U contains a γ-cover of
X. QED

35 Theorem. add(S1(BT,BΓ)) = t.

Proof. By Theorem 5, S1(BT,BΓ) =
(
BT
BΓ

)
∩ S1(BΓ,BΓ), and according to

[1], add(S1(BΓ,BΓ)) = b. By Theorem 34, we get that

add(S1(BT,BΓ)) ≥ min{t, b} = t.

On the other hand, by Theorem 24 we have

add(S1(BT,BΓ)) ≤ non(S1(BT,BΓ)) = t.

QED

In [12] Scheepers proves that S1(Γ,Γ) is closed under taking unions of size less
than the distributivity number h. Consequently, we get that add(S1(T,Γ)) = t

[1]. As it is consistent that S1(Ω,Γ) is not closed under taking finite unions
[5], we get a positive solution to Problem 31. We will now prove something
stronger: Consistently, no class between S1(BΩ,BΓ) and

(
Ω
T

)
(inclusive) is closed

under taking finite unions. This solves Problem 31 as well as Problem 32.
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36 Theorem (CH). There exist sets of reals A and B satisfying S1(BΩ,BΓ),
such that A ∪ B does not satisfy

(
Ω
T

)
. In particular, S1(T,Γ) 6= S1(Ω,Γ), and

S1(BT,BΓ) 6= S1(BΩ,BΓ).

Proof. By a theorem of Brendle [3], assuming CH there exists a set of
reals X of size continuum such that all subsets of X satisfy P. (Recall that
P = S1(BΩ,BΓ).)

As P is closed under taking Borel (continuous is enough) images, we may
assume that X ⊆ [0, 1]. For Y ⊆ [0, 1], write Y + 1 = {y + 1 : y ∈ Y } for the
translation of Y by 1. As |X| = c and only c many out of the 2c many subsets
of X are Borel, there exists a subset Y of X which is not Fσ neither Gδ. By a
theorem of Galvin and Miller [5], for such a subset Y the set (X \ Y )∪ (Y + 1)
does not satisfy S1(Ω,Γ). Set A = X \ Y and B = Y + 1. Then A and B satisfy
S1(BΩ,BΓ), and A ∪ B does not satisfy S1(Ω,Γ) =

(
Ω
T

)
∩

(
T
Γ

)
. By Theorem 34,

A ∪ B satisfies
(
T
Γ

)
and therefore it does not satisfies

(
Ω
T

)
. But by Theorem 35,

the set A ∪B satisfies S1(BT,BΓ). QED

6 Special elements

6.1 The Cantor set C

Let C ⊆ R be the canonic middle-third Cantor set.

37 Proposition. Cantor’s set C does not satisfy Sfin(Γ,T).

Proof. Had it satisfied this property, we would have by Theorem 16 that
C ∈

(
T
Γ

)
∩ Sfin(Γ,T) = S1(Γ,Γ), contradicting [7]. QED

Thus C satisfies Sfin(T,Ω) and Ufin(Γ,T), and none of the other new prop-
erties.

6.2 A special Lusin set

In Subsection 3.3 of [1] we construct, using cov(M) = c, special Lusin sets
of size c which satisfy S1(BΩ,BΩ). The meta-structure of the proof is as follows.
At each stage of this construction we define a set Y ∗

α which is a union of less
that cov(M) many meager sets, and choose an element xα ∈ Gα \Y ∗

α where Gα

is a basic open subset of NZ.

38 Theorem. If cov(M) = c, then there exists a Lusin set satisfying
S1(BΩ,BΩ) but not Ufin(Γ,T).

Proof. We modify the aforementioned construction so to make sure that
the resulting Lusin set L does not satisfy the excluded middle property. As we
do not need to use any group structure, we will work in NN rather than NZ.
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39 Lemma. Assume that A is an infinite set of natural numbers, and f ∈
NN. Then the sets

Mf,A = {g ∈ NN : [g ≤ f ] ∩A is finite}
M̃f,A = {g ∈ NN : [f < g] ∩A is finite}

are meager subsets of NN.

Proof. For each k, the sets

Nk = {g ∈ NN : (∀n > k) n ∈ A→ f(n) < g(n)}
Ñk = {g ∈ NN : (∀n > k) n ∈ A→ g(n) ≤ f(n)}

are nowhere dense in NN. Now, Mf,A =
⋃

k∈N
Nk, and M̃f,A =

⋃
k∈N

Ñk. QED

Consider an enumeration 〈f2α : α < c〉 of NN which uses only even ordinals.
At stage α for α even, let Y ∗

α be the set defined in [1], and let Ỹ ∗
α be the union

of Y ∗
α and the two meager sets

Mfα,N = {g ∈ NN : [g ≤ fα] is finite}
M̃fα,N = {g ∈ NN : [fα < g] is finite}.

Then Ỹα∗ is a union of less than cov(M) many meager sets. Choose xα ∈ Gα\Ỹ ∗
α .

In step α + 1 of the construction let Y ∗
α+1 be defined as in [1], and let Ỹ ∗

α+1 be
the union of Y ∗

α+1 with the meager sets

Mfα,[fα<xα] = {g ∈ NN : [g ≤ fα < xα] is finite}
M̃fα,[xα≤fα] = {g ∈ NN : [xα ≤ fα < g] is finite}.

Now choose xα+1 ∈ Gα+1 \ Ỹ ∗
α+1. Then xα and xα+1 witness that fα does not

avoid middles in the resulting set L = {xα : α < c}. Consequently, L does not
satisfy Ufin(Γ,T).

The proof that L satisfies S1(BΩ,BΩ) is as in [1]. QED

6.3 Sierpinski sets

If a Sierpinski set satisfies
(
T
Γ

)
, then it satisfies S1(T,Γ) but not S1(O,O).

Such a result would give another solution to Problem 31. However, as towers
are null in the usual measure on N{0, 1}, it is not straightforward to construct
a Sierpinski set which is a member of

(
T
Γ

)
.

40 Problem. Does there exist a Sierpinski set satisfying
(
T
Γ

)
?
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6.4 Unsettled implications

The paper [13] ruled out the possibility that any selection property for the
open case implies any selection property for the Borel case. Some implications
are ruled out by constructions of [7] and [13]. Several other implications are
eliminated due to critical cardinality considerations.

41 Problem. Which implications can be added to the diagram in Figure 2
and to the corresponding Borel diagram?

A summary of all unsettled implications appears in [18]. As a first step
towards solving Problem 41, one may try to answer the following.

42 Problem. What are the critical cardinalities of the remaining classes?

Part 2: Variations on the theme of τ-covers

7 τ ∗-covers

The notion of a τ ∗-cover is a more flexible variant of the notion of a τ -cover.

43 Definition. A family Y ⊆ P∞(N) is linearly refinable if for each y ∈ Y
there exists an infinite subset ŷ ⊆ y such that the family Ŷ = {ŷ : y ∈ Y } is
linearly quasiordered by ⊆∗.

A cover U of X is a τ ∗-cover of X if it is large, and hU [X] (where hU is the
function defined before Lemma 12) is linearly refinable.

For x ∈ X, we will write xU for hU (x), and x̂U for the infinite subset of xU
such that the sets x̂U are linearly quasiordered by ⊆∗.

If U is a countable τ -cover, then hU [X] is linearly quasiordered by ⊆∗ and
in particular it is linearly refinable. Thus every countable τ -cover is a τ ∗-cover.
The converse is not necessarily true. Let T∗ (BT∗) denote the collection of all
countable open (Borel) τ ∗-covers of X. Then T ⊆ T∗ ⊆ Ω and BT ⊆ BT∗ ⊆ Ω.

Often problems which are difficult in the case of usual τ -covers become
solvable when shifting to τ ∗-covers. We will give several examples.

7.1 Refinements

One of the major tools in the analysis of selection principles is to use refine-
ments and de-refinements of covers. In general, the de-refinement of a τ -cover
is not necessarily a τ -cover.

44 Lemma. Assume that U ∈ T∗ refines a countable open cover V (that is,
for each U ∈ U there exists V ∈ V such that U ⊆ V ). Then V ∈ T∗.

The analogous assertion for countable Borel covers also holds.
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Proof. Fix a bijective enumeration U = {Un}n∈N. Let x̂U , x ∈ X, be as
in the definition of τ ∗-covers. For each n let Vn ∈ V be such that Un ⊆ Vn. We
claim that W = {Vn : n ∈ N} ∈ T∗. As W is an ω-cover of X, it is infinite; fix
a bijective enumeration {Wn}n∈N of W. For each n define Sn = {k : Uk ⊆Wn},
and S̃n = Sn \ ⋃

m<n Sm. For each x ∈ X define x̂W by:

n ∈ x̂W ⇔ S̃n ∩ x̂U 6= ∅.

Then each x̂W is a subset of xW .
Each x̂W is infinite: For each Wn1 , . . . ,Wnk

choose xi 6∈ Wni
, i = 1, . . . , k.

Then {x, x1, . . . , xk} 6⊆Wni
for all i = 1, . . . , k. As U is an τ ∗-cover of X, there

existsm ∈ x̂U such that {x, x1, . . . , xk} ⊆ Um. Consider the (unique) n such that
m ∈ S̃n. Then Um ⊆ Wn; therefore Wn 6∈ {Wn1 , . . . ,Wnk

}, and in particular
n 6∈ {n1, . . . , nk}. As m ∈ S̃n ∩ x̂U , we have that n ∈ x̂W .

The sets x̂W are linearly quasiordered by ⊆∗: Assume that a, b ∈ X. We may
assume that âU ⊆∗ b̂U . As limn min S̃n → ∞, we have that Sn ∩ âU ⊆ Sn ∩ b̂U
for all but finitely many n.

This shows that W is a τ ∗-cover of X. Now, V is an extension of W by at
most countably many elements. It is easy to see that an extension of a τ ∗-cover
by countably many open sets is again a τ ∗-cover, see [17]. QED

The first consequence of this important Lemma is that

Sfin(U,T∗) (Sfin(U,BT∗)) implies Ufin(U,T∗) (Ufin(U,BT∗))

that is, the analogue of Lemma 1 holds.

45 Corollary. Assume that U =
⋃

n∈N
Fn, where each Fn is finite, is a τ ∗-

cover of a space X. Then either ∪Fn = X for some n, or else V = {∪Fn}n∈N

is also a τ ∗-cover of X.

Proof. U refines V. QED

7.2 Equivalences

All equivalences mentioned in Subsection 1.4 hold for τ ∗-covers as well. In
particular, the analogue of Theorem 5 holds (with a similar proof).

46 Corollary. The following equivalences hold:

(1) S1(T
∗,Γ) = Sfin(T∗,Γ);

(2) S1(BT∗ ,BΓ) = Sfin(BT∗ ,BΓ).

In fact, in the Borel case we get more equivalences in the case of τ ∗-covers
than in the case of τ -covers – see Subsection 7.4.
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7.3 Continuous images

We now solve the problems mentioned in Remarks 19 and 22 in the case of
τ∗-covers.

47 Theorem. The following properties are equivalent for a set X of reals:

(1) X satisfies
(

Ω
T∗

)
;

(2) For each continuous image Y of X in P∞(N), if Y is centered, then Y is
linearly refinable.

Proof. 1 ⇒ 2: The proof for this is similar to the proof of 1 ⇒ 2 in
Theorem 18.

2 ⇒ 1: Assume that U is an ω-cover of X. Replacing each member of U with
all finite unions of Basic clopen subsets of it, we may assume that all members
of U are clopen (to unravel this assumption we will use the fact that T∗ is closed
under de-refinements).

Thus, hU is continuous and Y = hU [X] is centered. Consequently, Y is
linearly refinable, that is, U is a τ ∗-cover of X. QED

48 Remark. The analogue assertion (to Theorem 47) for the Borel case,
where open covers are replaced by Borel covers and continuous image is replaced
by Borel image, also holds and can be proved similarly.

As in [14], we will use the notation

[f ≤ h] := {n : f(n) ≤ g(n)}.

Then a subset Y ⊆ NN satisfies the excluded middle property if, and only if,
there exists a function h ∈ NN such that the collection

{[f ≤ h] : f ∈ Y }

is a subset of P∞(N) and is linearly quasiordered by ⊆∗.

49 Definition. We will say that a subset Y ⊆ NN satisfies the weak excluded
middle property if there exists a function h ∈ NN such that the collection {[f ≤
h] : f ∈ Y } is linearly refinable.

Recall that Ufin(Γ,T∗) = Ufin(O,T∗).

50 Theorem. For a zero-dimensional set X of real numbers, the following
are equivalent:

(1) X satisfies Ufin(O,T∗);

(2) Every continuous image of X in NN satisfies the weak excluded middle
property.
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Proof. We make the needed changes in the proof of Theorem 2.1 in [16].
2 ⇒ 1: Assume that Un, n ∈ N, are open covers of X which do not contain

finite subcovers. For each n, replacing each member of Un with all of its basic
clopen subsets we may assume that all elements of Un are clopen, and thus
we may assume further that they are disjoint. For each n enumerate Un =
{Un

m}m∈N. As we assume that the elements Un
m, m ∈ N, are disjoint, we can

define a function Ψ from X to NN by

Ψ(x)(n) = m⇔ x ∈ Un
m.

Then Ψ is continuous. Therefore, Y = Ψ[X] satisfies the weak excluded middle
property. Let h ∈ NN, and for each f ∈ Y , Af ⊆ [f ≤ h] be such that {Af : f ∈
Y } is linearly quasiordered by ⊆∗.

For each n set
Fn = {Un

k : k ≤ h(n)}.
We claim that U = {∪Fn}n∈N is a τ∗-cover of X. We will use the following
property.

(?) For each finite subset F of X and each n ∈ ⋂
x∈F AΨ(x), F ⊆ ∪Fn.

Let {∪Fkn
}n∈N be a bijective enumeration of U , and let f ∈ NN be such

that for each n, ∪Fn = ∪Fkf(n)
. For each x ∈ X set x̂U = f [AΨ(x)]. We have

the following.
x̂U is a subset of xU : Assume that f(n) ∈ x̂U , where n ∈ AΨ(x). Then

x ∈ ∪Fn = ∪Fkf(n)
, therefore f(n) ∈ xU .

x̂U is infinite: Assume that f [AΨ(x)] = {f(n1), . . . , f(nk)} where n1, . . . , nk

∈ AΨ(x). For each i ≤ k choose xi 6∈ ∪Fkf(ni)
, and set F = {x, x1, . . . , xk}.

Then for all i ≤ k F 6⊆ ∪Fkf(ni)
. Choose n ∈ ⋂

a∈F AΨ(x). By property (?),

F ⊆ ∪Fn = ∪Fkf(n)
, therefore f(n) 6∈ {f(n1), . . . , f(nk)}. But n ∈ AΨ(x), thus

f(n) ∈ x̂U , a contradiction.
As the sets AΨ(x) are linearly quasiordered by ⊆∗, so are the sets x̂U =

f [AΨ(x)].
1 ⇒ 2: Since Ψ is continuous, Y = Ψ[X] also satisfies Ufin(O,T∗). Consider

the basic open covers Un = {Un
m}m∈N defined by Un

m = {f ∈ Y : f(n) = m}.
Then there exist finite Fn ⊆ Un, n ∈ N, such that either Y = ∪Fn for some n,
or else V = {∪Fn : n ∈ N} is a τ ∗-cover of Y .

The first case can be split into two sub-cases: If there exists an infinite set
A ⊆ N such that Y = ∪Fn, then for each n ∈ A the set {f(n) : f ∈ Y } is finite,
and we can define

h(n) =

{
max{f(n) : f ∈ Y } n ∈ A

0 otherwise
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so that A ⊆ [f ≤ h] for each f ∈ Y , and we are done. Otherwise Y = ∪Fn

for only finitely many n, therefore we may replace each Fn satisfying Y = ∪Fn

with Fn = ∅, so we are in the second case.

The second case is the interesting one. V = {∪Fn : n ∈ N} is a τ ∗-cover of Y
– fix a bijective enumeration {∪Fkn

}n∈N of V and witnesses f̂V , f ∈ Y , for that.
Define h(n) = max{m : Un

m ∈ Fn} for each n. Then the subsets {kn : n ∈ f̂V}
of [f ≤ h], f ∈ Y , are infinite and linearly quasiordered by ⊆∗. This shows that
Y is linearly refinable. QED

7.4 Borel images

Define the following notion.

T∗: The set of X ⊆ R such that for each linearly refinable Borel image Y of
X in P∞(N), Y has a pseudointersection.

By the usual method we get the following.

51 Lemma. T∗ =
(
BT∗

BΓ

)
.

Clearly T∗ implies T.

52 Lemma. non(T∗) = t.

Proof. It is easy to see that non(T∗) is the minimal size of a linearly re-
finable family Y ⊆ P∞(N) which has no pseudointersection. We will show that
t ≤ non(T∗). Assume that Y ⊆ P∞(N) is a linearly refinable family of size
less than t, and let Ŷ be a linear refinement of Y . As |Ŷ | ≤ |Y | < t, Ŷ has a
pseudointersection, which is in particular a pseudointersection of Y . QED

An application of Lemma 51 and the Cancellation Laws implies the following.

53 Theorem. S1(BT∗ ,BΓ) = T∗ ∩ B.

We do not know whether T∗ = T. In particular, we have the following (recall
Theorem 16).

54 Problem. Is it true that every analytic set of reals satisfies T∗? Does
NN ∈ T∗?

We do not know whether S1(BΓ,BT) = Ufin(BΓ,BT) or not. This can be
contrasted with the following result.

55 Theorem. For a set X of real numbers, the following are equivalent:

(1) X satisfies S1(BΓ,BT∗),

(2) X satisfies Sfin(BΓ,BT∗),

(3) X satisfies Ufin(BΓ,BT∗);
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(4) Every Borel image of X in NN satisfies the weak excluded middle property.

Proof. Clearly 1 ⇒ 2 ⇒ 3.

3 ⇒ 4: This can be proved like 1 ⇒ 2 in Theorem 50.

4 ⇒ 1: Assume that Un = {Un
k : k ∈ N}, n ∈ N, are Borel γ-covers of

X. We may assume that these covers are pairwise disjoint. Define a function
Ψ : X → NN so that for each x and n:

Ψ(x)(n) = min{k : (∀m ≥ k) x ∈ Un
m}.

Then Ψ is a Borel map, and so Y = Ψ[X] satisfies the weak excluded middle
property. Let h ∈ NN and Af ⊆ [f ≤ h], f ∈ Y , be witnesses for that. Set
U = {Un

h(n)}n∈N. For each x ∈ X set x̂U = AΨ(x). Then x̂U is infinite and

x̂U ⊆ [Ψ(x) ≤ h] ⊆ xU for each x ∈ X, and the sets x̂U are linearly quasiordered
by ⊆∗. QED

7.5 Critical cardinalities

The argument of Theorem 23 implies that

non(Sfin(BT∗ ,BΩ)) = non(Sfin(T∗,Ω)) = d.

56 Theorem. non(S1(BT∗ ,BΓ)) = non(S1(T
∗,Γ)) = t.

Proof. By Theorem 53,

non(S1(BT∗ ,BΓ)) = min{non(T∗), non(B)} = min{t, b} = t.

On the other hand, S1(T
∗,Γ) implies S1(T,Γ), whose critical cardinality is t.

QED

Define the following properties.

X: The set of X ⊆ R such that each Borel image of X in NN satisfies the
excluded middle property.

wX: The set of X ⊆ R such that each Borel image of X in NN satisfies the
weak excluded middle property.

Recall that by Theorem 21, Ufin(BΓ,BT) = X. In Theorem 55 we proved that
S1(BΓ,BT∗) = wX. We do not know whether wX = X.

57 Problem. Is non(wX) = x?
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7.6 Finite powers

In [7] it is observed that if U is an ω-cover of X, then for each k U k = {Uk :
U ∈ U} is an ω-cover of Xk. Similarly, it is observed in [15] that if U is a τ -cover
of X, then for each k Uk is a τ -cover of Xk. We will need the same assertion for
τ∗-covers.

58 Lemma. Assume that U is a τ ∗-cover of X. Then for each k, Uk is a
τ∗-cover of Xk.

Proof. Fix k. Let U = {Un}n∈N be an enumeration of U , and let x̂U ⊆ xU ,
x ∈ X, witness that U is a τ ∗-cover of X. For each ~x = (x0, . . . , xk−1) ∈ Xk

define

~̂xUk =
⋂

i<k

ˆ(xi)U .

As the sets x̂U are infinite and linearly quasiordered by ⊆∗, the sets ~̂xUk are
also infinite and linearly quasiordered by ⊆∗. Moreover, for each n ∈ ~̂xUk and

each i < k, n ∈ ˆ(xi)U , and therefore xi ∈ Un for each i < k; thus ~x ∈ Uk
n , as

required. QED

In [7] it is proved that the classes S1(Ω,Γ), S1(Ω,Ω), and Sfin(Ω,Ω) are
closed under taking finite powers, and that none of the remaining classes they
considered has this property. Actually, their argument for the last assertion
shows that assuming CH, there exist a Lusin set L and a Sierpinski set S such
that L × L and S × S can be mapped continuously onto the Baire space NN.
Consequently, we have that none of the classes S1(Γ,T), Sfin(Γ,T), Ufin(Γ,T),
S1(T,O), and their corresponding Borel versions, is closed under taking finite
powers. We do not know whether the remaining 7 classes which involve τ -covers
are closed under taking finite powers.

59 Theorem. S1(Ω,T
∗) and Sfin(Ω,T∗) are closed under taking finite pow-

ers.

Proof. We will prove the assertion for S1(Ω,T
∗); the proof for the remain-

ing assertion is similar. Fix k. In [7] it is proved that for each open ω-cover U of
Xk there exists an open ω-cover V of X such that the ω-cover Vk of Xk refines
U .

Assume that {Un}n∈N is a sequence of open ω-covers of Xk. For each n
choose an open ω-cover Vn of X such that Vk

n refines Un. Apply S1(Ω,T
∗) to

extract elements Vn ∈ Vn, n ∈ N, such that W = {Vn}n∈N ∈ T∗. By Lemma 58,
Wk is a τ∗-cover of Xk. For each n choose Un ∈ Un such that V k

n ⊆ Un. Then
by Lemma 44, {Un}n∈N is a τ∗-cover of X. QED
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7.7 Strong properties

Assume that {Un}n∈N is a sequence of collections of covers of a space X,
and that V is a collection of covers of X. The following selection principle is
defined in [17].

S1({Un}n∈N,V): For each sequence {Un}n∈N where for each n Un ∈ Un, there is a sequence
{Un}n∈N such that for each n Un ∈ Un, and {Un}n∈N ∈ V.

The notion of strong γ-set, which is due to Galvin and Miller [5], is a particular
instance of the new selection principle, where V = Γ and for each n Un = On,
the collection of open n-covers of X (we use here the simple characterization
given in [17]). It is well known that the γ-property S1(Ω,Γ) does not imply
the strong γ-property S1({On}n∈N,Γ). It is an open problem whether S1(Ω,T)
implies S1({On}n∈N,T).

The following notions are defined in [17]. A collection U of open covers of a
space X is finitely thick if:

(1) If U ∈ U and for each U ∈ U FU is a finite family of open sets such that
for each V ∈ FU , U ⊆ V 6= X, then

⋃
U∈U FU ∈ U.

(2) If U ∈ U and V = U ∪ F where F is finite and X 6∈ F , then V ∈ U.

A collection U of open covers of a space X is countably thick if for each U ∈ U

and each countable family V of open subsets of X such that X 6∈ V, U ∪ V ∈ U.

Whereas T is in general not finitely thick nor countably thick, T∗ is both
finitely and countably thick [17]. In [17] it is proved that if V is countably thick,
then S1(Ω,V) = S1({On}n∈N,V). Consequently, S1(Ω,T

∗) = S1({On}n∈N,T
∗).

7.8 Closing on the Minimal Tower problem

Clearly S1(T
∗,Γ) implies S1(T,Γ), and S1(BT∗ ,BΓ) implies S1(BT,BΓ). So

we now have new topological lower bounds on the Minimal Tower problem.

60 Problem. (1) Is S1(Ω,Γ) = S1(T
∗,Γ)?

(2) Is S1(BΩ,BΓ) = S1(BT∗ ,BΓ)?

We also have a new combinatorial bound.

61 Definition. p∗ is the minimal size of a centered family in P∞(N) which
is not linearly refineable.

62 Theorem. The critical cardinalities of the properties
(
BΩ
BT∗

)
and

(
Ω
T∗

)
is

p∗.

Proof. This follows from Theorem 47 and Remark 47. QED
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The following can be proved either directly from the definitions or from the
equivalence

(
Ω
Γ

)
=

(
Ω
T∗

)
∩

(
T∗

Γ

)
.

63 Corollary. p = min{p∗, t}. Thus, if p < t is consistent, then p∗ < t is
consistent as well.

We therefore have the following problem.

64 Problem. Is p = p∗?

7.9 The remaining Borel classes

We are left with Figure 3 for the Borel case.

S1(BΓ,BΓ) // S1(BΓ,BT∗ ) // S1(BΓ,BΩ) // S1(BΓ,B)

Sfin(BT∗ ,BT∗ )

hhQQQQQQQQQ
// Sfin(BT∗ ,BΩ)

66nnnnnnnn

Sfin(BΩ,BT∗ )

OO

// Sfin(BΩ,BΩ)

OO

S1(BT∗ ,BΓ)

OO

// S1(BT∗ ,BT∗ )

=={{{{{{{{{{{{{{{
// S1(BT∗ ,BΩ)

``AAAAAAAAAAAAAA
// S1(BT∗ ,B)

OO

S1(BΩ,BΓ)

OO

// S1(BΩ,BT∗ )

OO

//

{{{{{{{

=={{{{{{{

S1(BΩ,BΩ)

OO

//

BBBBBB

``BBBBBB

S1(B,B)

OO

Figure 3.

8 Sequences of compatible τ-covers

When considering sequences of τ -covers, it may be convenient to have that
the linear quasiorderings they define on X agree, in the sense that there exists
a Borel linear quasiordering 4 on X which is contained in all of the induced
quasiorderings. In this case, we say that the τ -covers are compatible. We thus
have the following new selection principle:

S
4
1 (T,V): For each sequence {Un}n∈N of countable open compatible τ -covers of X

there is a sequence {Un}n∈N such that for each n Un ∈ Un, and {Un}n∈N ∈
V.

The selection principle S
4

fin(T,V) is defined similarly. Replacing “open” by

“Borel” gives the selection principles S
4
1 (BT,V) and S

4

fin(BT,V). The following
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implications hold:

S
4
1 (T,V) → S

4

fin(T,V) →
(
T
V

)

↑ ↑
S1(T,V) → Sfin(T,V)

and similarly for the Borel case.
For V = Γ the new notions coincide with the old ones.

65 Proposition. The following equivalences hold:

(1) S1(T,Γ) = S
4
1 (T,Γ) = Sfin(T,Γ) = S

4

fin(T,Γ);

(2) S1(BT,BΓ) = S
4
1 (BT,BΓ) = Sfin(BT,BΓ) = S

4

fin(BT,BΓ).

Proof. We will prove (1); (2) is similar. By Theorem 5, we have the fol-
lowing implications

S
4
1 (T,Γ) → S

4

fin(T,Γ) →
(
T
Γ

)
∩ Sfin(Γ,Γ) = S1(T,Γ)

↑ ↑
S1(T,Γ) → Sfin(T,Γ)

QED

8.1 The class S
4

fin(BT,BT)

66 Definition. A τ -cover of 〈X,4〉 is a τ -cover of X such that the induced
quasiordering contains 4.

67 Lemma. Let 〈X,4〉 be a linearly quasiordered set of reals, and assume
that every Borel image of 4 in NN is bounded (with respect to ≤∗). Assume that
Un = {Un

k : k ∈ N} are Borel τ -covers of 〈X,4〉. Then there exist finite subsets
Fn of Un, n ∈ N, such that

⋃
n∈N

Fn is a τ -cover of 〈X,4〉.
Proof. Fix a linear quasiordering 4 of X, and assume that Un = {Un

k :
k ∈ N} are Borel τ -covers of 〈X,4〉. Define a Borel function Ψ from 4 to NN
by:

Ψ(x, y)(n) = min{k : (∀m ≥ k) x ∈ Un
m → y ∈ Un

m}.
Ψ[4] is bounded, say by g. Now define a Borel function Φ from X to NN by:

Φ(x)(n) = min{k : g(n) ≤ k and x ∈ Un
k }

Note that Φ[X] is a Borel image of 4 in NN, thus it is bounded, say by f . It
follows that the sequence {Un

g(n), . . . , U
n
f(n) : g(n) ≤ f(n)}n∈N is large, and is a

τ -cover of X. QED
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According to [13], the property that every Borel image is bounded is equiv-
alent to S1(BΓ,BΓ).

68 Lemma. Let P be a collection of spaces which is closed under taking
Borel subsets, continuous images (or isometries), and finite unions. Then for
each set X of real numbers, the following are equivalent:

(1) Each Borel linear quasiordering 4 of X satisfies P,

(2) X2 satisfies P.

(3) There exists a Borel linear quasiordering 4 of X satisfying P,

Proof. 1 ⇒ 2 ⇒ 3: The set 4= X2 is a linear quasiordering of X.
3 ⇒ 2: If 4 satisfies P, then so does its continuous image <= {(y, x) : x 4 y}.

Thus, X2 =< ∪ 4 satisfies P.
2 ⇒ 1: P is closed under taking Borel subsets. QED

Thus, lemma 67 can be restated as follows.

69 Theorem. If X2 satisfies S1(BΓ,BΓ), then X satisfies S
4

fin(BT,BT).

Proof. The property S1(BΓ,BΓ) satisfies the assumptions of Lemma 68.
QED

70 Problem. Assume that X satisfies S
4

fin(BT,BT). Is it true that X2

satisfies S1(BΓ,BΓ)?

Since b = cov(N ) = cof(N ) (in particular, the Continuum Hypothesis)
implies that S1(BΓ,BΓ) is not closed under taking squares [13], a positive an-
swer to Problem 70 would imply that the property S1(BΓ,BΓ) does not imply
S

4

fin(BT,BT).
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Added in proof. Problem 42 was almost completely solved in: H. Milden-
berger, S. Shelah, and B. Tsaban, The combinatorics of τ -covers (see http://

arxiv.org/abs/math.GN/0409068). There remains exactly one unsettled criti-
cal cardinality in the diagram. It follows from the results of that paper that the
answer to the question before Theorem 55 is negative.
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