
Note di Matematica 22, n. 2, 2003, 43–52.

The Pytkeev property

and the Reznichenko property

in function spaces

Masami Sakai
Department of Mathematics, Kanagawa University,
Yokohama 221-8686, Japan
sakaim01@kanagawa-u.ac.jp

Received: 13/01/2003; accepted: 20/08/2003.

Abstract. For a Tychonoff space X we denote by Cp(X) the space of all real-valued contin-
uous functions on X with the topology of pointwise convergence. Characterizations of sequen-
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Introduction

In this paper we assume that all topological spaces are Tychonoff spaces.
Unexplained notions and terminology are the same as in [4]. We denote by
[X]<ω the set of finite subsets of a set X. The letter N is the set of natural
numbers.

For a space X we denote by Cp(X) the space of all real-valued continuous
functions on X with the topology of pointwise convergence. Basic open sets of
Cp(X) are of the form

[x1, x2, . . . , xk;U1, U2, . . . , Uk] = {f ∈ Cp(X) : f(xi) ∈ Ui, i = 1, 2, . . . , k}

where xi ∈ X and each Ui is an open subset of the real line. Since Cp(X) is a
topological vector space, it is homogeneous.

It is known that some topological properties of Cp(X) can be well char-
acterized by topological properties of X [3]. The purpose of the paper is to
characterize the Pytkeev property and the Reznichenko property of Cp(X) in
terms of X.
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We give some definitions to state known results. A space X is said to be
strictly Fréchet if x ∈ ⋂

n∈ω An, An ⊂ X, implies the existence of a sequence
{xn}n∈ω such that xn ∈ An and {xn}n∈ω converges to x. A space X is said to
be Fréchet if x ∈ A,A ⊂ X, implies the existence of a sequence {xn}n∈ω such
that xn ∈ A and {xn}n∈ω converges to x. A space X is said to be sequential if
for each non-closed set A ⊂ X there exist a point x ∈ A − A and a sequence
{xn}n∈ω such that xn ∈ A and {xn}n∈ω converges to x. A space X has countable
tightness if A ⊂ X and x ∈ A, then there exists a countable set B ⊂ A such
that x ∈ B. Obviously;

strictly Fréchet → Fréchet → sequential → countable tightness.

None of these implications is reversible.

A cover U of a space X is called an ω-cover of X if for every F ∈ [X]<ω there
exists a U ∈ U with F ⊂ U . An open ω-cover is an ω-cover of open subsets. A
space X is said to have property (γ) if for each open ω-cover U of X there exists
a sequence {Un}n∈ω ⊂ U with X =

⋃
n∈ω

⋂
m≥n Un.

1 Theorem. [1] [16] For a space X the following are equivalent.

(1) Cp(X) has countable tightness;

(2) Each finite power of X is Lindelöf;

(3) Every open ω-cover of X has a countable ω-subcover.

The implications (1) → (2) and (2) → (1) is due to Pytkeev and Arhangel’skii
respectively. The equivalence (2) ↔ (3) is due to [8, p. 156].

2 Theorem. [7] [8] For a space X the following are equivalent.

(1) Cp(X) is strictly Fréchet;

(2) Cp(X) is Fréchet;

(3) Cp(X) is sequential;

(4) X has property (γ).

For a compact space X, Cp(X) is sequential iff X is scattered [8, Corollary,
p. 158]. There exists an uncountable subset of the real line with property (γ) in
ZFC + CH [8, p. 160].

There exists some interesting classes of spaces between the class of sequential
spaces and the class of spaces with countable tightness. A space X is said to
be subsequential if it is homeomorphic to a subspace of a sequential space. Not
each subspace of a sequential space is sequential. For a space X and x ∈ X, a
family N of subsets of X is called a π-network at x if every neighborhood of x
contains some element of N . According to [14], a space X is called a Pytkeev
space if x ∈ A − A and A ⊂ X imply the existence of a countable π-network
at x of infinite subsets of A. This property was introduced in [17] and every
subsequential space is a Pytkeev space [17]. According to Reznichenko, a space
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X is called a weakly Fréchet-Urysohn space (or X has the Reznichenko property)
if x ∈ A − A and A ⊂ X imply the existence of a countable infinite disjoint
family F of finite subsets of A such that for every neighborhood V of x the
family {F ∈ F : F ∩ V = ∅} is finite. Every Pytkeev space is weakly Fréchet-
Urysohn [14, Corollary 1.2]. Obviously every weakly Fréchet-Urysohn space has
countable tightness.

subsequential → Pytkeev → weakly Fréchet-Urysohn → countable tightness

None of these implications is reversible.

For subsequential spaces, Pytkeev spaces and weakly Fréchet-Urysohn spa-
ces, see [6], [14] and [5].

1 The Pytkeev property

An open ω-cover U of a space X is said to be non-trivial if X /∈ U . Note
that for a non-trivial open ω-cover U of X and every F ∈ [X]<ω the family
{U ∈ U : F ⊂ U} is infinite. An open ω-cover U of X is said to be ω-shrinkable
if for each U ∈ U there exists a closed set C(U) of X such that C(U) ⊂ U and
{C(U) : U ∈ U} is an ω-cover of X. Some of C(U)’s may be empty.

For an F ∈ [X]<ω and an open subset U of the real line containing the real
number 0, we set [F ;U ] = {f ∈ Cp(X) : f(F ) ⊂ U}. The family of the form
[F ;U ] is a neighborhood base of f0, where f0 is the constant map to the real
number 0.

3 Theorem. For a space X the following are equivalent.

(1) Cp(X) is a Pytkeev space;

(2) If U is an ω-shrinkable non-trivial open ω-cover of X, then there is a
sequence {Un}n∈ω of subfamilies of U such that |Un| = ω and {⋂Un}n∈ω is an
ω-cover of X.

Proof. (1) → (2) : For every U ∈ U , choose a closed set C(U) in X such
that C(U) ⊂ U and {C(U) : U ∈ U} is an ω-cover of X. Since Cp(X) has
countable tightness, X is Lindelöf (in particular normal) by Theorem 1. So we
can take a zero-set Z(U) and a cozero-set V (U) with C(U) ⊂ Z(U) ⊂ V (U) ⊂
U . Without loss of generality, we may assume that for distinct U,U ′ ∈ U Z(U)
and Z(U ′) are distinct, and every Z(U) is non-empty. For every U ∈ U , take a
continuous map fU : X → [0, 1] such that f−1

U (0) = Z(U), f−1
U (1) = X − V (U).

Let A = {fU : U ∈ U}. Note that for distinct U,U ′ ∈ U fU and fU ′ are distinct.
Obviously f0 ∈ A − A. By the condition (1), there is a sequence {An}n∈ω of
subsets of A such that |An| = ω and {An}n∈ω is a π-network at f0. Take a
subfamily Un ⊂ U such that |Un| = ω and An = {fU : U ∈ Un}. Let F ∈ [X]<ω
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and consider the neighborhood [F ; (−1, 1)] of f0. Then there is an n ∈ ω with
An ⊂ [F ; (−1, 1)]. This means F ⊂ ⋂{V (U) : U ∈ Un} ⊂ ⋂{U : U ∈ Un}. Thus
{⋂Un}n∈ω is an ω-cover of X.

(2) → (1) : Assume A ⊂ Cp(X) and f0 ∈ A−A. For every n ∈ N and f ∈ A
let Un(f) = {x ∈ X : −1/n < f(x) < 1/n} and Un = {Un(f) : f ∈ A}. If
{n ∈ N : X ∈ Un} is infinite, we can find a sequence in A which converges to f0.
Then the conclusion is trivial. So we may assume that there is an n0 ∈ N such
that Un is non-trivial for each n ≥ n0. We see that Un is an ω-shrinkable open
ω-cover of X. Indeed for every n ∈ N and f ∈ A let Zn(f) = {x ∈ X : −1/2n ≤
f(x) ≤ 1/2n}. Then obviously Zn(f) is closed in X and Zn(f) ⊂ Un(f). Let
F ∈ [X]<ω. The neighborhood [F ; (−1/2n, 1/2n)] of f0 contains an f ∈ A. Then
F ⊂ Zn(f). Thus for each n ≥ n0, Un is an ω-shrinkable non-trivial open ω-
cover of X. By applying to Un(n ≥ n0 ) the condition (2), there is a sequence
{Vn m : m ∈ N} of subfamilies of Un such that |Vn m| = ω and {⋂Vn m : m ∈ N}
is an ω-cover of X. For each n ≥ n0 there is a sequence {An m : m ∈ N} of
countably infinite subsets of A such that Vn m = {Un(f) : f ∈ An m}. It is easy
to see that the family A = {An m : n ≥ n0,m ∈ N} is a π-network at f0. QED

For the sake of simplicity, we call the condition (2) in the above theorem
property (π). Property (γ) obviously implies property (π).

For A ⊂ X and V a family of subsets of X, we put V|A = {V ∩A : V ∈ V}.
4 Lemma. (1) Let X be the union of an increasing sequence {Xn}n∈ω of

subspaces of X. If each Xn satisfies property (π), then so does X.

(2) Let X be a continuous image of Y . If Y has property (π), then so does
X.

Proof. (1) Let U be an ω-shrinkable non-trivial open ω-cover of X. Let
Vn = U|Xn. Obviously Vn is an ω-shrinkable open ω-cover of Xn. Assume that
the set {n ∈ ω : Xn ∈ Vn} is infinite. Then there are sequences n0 < n1 < · · ·
and U0, U1, · · · ∈ U such that Xni

⊂ Ui, i ∈ ω. Since U is non-trivial, the family
{Ui : i ∈ ω} is infinite. Let Ui = {Un : n ≥ i} for each i ∈ ω. Then |Ui| = ω
and {⋂Ui}i∈ω is an ω-cover of X. Therefore , without loss of generality, we may
assume that each Vn is non-trivial. For each n ∈ ω take a sequence {Vn m}m∈ω

of subfamilies of Vn such that |Vn m| = ω and {⋂Vn m}m∈ω is an ω-cover of
Xn. Take a subfamily Un m ⊂ U such that Vn m = Un m|Xn. The collection
{Un m : n,m ∈ ω} is a desired one.

(2) This is a routine. We omit the proof. QED

5 Corollary. If Cp(X) is a Pytkeev space, then so is Cp(X)ω.

Proof. Assume that Cp(X) is a Pytkeev space, in other words X satisfies
property (π). For each n ∈ ω let Xn be the copy of X, Zn = X0 ⊕ · · · ⊕ Xn
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and Y = ⊕n∈ωXn, where ⊕ is the topological sum of spaces. Since Cp(X)ω is
homeomorphic to Cp(Y ), we have only to show that Y satisfies property (π).

First we note that Z1 satisfies property (π). Let U be an ω-shrinkable non-
trivial open ω-cover of Z1 and ψi the map from X into Z1 defined by ψi(x) =
x ∈ Xi for x ∈ X , where i =0, 1. Let {C(U) : U ∈ U} be an ω-shrinking for U .
Then obviously V = {ψ−1

0 (U) ∩ ψ−1
1 (U) : U ∈ U} is a non-trivial open ω-cover

of X and the family {ψ−1
0 (C(U)) ∩ ψ−1

1 (C(U)) : U ∈ U} is an ω-shrinking for
V. Hence there is a sequence {Vn}n∈ω of subfamilies of V such that |Vn| = ω
and {⋂Vn}n∈ω is an ω-cover of X. For each n ∈ ω we take a countably infinite
subfamily Un ⊂ U such that Vn = {ψ−1

0 (U)∩ψ−1
1 (U) : U ∈ Un}. Then it is easy

to see that {⋂Un}n∈ω is an ω-cover of Z1.

Similarly we can see that each Zn, n ≥ 2, satisfies property (π). Now, by
applying Lemma 4 (1), Y satisfies property (π). QED

6 Lemma. If Cp(X) is a Pytkeev space, then X is zero-dimensional.

Proof. For x ∈ X and an open set U ⊂ X with x ∈ U , take a continuous
map f : X → [0, 1] such that f(x) = 0 and f(y) = 1 for any y ∈ X − U . If
the map f is onto, then naturally Cp([0, 1]) is embeddable into Cp(X). Hence
Cp([0, 1]) is a Pytkeev space. But, as shown in [13], Cp([0, 1]) is not a Pytkeev
space. Therefore the map f is not onto. Let r ∈ [0, 1] − f(X). Then f−1([0, r])
is a clopen set in X with x ∈ f−1([0, r]) ⊂ U . QED

According to [12], a space X is said to have the Menger property if for every
sequence {Un}n∈ω of open covers of X there exists a sequence {Vn}n∈ω such
that each Vn ⊂ Un is finite and

⋃
n∈ω Vn is a cover of X. It is known that each

finite power of X has the Menger property iff for every sequence {Un}n∈ω of
open ω-covers of X there exists a sequence {Vn}n∈ω such that each Vn ⊂ Un is
finite and

⋃
n∈ω Vn is an ω-cover of X. Every space with the Menger property

is Lindelöf.

7 Lemma. Let X be a space such that each finite power of X has the Menger
property. Then every open ω-cover of X is ω-shrinkable.

Proof. Let U be an open ω-cover of X. Since each finite power of X is
Lindeöf, every open ω-cover of X has a countable ω-subcover, recall Theorem 1.
And the union of countably many cozero-sets is a cozero-set. Therefore, without
loss of generality, we may assume that U is a countable non-trivial open ω-
cover of X consisting of cozero-sets of X. Let U = {Un : n ∈ ω}. For each
n ∈ ω, take sequences {Zn j}j∈ω of zero-sets of X and {Un j}j∈ω of cozero-sets
of X satisfying Zn j ⊂ Un j ⊂ Zn j+1 and Un = ∪j∈ωZn j . For each n ∈ ω, let
Vn = {Uk j : k ≥ n, j ∈ ω}. Since U is non-trivial, each Vn is an ω-cover of X.
Take a finite subfamily Wn ⊂ Vn such that W =

⋃
n∈ω Wn is an ω-cover of X.

For each n ∈ ω, let l(n) =max{j : Un j ∈ W} if such a j exists, otherwise let
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l(n) be an arbitrary natural number. Then the family {Zn l(n)+1 : n ∈ ω} is an
ω-shrinking of U . QED

A subset A of a space X is said to be perfectly meager [15] if for each perfect
set P the set P ∩A is meager in P (i. e. P ∩A is the union of countably many
nowhere dense subsets of P ). A subset A of a space X is said to have universal
measure zero if for each Borel measure µ on X there exists a Borel set B with
A ⊂ B and µ(B) = 0, where a Borel measure means a countably additive,
atomless (i. e. µ({x}) = 0 for each x ∈ X), finite measure. For a subset A of
the real line, A has universal measure zero iff for any Borel measure µ on A,
µ(A)=0 [15, p. 212]. Every countable subset of a space X is obviously perfectly
meager and has universal measure zero. There exists an uncountable subset
of the real line which is perfectly meager and has universal measure zero [15,
Theorem 5.3]. In the following, we note that each subset X of the real line whose
Cp(X) is a Pytkeev space is perfectly meager and has universal measure zero.

8 Lemma. Let X be a separable metric space and µ a Borel measure on X.
If Cp(X) is a Pytkeev space, then µ(X) = 0.

Proof. We assume that X is infinite. Let X̃ be a metrizable compactifica-
tion of X. Let µ̃ be the Borel measure on X̃ defined by µ̃(B) = µ(B∩X), where
B is a Borel set of X̃. For each n ∈ N we define a family Un as follows. For each
F ∈ [X̃]<ω take an open set U(F ) of X̃ satisfying F ⊂ U(F ), X − U(F ) 6= ∅
and µ̃(U(F )) ≤ 1/n. Let Un = {U(F ) : F ∈ [X̃]<ω}. Each Un is an open ω-cover
of X̃. Since X̃ is compact (hence each finite power of X̃ has the Menger prop-
erty), there is a finite subfamily Vn ⊂ Un such that V =

⋃
n∈N

Vn is an ω-cover

of X̃. By Lemma 7, V is ω-shrinkable. Hence the family {V ∩ X : V ∈ V}
is an ω-shrinkable non-trivial open ω-cover of X. By Theorem 3, there is a
sequence Wn ⊂ V such that each Wn is infinite and X ⊂ ⋃

n∈N
(
⋂Wn). For

each m,n ∈ N we may assume |Wn ∩ Vm| ≤1. Then µ̃(
⋂Wn) = 0. Thus

µ(X) = µ̃(
⋃

n∈N
(
⋂Wn)) = 0. QED

9 Proposition. Let X be a subset of the real line. If Cp(X) is a Pytkeev
space, then X has universal measure zero and is perfectly meager.

Proof. That X has universal measure zero is direct by the above Lemma.

We see that X is perfectly meager. Recall that X is zero-dimensional by
Lemma 6. As described in [11, p. 516], for a subset Y of a complete separable
metric space is perfectly meager iff every dense in itself subset of Y is meager
in itself. So we have only to see that every dense in itself subset of X is meager
in itself. Let A be a dense in itself subset of X and let B be the closure of A
in X. Since B is a closed subset of the zero-dimensional separable metric space
X, it is a retract of X (i. e. there is a continuous map r of X onto B such
that r|B is the identity map ), see [4, 6.2.B]. By Lemma 4(2), B has property



The Pytkeev property and the Reznichenko property in function spaces 49

(π). Malykhin showed in [13, Theorem 1.5] that if a space Y is a dense in itself
separable metric space and Cp(Y ) is a Pytkeev space, then Y is meager in itself.
Hence B is meager in itself. Since A is dense in B, A is meager in itself. QED

We conclude this section with some open questions.

Question 1. If each finite power of X is Lindelöf, is any open ω-cover of X
ω-shrinkable? If this question were positive, we could delete ”ω-shrinkable” in
Theorem 3 (2). The author does not know if any open ω-cover of the space of
irrational numbers is ω-shrinkable?

Question 2. If Cp(X) is a Pytkeev space, does each finite power of X
have the Menger property? If this question were positive, we could delete ”ω-
shrinkable” in Theorem 3 (2). It is known in [2] that each finite power of X has
the Menger property iff Cp(X) has countable fan tightness. A space X is said
to have countable fan tightness if x ∈ ⋂

n∈ω An, An ⊂ X, implies that for each

n ∈ ω there exists a finite set Bn ⊂ An such that x ∈ ⋃
n∈ω Bn.

Question 3. Let Cp(X) be a Pytkeev space. Is Cp(X) sequential (or sub-
sequential)? As noted in [13], if X is compact, it is true.

2 The Reznichenko property

A space X is said to have the Rothberger property if for every sequence
{Un}n∈ω of open covers of X there exist Un ∈ Un such that {Un : n ∈ ω} is a
cover of X [18]. The Rothberger property is sometimes called property C ′′. A
space X is said to have countable strong fan tightness if x ∈ ⋂

n∈ω An, An ⊂ X,

implies that there exist xn ∈ An such that x ∈ {xn : n ∈ ω}. It is known [19]
that Cp(X) has countable strong fan tightness iff each finite power of X has the
Rothberger property (i. e. property C ′′).

A space X is said to have the ω-grouping property [9] if for each open ω-cover
U of X there exists a sequence {Un}n∈ω of pairwise disjoint finite subfamilies of
U such that for each F ∈ [X]<ω {n ∈ ω : F ⊂ U for some U ∈ Un} is cofinite
in ω. A space X is said to have the Hurewicz property [9] if for each sequence
{Un}n∈ω of open covers of X there is a sequence {Vn}n∈ω of finite families such
that for each n ∈ ω Vn ⊂ Un and for each x ∈ X, {n ∈ ω : x ∈ V for some
V ∈ Vn} is cofinite in ω. These notions were used to show the following theorem.

10 Theorem. [9, Main Theorem, Theorem 1.4] For a space X the following
are equivalent.

(1) Cp(X) is weakly Fréchet-Urysohn and has countable strong fan tightness;
(2) X has the ω-grouping property and each finite power of X has the Roth-

berger property;



50 M. Sakai

(3) Each finite power of X has both the Hurewicz property and the Rothberger
property.

There is another result describing when Cp(X) is weakly Fréchet-Urysohn.

11 Theorem. [10, Theorem 19] For a space X the following are equivalent.

(1) Cp(X) is weakly Fréchet-Urysohn and has countable fan tightness;

(2) Each finite power of X has the Hurewicz property.

We characterize spaces X such that Cp(X) is only weakly Fréchet-Urysohn
(without countable fan tightness or countable strong fan tightness). As a conse-
quence we obtain that the ω-grouping property of X implies the weak Fréchet-
Urysohn property of Cp(X) (compare with Theorem 10).

12 Theorem. For a space X the following are equivalent.

(1) Cp(X) is weakly Fréchet-Urysohn;

(2) If U is an ω-shrinkable non-trivial open ω-cover of X, then there exists a
sequence {Un}n∈ω of pairwise disjoint finite subfamilies of U such that for each
F ∈ [X]<ω {n ∈ ω : F ⊂ U for some U ∈ Un} is cofinite in ω.

Proof. (1) → (2): Let U be an ω-shrinkable non-trivial open ω-cover of X.
By the same idea as in the proof (1) → (2) of Theorem 3, for each U ∈ U we can
take a continuous map fU : X → [0, 1] such that f−1

U (0) ⊂ U,X − U ⊂ f−1
U (1)

and {f−1
U (0) : U ∈ U} is an ω-cover of X. Since {f−1

U (0) : U ∈ U} is an ω-
cover of X, we may assume that for distinct U,U ′ ∈ U fU and fU ′ are distinct.
Let A = {fU : U ∈ U}. Obviously f0 ∈ A − A, where f0 is the constant
map to the real number 0. Since Cp(X) is weakly Fréchet-Urysohn, there exists
a sequence {Un}n∈ω of pairwise disjoint finite subfamilies of U such that for
each neighborhood V of f0 the family {Fn : Fn ∩ V = ∅} is finite, where
Fn = {fU : U ∈ Un}. It is easy to check that the sequence {Un}n∈ω is a desired
one.

(2) → (1): Assume A ⊂ Cp(X) and f0 ∈ A − A. For every n ∈ N and
f ∈ A let Un(f) = {x ∈ X : −1/n < f(x) < 1/n} and Un = {Un(f) :
f ∈ A}. By the same reason as in the proof (2) → (1) of Theorem 3, we
may assume that each Un is non-trivial (i. e. Un(f) 6= X for each n ∈ N and
f ∈ A). Since U1 is ω-shrinkable by the same reason as in the proof (2) →
(1) of Theorem 3, there exists a sequence {Vn}n∈ω of pairwise disjoint finite
subfamilies of U1 such that for each F ∈ [X]<ω {n ∈ ω : F ⊂ U for some
U ∈ Vn} is cofinite in ω. For each n ∈ ω we set Vn = {U1(f) : f ∈ Hn},
where Hn is a finite subset of A. Then the family {Hn}n∈ω is disjoint and
for each F ∈ [X]<ω {n ∈ ω : [F ; (−1, 1)] ∩ Hn 6= ∅} is cofinite in ω. We set
H =

⋃{Hn : n ∈ ω}, J0 =
⋃{H2n : n ∈ ω} and J1 =

⋃{H2n+1 : n ∈ ω}.
Obviously f0 ∈ J0 ∪ (A−H) or f0 ∈ J1 ∪ (A−H). Let f0 ∈ J1 ∪ (A−H) and
enumerate as {H2n : n ∈ ω} = {A1 n}n∈ω. Since U ′

2 = {U2(f) : f ∈ J1∪(A−H)}
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is an ω-shrinkable non-trivial open ω-cover of X, by the same procedure as
above, there exists a disjoint family {A2 n : n ∈ ω} of finite subsets of J1∪(A−H)
such that for each F ∈ [X]<ω {n ∈ ω : [F ; (−1/2, 1/2)] ∩ A2 n 6= ∅} is cofinite
in ω. and f0 ∈ A− ⋃{Am n : n ∈ ω,m = 1, 2}. By repeating this operation, we
have a disjoint family {Am n : m ∈ N, n ∈ ω} of finite subsets of A such that for
each m ∈ N and F ∈ [X]<ω {n ∈ ω : [F ; (−1/m, 1/m)] ∩ Am n 6= ∅} is cofinite
in ω. Now let An =

⋃{Ai j : i+ j = n} for each n ∈ N. It is not difficult to see
that the disjoint family {An : n ∈ N} is a desired one. QED

13 Corollary. If X has the ω-grouping property, then Cp(X) is weakly
Fréchet-Urysohn.

By the same argument as in Corollary 5, we obtain the following.

14 Corollary. If Cp(X) is weakly Fréchet-Urysohn, then so is Cp(X)ω.

Since a σ-compact space satisfies the ω-grouping property [10, Lemma 1.1],
Cp(X) over a σ-compact space X is weakly Fréchet-Urysohn. Weak Fréchet-
Urysohn property of Cp(X) over a σ-compact space was first pointed out by
Reznichenko, see [14, p. 184]. Thus Cp([0, 1]) is weakly Fréchet-Urysohn.

Let X = ω∪{p}, where p is an arbitrary point of the Čech-Stone remainder
ω∗. As noted in [14, Example 1.6], X is not weakly Fréchet-Urysohn. Let Y =
Cp(X). Since Y is separable metrizable, Cp(Y ) has countable tightness. But,
since Cp(Y ) has a subspace homeomorphic to X, Cp(Y ) is not weakly Fréchet-
Urysohn. There exists a subset L of the real line under CH such that Cp(L) is
not weakly Fréchet-Urysohn, see [10, Remarks 1].

Question 4. Can we delete the condition “ω-shrinkable” in Theorem 12
(2)?

Question 5. Let P be the space of irrational numbers. Is Cp(P ) weakly
Fréchet-Urysohn?

Acknowledgements. Recently the author has proved that Question 5 is
positive. The author would like to express the gratitude to the referee for the
careful reading and many helpful suggestions.
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