Note di Matematica **22**, n. 2, 2003, 43–52.

The Pytkeev property and the Reznichenko property in function spaces

Masami Sakai

Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan sakaim01@kanagawa-u.ac.jp

Received: 13/01/2003; accepted: 20/08/2003.

Abstract. For a Tychonoff space X we denote by $C_p(X)$ the space of all real-valued continuous functions on X with the topology of pointwise convergence. Characterizations of sequentiality and countable tightness of $C_p(X)$ in terms of X were given by Gerlits, Nagy, Pytkeev and Arhangel'skii. In this paper, we characterize the Pytkeev property and the Reznichenko property of $C_p(X)$ in terms of X. In particular we note that if $C_p(X)$ over a subset X of the real line is a Pytkeev space, then X is perfectly meager and has universal measure zero.

Keywords: Function space, topology of pointwise convergence, sequential, countable tightness, Pytkeev space, weakly Fréchet-Urysohn, ω -cover, ω -shrinkable, ω -grouping property, the Menger property, the Rothberger property, the Hurewicz property, universal measure zero, perfectly meager, property (γ).

MSC 2000 classification: primary 54C35; Secondary 54D20, 54D55, 54H05.

Introduction

In this paper we assume that all topological spaces are Tychonoff spaces. Unexplained notions and terminology are the same as in [4]. We denote by $[X]^{<\omega}$ the set of finite subsets of a set X. The letter \mathbb{N} is the set of natural numbers.

For a space X we denote by $C_p(X)$ the space of all real-valued continuous functions on X with the topology of pointwise convergence. Basic open sets of $C_p(X)$ are of the form

 $[x_1, x_2, \dots, x_k; U_1, U_2, \dots, U_k] = \{ f \in C_p(X) : f(x_i) \in U_i, i = 1, 2, \dots, k \}$

where $x_i \in X$ and each U_i is an open subset of the real line. Since $C_p(X)$ is a topological vector space, it is homogeneous.

It is known that some topological properties of $C_p(X)$ can be well characterized by topological properties of X [3]. The purpose of the paper is to characterize the Pytkeev property and the Reznichenko property of $C_p(X)$ in terms of X. We give some definitions to state known results. A space X is said to be strictly Fréchet if $x \in \bigcap_{n \in \omega} \overline{A}_n, A_n \subset X$, implies the existence of a sequence $\{x_n\}_{n \in \omega}$ such that $x_n \in A_n$ and $\{x_n\}_{n \in \omega}$ converges to x. A space X is said to be Fréchet if $x \in \overline{A}, A \subset X$, implies the existence of a sequence $\{x_n\}_{n \in \omega}$ such that $x_n \in A$ and $\{x_n\}_{n \in \omega}$ converges to x. A space X is said to be sequential if for each non-closed set $A \subset X$ there exist a point $x \in \overline{A} - A$ and a sequence $\{x_n\}_{n \in \omega}$ such that $x_n \in A$ and $\{x_n\}_{n \in \omega}$ converges to x. A space X has countable tightness if $A \subset X$ and $x \in \overline{A}$, then there exists a countable set $B \subset A$ such that $x \in \overline{B}$. Obviously;

strictly Fréchet \rightarrow Fréchet \rightarrow sequential \rightarrow countable tightness.

None of these implications is reversible.

A cover \mathcal{U} of a space X is called an ω -cover of X if for every $F \in [X]^{<\omega}$ there exists a $U \in \mathcal{U}$ with $F \subset U$. An open ω -cover is an ω -cover of open subsets. A space X is said to have property (γ) if for each open ω -cover \mathcal{U} of X there exists a sequence $\{U_n\}_{n\in\omega} \subset \mathcal{U}$ with $X = \bigcup_{n\in\omega} \bigcap_{m>n} U_n$.

1 Theorem. [1] [16] For a space X the following are equivalent.

- (1) $C_p(X)$ has countable tightness;
- (2) Each finite power of X is Lindelöf;
- (3) Every open ω -cover of X has a countable ω -subcover.

The implications $(1) \rightarrow (2)$ and $(2) \rightarrow (1)$ is due to Pytkeev and Arhangel'skii respectively. The equivalence $(2) \leftrightarrow (3)$ is due to [8, p. 156].

- **2 Theorem.** [7] [8] For a space X the following are equivalent.
- (1) $C_p(X)$ is strictly Fréchet;
- (2) $C_p(X)$ is Fréchet;
- (3) $C_p(X)$ is sequential;
- (4) X has property (γ) .

For a compact space X, $C_p(X)$ is sequential iff X is scattered [8, Corollary, p. 158]. There exists an uncountable subset of the real line with property (γ) in ZFC + CH [8, p. 160].

There exists some interesting classes of spaces between the class of sequential spaces and the class of spaces with countable tightness. A space X is said to be *subsequential* if it is homeomorphic to a subspace of a sequential space. Not each subspace of a sequential space is sequential. For a space X and $x \in X$, a family \mathcal{N} of subsets of X is called a π -network at x if every neighborhood of x contains some element of \mathcal{N} . According to [14], a space X is called a Pytkeev space if $x \in \overline{A} - A$ and $A \subset X$ imply the existence of a countable π -network at x of infinite subsets of A. This property was introduced in [17] and every subsequential space is a Pytkeev space [17]. According to Reznichenko, a space The Pytkeev property and the Reznichenko property in function spaces

X is called a weakly Fréchet-Urysohn space (or X has the Reznichenko property) if $x \in \overline{A} - A$ and $A \subset X$ imply the existence of a countable infinite disjoint family \mathcal{F} of finite subsets of A such that for every neighborhood V of x the family $\{F \in \mathcal{F} : F \cap V = \emptyset\}$ is finite. Every Pytkeev space is weakly Fréchet-Urysohn [14, Corollary 1.2]. Obviously every weakly Fréchet-Urysohn space has countable tightness.

subsequential \rightarrow Pytkeev \rightarrow weakly Fréchet-Urysohn \rightarrow countable tightness

None of these implications is reversible.

For subsequential spaces, Pytkeev spaces and weakly Fréchet-Urysohn spaces, see [6], [14] and [5].

1 The Pytkeev property

An open ω -cover \mathcal{U} of a space X is said to be *non-trivial* if $X \notin \mathcal{U}$. Note that for a non-trivial open ω -cover \mathcal{U} of X and every $F \in [X]^{<\omega}$ the family $\{U \in \mathcal{U} : F \subset U\}$ is infinite. An open ω -cover \mathcal{U} of X is said to be ω -shrinkable if for each $U \in \mathcal{U}$ there exists a closed set C(U) of X such that $C(U) \subset U$ and $\{C(U) : U \in \mathcal{U}\}$ is an ω -cover of X. Some of C(U)'s may be empty.

For an $F \in [X]^{<\omega}$ and an open subset U of the real line containing the real number 0, we set $[F;U] = \{f \in C_p(X) : f(F) \subset U\}$. The family of the form [F;U] is a neighborhood base of f_0 , where f_0 is the constant map to the real number 0.

3 Theorem. For a space X the following are equivalent.

(1) $C_p(X)$ is a Pytkeev space;

(2) If \mathcal{U} is an ω -shrinkable non-trivial open ω -cover of X, then there is a sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of subfamilies of \mathcal{U} such that $|\mathcal{U}_n| = \omega$ and $\{\bigcap \mathcal{U}_n\}_{n\in\omega}$ is an ω -cover of X.

PROOF. (1) \rightarrow (2) : For every $U \in \mathcal{U}$, choose a closed set C(U) in X such that $C(U) \subset U$ and $\{C(U) : U \in \mathcal{U}\}$ is an ω -cover of X. Since $C_p(X)$ has countable tightness, X is Lindelöf (in particular normal) by Theorem 1. So we can take a zero-set Z(U) and a cozero-set V(U) with $C(U) \subset Z(U) \subset V(U) \subset U$. Without loss of generality, we may assume that for distinct $U, U' \in \mathcal{U} Z(U)$ and Z(U') are distinct, and every Z(U) is non-empty. For every $U \in \mathcal{U}$, take a continuous map $f_U : X \to [0, 1]$ such that $f_U^{-1}(0) = Z(U), f_U^{-1}(1) = X - V(U)$. Let $A = \{f_U : U \in \mathcal{U}\}$. Note that for distinct $U, U' \in \mathcal{U} f_U$ and $f_{U'}$ are distinct. Obviously $f_0 \in \overline{A} - A$. By the condition (1), there is a sequence $\{A_n\}_{n \in \omega}$ of subsets of A such that $|A_n| = \omega$ and $\{A_n\}_{n \in \omega}$ is a π -network at f_0 . Take a subfamily $\mathcal{U}_n \subset \mathcal{U}$ such that $|\mathcal{U}_n| = \omega$ and $A_n = \{f_U : U \in \mathcal{U}\}$. Let $F \in [X]^{<\omega}$

and consider the neighborhood [F; (-1, 1)] of f_0 . Then there is an $n \in \omega$ with $A_n \subset [F; (-1, 1)]$. This means $F \subset \bigcap \{V(U) : U \in \mathcal{U}_n\} \subset \bigcap \{U : U \in \mathcal{U}_n\}$. Thus $\{\bigcap \mathcal{U}_n\}_{n \in \omega}$ is an ω -cover of X.

 $(2) \rightarrow (1)$: Assume $A \subset C_p(X)$ and $f_0 \in \overline{A} - A$. For every $n \in \mathbb{N}$ and $f \in A$ let $U_n(f) = \{x \in X : -1/n < f(x) < 1/n\}$ and $\mathcal{U}_n = \{U_n(f) : f \in A\}$. If $\{n \in \mathbb{N} : X \in \mathcal{U}_n\}$ is infinite, we can find a sequence in A which converges to f_0 . Then the conclusion is trivial. So we may assume that there is an $n_0 \in \mathbb{N}$ such that \mathcal{U}_n is non-trivial for each $n \ge n_0$. We see that \mathcal{U}_n is an ω -shrinkable open ω -cover of X. Indeed for every $n \in \mathbb{N}$ and $f \in A$ let $Z_n(f) = \{x \in X : -1/2n \le$ $f(x) \le 1/2n\}$. Then obviously $Z_n(f)$ is closed in X and $Z_n(f) \subset U_n(f)$. Let $F \in [X]^{<\omega}$. The neighborhood [F; (-1/2n, 1/2n)] of f_0 contains an $f \in A$. Then $F \subset Z_n(f)$. Thus for each $n \ge n_0$, \mathcal{U}_n is an ω -shrinkable non-trivial open ω cover of X. By applying to $\mathcal{U}_n(n \ge n_0)$ the condition (2), there is a sequence $\{\mathcal{V}_{nm} : m \in \mathbb{N}\}$ of subfamilies of \mathcal{U}_n such that $|\mathcal{V}_{nm}| = \omega$ and $\{\bigcap \mathcal{V}_{nm} : m \in \mathbb{N}\}$ is an ω -cover of X. For each $n \ge n_0$ there is a sequence $\{A_{nm} : m \in \mathbb{N}\}$ of countably infinite subsets of A such that $\mathcal{V}_{nm} = \{U_n(f) : f \in A_{nm}\}$. It is easy to see that the family $\mathcal{A} = \{A_{nm} : n \ge n_0, m \in \mathbb{N}\}$ is a π -network at f_0 .

For the sake of simplicity, we call the condition (2) in the above theorem property (π) . Property (γ) obviously implies property (π) .

For $A \subset X$ and \mathcal{V} a family of subsets of X, we put $\mathcal{V}|A = \{V \cap A : V \in \mathcal{V}\}.$

4 Lemma. (1) Let X be the union of an increasing sequence $\{X_n\}_{n \in \omega}$ of subspaces of X. If each X_n satisfies property (π) , then so does X.

(2) Let X be a continuous image of Y. If Y has property (π) , then so does X.

PROOF. (1) Let \mathcal{U} be an ω -shrinkable non-trivial open ω -cover of X. Let $\mathcal{V}_n = \mathcal{U}|X_n$. Obviously \mathcal{V}_n is an ω -shrinkable open ω -cover of X_n . Assume that the set $\{n \in \omega : X_n \in \mathcal{V}_n\}$ is infinite. Then there are sequences $n_0 < n_1 < \cdots$ and $U_0, U_1, \cdots \in \mathcal{U}$ such that $X_{n_i} \subset U_i, i \in \omega$. Since \mathcal{U} is non-trivial, the family $\{U_i : i \in \omega\}$ is infinite. Let $\mathcal{U}_i = \{U_n : n \geq i\}$ for each $i \in \omega$. Then $|\mathcal{U}_i| = \omega$ and $\{\bigcap \mathcal{U}_i\}_{i\in\omega}$ is an ω -cover of X. Therefore, without loss of generality, we may assume that each \mathcal{V}_n is non-trivial. For each $n \in \omega$ take a sequence $\{\mathcal{V}_{nm}\}_{m\in\omega}$ of subfamilies of \mathcal{V}_n such that $|\mathcal{V}_{nm}| = \omega$ and $\{\bigcap \mathcal{V}_{nm}\}_{m\in\omega}$ is an ω -cover of X_n . Take a subfamily $\mathcal{U}_{nm} \subset \mathcal{U}$ such that $\mathcal{V}_{nm} = \mathcal{U}_{nm}|X_n$. The collection $\{\mathcal{U}_{nm}: n, m \in \omega\}$ is a desired one.

(2) This is a routine. We omit the proof.

QED

5 Corollary. If $C_p(X)$ is a Pytkeev space, then so is $C_p(X)^{\omega}$.

PROOF. Assume that $C_p(X)$ is a Pytkeev space, in other words X satisfies property (π) . For each $n \in \omega$ let X_n be the copy of $X, Z_n = X_0 \oplus \cdots \oplus X_n$ and $Y = \bigoplus_{n \in \omega} X_n$, where \oplus is the topological sum of spaces. Since $C_p(X)^{\omega}$ is homeomorphic to $C_p(Y)$, we have only to show that Y satisfies property (π) .

First we note that Z_1 satisfies property (π) . Let \mathcal{U} be an ω -shrinkable nontrivial open ω -cover of Z_1 and ψ_i the map from X into Z_1 defined by $\psi_i(x) = x \in X_i$ for $x \in X$, where i = 0, 1. Let $\{C(U) : U \in \mathcal{U}\}$ be an ω -shrinking for \mathcal{U} . Then obviously $\mathcal{V} = \{\psi_0^{-1}(U) \cap \psi_1^{-1}(U) : U \in \mathcal{U}\}$ is a non-trivial open ω -cover of X and the family $\{\psi_0^{-1}(C(U)) \cap \psi_1^{-1}(C(U)) : U \in \mathcal{U}\}$ is an ω -shrinking for \mathcal{V} . Hence there is a sequence $\{\mathcal{V}_n\}_{n\in\omega}$ of subfamilies of \mathcal{V} such that $|\mathcal{V}_n| = \omega$ and $\{\bigcap \mathcal{V}_n\}_{n\in\omega}$ is an ω -cover of X. For each $n \in \omega$ we take a countably infinite subfamily $\mathcal{U}_n \subset \mathcal{U}$ such that $\mathcal{V}_n = \{\psi_0^{-1}(U) \cap \psi_1^{-1}(U) : U \in \mathcal{U}_n\}$. Then it is easy to see that $\{\bigcap \mathcal{U}_n\}_{n\in\omega}$ is an ω -cover of Z_1 .

Similarly we can see that each $Z_n, n \ge 2$, satisfies property (π) . Now, by applying Lemma 4 (1), Y satisfies property (π) .

6 Lemma. If $C_p(X)$ is a Pytkeev space, then X is zero-dimensional.

PROOF. For $x \in X$ and an open set $U \subset X$ with $x \in U$, take a continuous map $f: X \to [0,1]$ such that f(x) = 0 and f(y) = 1 for any $y \in X - U$. If the map f is onto, then naturally $C_p([0,1])$ is embeddable into $C_p(X)$. Hence $C_p([0,1])$ is a Pytkeev space. But, as shown in [13], $C_p([0,1])$ is not a Pytkeev space. Therefore the map f is not onto. Let $r \in [0,1] - f(X)$. Then $f^{-1}([0,r])$ is a clopen set in X with $x \in f^{-1}([0,r]) \subset U$.

According to [12], a space X is said to have the Menger property if for every sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of open covers of X there exists a sequence $\{\mathcal{V}_n\}_{n\in\omega}$ such that each $\mathcal{V}_n \subset \mathcal{U}_n$ is finite and $\bigcup_{n\in\omega} \mathcal{V}_n$ is a cover of X. It is known that each finite power of X has the Menger property iff for every sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of open ω -covers of X there exists a sequence $\{\mathcal{V}_n\}_{n\in\omega}$ such that each $\mathcal{V}_n \subset \mathcal{U}_n$ is finite and $\bigcup_{n\in\omega} \mathcal{V}_n$ is an ω -cover of X. Every space with the Menger property is Lindelöf.

7 Lemma. Let X be a space such that each finite power of X has the Menger property. Then every open ω -cover of X is ω -shrinkable.

PROOF. Let \mathcal{U} be an open ω -cover of X. Since each finite power of X is Lindeöf, every open ω -cover of X has a countable ω -subcover, recall Theorem 1. And the union of countably many cozero-sets is a cozero-set. Therefore, without loss of generality, we may assume that \mathcal{U} is a countable non-trivial open ω cover of X consisting of cozero-sets of X. Let $\mathcal{U} = \{U_n : n \in \omega\}$. For each $n \in \omega$, take sequences $\{Z_{nj}\}_{j\in\omega}$ of zero-sets of X and $\{U_{nj}\}_{j\in\omega}$ of cozero-sets of X satisfying $Z_{nj} \subset U_{nj} \subset Z_{nj+1}$ and $U_n = \bigcup_{j\in\omega}Z_{nj}$. For each $n \in \omega$, let $\mathcal{V}_n = \{U_{kj} : k \ge n, j \in \omega\}$. Since \mathcal{U} is non-trivial, each \mathcal{V}_n is an ω -cover of X. Take a finite subfamily $\mathcal{W}_n \subset \mathcal{V}_n$ such that $\mathcal{W} = \bigcup_{n\in\omega} \mathcal{W}_n$ is an ω -cover of X. For each $n \in \omega$, let $l(n) = \max\{j : U_{nj} \in \mathcal{W}\}$ if such a j exists, otherwise let l(n) be an arbitrary natural number. Then the family $\{Z_{nl(n)+1} : n \in \omega\}$ is an ω -shrinking of \mathcal{U} .

A subset A of a space X is said to be *perfectly meager* [15] if for each perfect set P the set $P \cap A$ is meager in P (i. e. $P \cap A$ is the union of countably many nowhere dense subsets of P). A subset A of a space X is said to have *universal measure zero* if for each Borel measure μ on X there exists a Borel set B with $A \subset B$ and $\mu(B) = 0$, where a Borel measure means a countably additive, atomless (i. e. $\mu(\{x\}) = 0$ for each $x \in X$), finite measure. For a subset A of the real line, A has universal measure zero iff for any Borel measure μ on A, $\mu(A)=0$ [15, p. 212]. Every countable subset of a space X is obviously perfectly meager and has universal measure zero. There exists an uncountable subset of the real line which is perfectly meager and has universal measure zero [15, Theorem 5.3]. In the following, we note that each subset X of the real line whose $C_p(X)$ is a Pytkeev space is perfectly meager and has universal measure zero.

8 Lemma. Let X be a separable metric space and μ a Borel measure on X. If $C_p(X)$ is a Pytkeev space, then $\mu(X) = 0$.

PROOF. We assume that X is infinite. Let \widetilde{X} be a metrizable compactification of X. Let $\widetilde{\mu}$ be the Borel measure on \widetilde{X} defined by $\widetilde{\mu}(B) = \mu(B \cap X)$, where B is a Borel set of \widetilde{X} . For each $n \in \mathbb{N}$ we define a family \mathcal{U}_n as follows. For each $F \in [\widetilde{X}]^{<\omega}$ take an open set U(F) of \widetilde{X} satisfying $F \subset U(F), X - U(F) \neq \emptyset$ and $\widetilde{\mu}(U(F)) \leq 1/n$. Let $\mathcal{U}_n = \{U(F) : F \in [\widetilde{X}]^{<\omega}\}$. Each \mathcal{U}_n is an open ω -cover of \widetilde{X} . Since \widetilde{X} is compact (hence each finite power of \widetilde{X} has the Menger property), there is a finite subfamily $\mathcal{V}_n \subset \mathcal{U}_n$ such that $\mathcal{V} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is an ω -cover of \widetilde{X} . By Lemma 7, \mathcal{V} is ω -shrinkable. Hence the family $\{V \cap X : V \in \mathcal{V}\}$ is an ω -shrinkable non-trivial open ω -cover of X. By Theorem 3, there is a sequence $\mathcal{W}_n \subset \mathcal{V}$ such that each \mathcal{W}_n is infinite and $X \subset \bigcup_{n \in \mathbb{N}} (\bigcap \mathcal{W}_n)$. For each $m, n \in \mathbb{N}$ we may assume $|\mathcal{W}_n \cap \mathcal{V}_m| \leq 1$. Then $\widetilde{\mu}(\bigcap \mathcal{W}_n) = 0$. Thus $\mu(X) = \widetilde{\mu}(\bigcup_{n \in \mathbb{N}} (\bigcap \mathcal{W}_n)) = 0$.

9 Proposition. Let X be a subset of the real line. If $C_p(X)$ is a Pytkeev space, then X has universal measure zero and is perfectly meager.

PROOF. That X has universal measure zero is direct by the above Lemma.

We see that X is perfectly meager. Recall that X is zero-dimensional by Lemma 6. As described in [11, p. 516], for a subset Y of a complete separable metric space is perfectly meager iff every dense in itself subset of Y is meager in itself. So we have only to see that every dense in itself subset of X is meager in itself. Let A be a dense in itself subset of X and let B be the closure of A in X. Since B is a closed subset of the zero-dimensional separable metric space X, it is a retract of X (i. e. there is a continuous map r of X onto B such that r|B is the identity map), see [4, 6.2.B]. By Lemma 4(2), B has property (π). Malykhin showed in [13, Theorem 1.5] that if a space Y is a dense in itself separable metric space and $C_p(Y)$ is a Pytkeev space, then Y is meager in itself. Hence B is meager in itself. Since A is dense in B, A is meager in itself.

We conclude this section with some open questions.

Question 1. If each finite power of X is Lindelöf, is any open ω -cover of X ω -shrinkable? If this question were positive, we could delete " ω -shrinkable" in Theorem 3 (2). The author does not know if any open ω -cover of the space of irrational numbers is ω -shrinkable?

Question 2. If $C_p(X)$ is a Pytkeev space, does each finite power of X have the Menger property? If this question were positive, we could delete " ω -shrinkable" in Theorem 3 (2). It is known in [2] that each finite power of X has the Menger property iff $C_p(X)$ has countable fan tightness. A space X is said to have countable fan tightness if $x \in \bigcap_{n \in \omega} \overline{A}_n, A_n \subset X$, implies that for each $n \in \omega$ there exists a finite set $B_n \subset A_n$ such that $x \in \bigcup_{n \in \omega} B_n$.

Question 3. Let $C_p(X)$ be a Pytkeev space. Is $C_p(X)$ sequential (or subsequential)? As noted in [13], if X is compact, it is true.

2 The Reznichenko property

A space X is said to have the Rothberger property if for every sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of open covers of X there exist $U_n \in \mathcal{U}_n$ such that $\{U_n : n \in \omega\}$ is a cover of X [18]. The Rothberger property is sometimes called property C''. A space X is said to have countable strong fan tightness if $x \in \bigcap_{n\in\omega} \overline{A}_n, A_n \subset X$, implies that there exist $x_n \in A_n$ such that $x \in \{x_n : n \in \omega\}$. It is known [19] that $C_p(X)$ has countable strong fan tightness iff each finite power of X has the Rothberger property (i. e. property C'').

A space X is said to have the ω -grouping property [9] if for each open ω -cover \mathcal{U} of X there exists a sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of pairwise disjoint finite subfamilies of \mathcal{U} such that for each $F \in [X]^{<\omega}$ $\{n \in \omega : F \subset U \text{ for some } U \in \mathcal{U}_n\}$ is cofinite in ω . A space X is said to have the Hurewicz property [9] if for each sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of open covers of X there is a sequence $\{\mathcal{V}_n\}_{n\in\omega}$ of finite families such that for each $n \in \omega \ \mathcal{V}_n \subset \mathcal{U}_n$ and for each $x \in X$, $\{n \in \omega : x \in V \text{ for some } V \in \mathcal{V}_n\}$ is cofinite in ω . These notions were used to show the following theorem.

10 Theorem. [9, Main Theorem, Theorem 1.4] For a space X the following are equivalent.

(1) $C_p(X)$ is weakly Fréchet-Urysohn and has countable strong fan tightness;

(2) X has the ω -grouping property and each finite power of X has the Rothberger property; (3) Each finite power of X has both the Hurewicz property and the Rothberger property.

There is another result describing when $C_p(X)$ is weakly Fréchet-Urysohn.

11 Theorem. [10, Theorem 19] For a space X the following are equivalent.

(1) $C_p(X)$ is weakly Fréchet-Urysohn and has countable fan tightness;

(2) Each finite power of X has the Hurewicz property.

We characterize spaces X such that $C_p(X)$ is only weakly Fréchet-Urysohn (without countable fan tightness or countable strong fan tightness). As a consequence we obtain that the ω -grouping property of X implies the weak Fréchet-Urysohn property of $C_p(X)$ (compare with Theorem 10).

12 Theorem. For a space X the following are equivalent.

(1) $C_p(X)$ is weakly Fréchet-Urysohn;

(2) If \mathcal{U} is an ω -shrinkable non-trivial open ω -cover of X, then there exists a sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of pairwise disjoint finite subfamilies of \mathcal{U} such that for each $F \in [X]^{<\omega}$ $\{n \in \omega : F \subset U \text{ for some } U \in \mathcal{U}_n\}$ is cofinite in ω .

PROOF. (1) \rightarrow (2): Let \mathcal{U} be an ω -shrinkable non-trivial open ω -cover of X. By the same idea as in the proof (1) \rightarrow (2) of Theorem 3, for each $U \in \mathcal{U}$ we can take a continuous map $f_U: X \rightarrow [0,1]$ such that $f_U^{-1}(0) \subset U, X - U \subset f_U^{-1}(1)$ and $\{f_U^{-1}(0) : U \in \mathcal{U}\}$ is an ω -cover of X. Since $\{f_U^{-1}(0) : U \in \mathcal{U}\}$ is an ω -cover of X, we may assume that for distinct $U, U' \in \mathcal{U}$ f_U and $f_{U'}$ are distinct. Let $A = \{f_U : U \in \mathcal{U}\}$. Obviously $f_0 \in \overline{A} - A$, where f_0 is the constant map to the real number 0. Since $C_p(X)$ is weakly Fréchet-Urysohn, there exists a sequence $\{\mathcal{U}_n\}_{n\in\omega}$ of pairwise disjoint finite subfamilies of \mathcal{U} such that for each neighborhood V of f_0 the family $\{F_n : F_n \cap V = \emptyset\}$ is finite, where $F_n = \{f_U: U \in \mathcal{U}_n\}$. It is easy to check that the sequence $\{\mathcal{U}_n\}_{n\in\omega}$ is a desired one.

(2) \rightarrow (1): Assume $A \subset C_p(X)$ and $f_0 \in \overline{A} - A$. For every $n \in \mathbb{N}$ and $f \in A$ let $U_n(f) = \{x \in X : -1/n < f(x) < 1/n\}$ and $\mathcal{U}_n = \{U_n(f) : f \in A\}$. By the same reason as in the proof (2) \rightarrow (1) of Theorem 3, we may assume that each \mathcal{U}_n is non-trivial (i. e. $U_n(f) \neq X$ for each $n \in \mathbb{N}$ and $f \in A$). Since \mathcal{U}_1 is ω -shrinkable by the same reason as in the proof (2) \rightarrow (1) of Theorem 3, there exists a sequence $\{\mathcal{V}_n\}_{n\in\omega}$ of pairwise disjoint finite subfamilies of \mathcal{U}_1 such that for each $F \in [X]^{<\omega}$ $\{n \in \omega : F \subset U$ for some $U \in \mathcal{V}_n\}$ is cofinite in ω . For each $n \in \omega$ we set $\mathcal{V}_n = \{U_1(f) : f \in H_n\}$, where H_n is a finite subset of A. Then the family $\{H_n\}_{n\in\omega}$ is disjoint and for each $F \in [X]^{<\omega}$ $\{n \in \omega : [F; (-1, 1)] \cap H_n \neq \emptyset\}$ is cofinite in ω . We set $H = \bigcup\{H_n : n \in \omega\}, J_0 = \bigcup\{H_{2n} : n \in \omega\}$ and $J_1 = \bigcup\{H_{2n+1} : n \in \omega\}$. Obviously $f_0 \in \overline{J_0} \cup (A - H)$ or $f_0 \in \overline{J_1} \cup (A - H)$. Let $f_0 \in \overline{J_1} \cup (A - H)$ and enumerate as $\{H_{2n} : n \in \omega\} = \{A_{1n}\}_{n\in\omega}$. Since $\mathcal{U}'_2 = \{U_2(f) : f \in J_1 \cup (A - H)\}$

50

is an ω -shrinkable non-trivial open ω -cover of X, by the same procedure as above, there exists a disjoint family $\{A_{2n} : n \in \omega\}$ of finite subsets of $J_1 \cup (A-H)$ such that for each $F \in [X]^{<\omega}$ $\{n \in \omega : [F; (-1/2, 1/2)] \cap A_{2n} \neq \emptyset\}$ is cofinite in ω . and $f_0 \in \overline{A - \bigcup \{A_{mn} : n \in \omega, m = 1, 2\}}$. By repeating this operation, we have a disjoint family $\{A_{mn} : m \in \mathbb{N}, n \in \omega\}$ of finite subsets of A such that for each $m \in \mathbb{N}$ and $F \in [X]^{<\omega}$ $\{n \in \omega : [F; (-1/m, 1/m)] \cap A_{mn} \neq \emptyset\}$ is cofinite in ω . Now let $A_n = \bigcup \{A_{ij} : i + j = n\}$ for each $n \in \mathbb{N}$. It is not difficult to see that the disjoint family $\{A_n : n \in \mathbb{N}\}$ is a desired one.

13 Corollary. If X has the ω -grouping property, then $C_p(X)$ is weakly Fréchet-Urysohn.

By the same argument as in Corollary 5, we obtain the following.

14 Corollary. If $C_p(X)$ is weakly Fréchet-Urysohn, then so is $C_p(X)^{\omega}$.

Since a σ -compact space satisfies the ω -grouping property [10, Lemma 1.1], $C_p(X)$ over a σ -compact space X is weakly Fréchet-Urysohn. Weak Fréchet-Urysohn property of $C_p(X)$ over a σ -compact space was first pointed out by Reznichenko, see [14, p. 184]. Thus $C_p([0, 1])$ is weakly Fréchet-Urysohn.

Let $X = \omega \cup \{p\}$, where p is an arbitrary point of the Čech-Stone remainder ω^* . As noted in [14, Example 1.6], X is not weakly Fréchet-Urysohn. Let $Y = C_p(X)$. Since Y is separable metrizable, $C_p(Y)$ has countable tightness. But, since $C_p(Y)$ has a subspace homeomorphic to X, $C_p(Y)$ is not weakly Fréchet-Urysohn. There exists a subset L of the real line under CH such that $C_p(L)$ is not weakly Fréchet-Urysohn, see [10, Remarks 1].

Question 4. Can we delete the condition " ω -shrinkable" in Theorem 12 (2)?

Question 5. Let P be the space of irrational numbers. Is $C_p(P)$ weakly Fréchet-Urysohn?

Acknowledgements. Recently the author has proved that Question 5 is positive. The author would like to express the gratitude to the referee for the careful reading and many helpful suggestions.

3 Bibliography

References

A. V. ARHANGEL'SKII: On some topological spaces that arise in functional analysis, Russian Math. Surveys 31 (1976) 14–30.

- [2] A. V. ARHANGEL'SKII: Hurewicz spaces, analytic sets and fan tightness of function spaces, Soviet Math. Doklady 33 (1986) 396–399.
- [3] A. V. ARHANGEL'SKII: Topological Function Spaces, Kluwer, 1992.
- [4] R. ENGELKING: General Topology, Helderman Verlag Berlin, 1989.
- [5] A. FEDELI, A. LE DONNE: Pytkeev spaces and sequential extensions, Topology Appl. 117 (2002) 345–348.
- [6] S. P. FRANKLIN, M. RAJAGOPALAN: On subsequential spaces, Topology Appl. 35 (1990) 1–19.
- [7] J. GERLITS: Some properties of C(X), II, Topology Appl. 15 (1983) 255–262.
- [8] J. GERLITS, ZS. NAGY: Some properties of C(X), I, Topology Appl. 14 (1982) 151–161.
- [9] LJ. KOČINAC, M. SCHEEPERS: Function spaces and a property of Reznichenko, Topology Appl. 123 (2002) 135–143.
- [10] LJ. KOČINAC, M. SCHEEPERS: Combinatorics of open covers (VII):Groupability, Fund. Math., 179, (2003), 131–155.
- [11] C. KURATOWSKI: Topology, Vol. I, Academic Press, 1966.
- [12] A. LELEK: Some cover properties of spaces, Fund. Math. 64 (1964) 209-218.
- [13] V. I. MALYKHIN: $C_p(I)$ is not subsequential, Comment. Math. Univ. Calolinae **40** (1999) 785–788.
- [14] V. I. MALYKHIN, G. TIRONI: Weakly Fréchet-Urysohn and Pytkeev spaces, Topology Appl. 104 (2000) 181–190.
- [15] A. W. MILLER: Special subsets of the real line, Handbook of Set-theoretic Topology (K. Kunen and J. E. Vaughan eds.), Elsevier Science Publishers B.V., 1984, 201–233.
- [16] E. G. PYTKEEV: The tightness of spaces of continuous functions, Russian Math. Surveys 37 (1982) 176–177.
- [17] E. G. PYTKEEV: On maximally resolvable spaces, Proc. Steklov Institute of Math. 154 (1984) 225–230.
- [18] F. ROTHBERGER: Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938) 50-55.
- [19] M. SAKAI: Property C" and function spaces, Proc. Amer. Math. Soc. 104 (1988) 917–919.