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Abstract. We show that, if B is a field and A 6= B is any algebraically closed field extension
of B, then the theory of (A, B) eliminates imaginaries if and only if A is a finite extension of
B (and so if and only if (A, B) is elementary equivalent to (C, R)).
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Introduction

Resorting to quotient structures is a customary tool in Algebra (and general
Mathematics). Indeed, from a model theoretic point of view, the classes of an
equivalence relation E ∅-definable in a structure A can be viewed as “imaginary”
elements of A (or of a cartesian power An of A), accompanying the “real”
elements (or tuples) in A, and the Shelah construction of Aeq shows how to
make these imaginary points true elements of the structure.

However, this resort to eq and imaginary elements is sometimes unnecessary.
This is essentially the case when, for any ∅-definable equivalence relation E on
An, there is a ∅-definable function fE from An into some Am such that two
tuples ~a, ~a′ ∈ An are equivalent in E if and only they have the same image by
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fE , fE(~a) = fE(~a′): so the imaginary class E(An,~a) can be definably replaced
by the “real” tuple fE(~a) ∈ Am.

When T is a complete (countable) first order theory and imaginary elements
can be forgotten in any model A of T in the sense we have just explained, one
says that T eliminates the imaginaries. The correct definition actually requires
that any definable set X in the monster model Ω of T has a canonical base, that
is a definably closed C such that, for every automorphism σ of Ω, σ fixes X set-
wise if and only if σ acts identically on C (see [5], for instance). This definition
is equivalent to the one sketched above (directly referring to definable equiva-
lence relations) when the language of T has at least two constant symbols (in
particular when we deal with fields). There is an alternative way of introducing
our notion, still involving equivalence relations E. In fact, a complete theory T
is said to have elimination of imaginaries if, for every ∅-definable E = E(~v, ~w)
in Ωn for some n and every ~a ∈ Ωn, there are a formula ψ(~v, ~z) and a unique ~b
in Ω for which E(Ωn,~a) = ψ(Ωn,~b). When there are finitely many ~b’s with this
property, T is said to have weak elimination of imaginaries; when ~b is unique
and the formula ψ(~v, ~z) does not depend on ~a (but only on E), T is said to have
uniform elimination of imaginaries. Anyway, when dealing with fields,

weak elimination of imaginaries = elimination of imaginaries =
= uniform elimination of imaginaries

(actually, the second equality holds whenever structures with at least two con-
stants for different elements are involved).

Complete theories admitting elimination of imaginaries include algebraically
closed fields (of any characteristic) and real closed fields, but exclude separably
closed fields of any imperfection degree ≥ 1 (see Messmer’s contribution to [5]).

Our interest in this paper is on the elimination of imaginaries for pairs
(A,B) of fields, with B a subfield of A. The corresponding first order language
L′ enlarges the usual signature for fields L = {+, ·, −, 0, 1} by a unary relation
symbol P (to be interpreted in the subfield B). From a model theoretic point
of view, pairs of fields include some very classical examples, such as (A,B)
with A ' B and A, B both algebraically closed or real closed; these structures
were the matter of A. Robinson’s analysis in [8]. By the way, in the former
(algebraically closed) case, the theory of the involved (A,B)’s promptly recalls
the beautiful pairs introduced by Poizat in [7]. In fact, for every complete theory
T , a pair (A,B) of models of T with A an elementary extension of B is said
to be beautiful if B is ω1-saturated and, for any tuple ~a in A, every type over
B ∪ ~a is realized in A. Poizat showed that, for a stable T , two beautiful pairs
of models of T are always elementary equivalent; furthermore, if T does not
have the finite cover property, then the (complete) theory T ′ of beautiful pairs
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is also stable. In the particular case of the theory T of algebraically closed
fields (of a given characteristic p), T ′ is just the theory of all pairs (A,B) with
A ' B algebraically closed of characteristic p. In this sense, our analysis partly
overlaps the recent work of Pillay and Vassiliev [6] on elimination of imaginaries
for beautiful pairs, showing that, for a stable theory T without the finite cover
property, the theory T ′ of beautiful pairs has elimination of imaginaries if and
only if no infinite group is definable in a model of T . This clearly implies , as an
immediate corollary, that no theory of pairs of algebraically closed fields A ' B
can eliminate imaginaries.

However, our perspective in this paper is a little oblique and slanting and
concerns complete theories of pairs of fields (A,B) where A, B may not be
algebraically closed, or stable, or even models of the same theory. There are
several noteworthy examples in this setting; for instance, think of (R,R0) - the
other basic case treated by A. Robinson -, or (C,Q), and so on. In particular, we
are interested in the case when A is algebraically closed. Then, there is a theorem
of Keisler [3] -complementing A. Robinson’s result and extending some other
partial contributions of A. Robinson himself - saying that, for every complete
(possibly unstable) theory T of fields, the theory T ′ of the pairs (A,B), with
B |= T and A an algebraically closed extension of B, is also complete. Moving
inside this setting, we will show that, for A algebraically closed, the complete
theory of a pair (A,B) of fields eliminates imaginaries if and only if A is a finite
extension of B (which restricts the positive cases to the pairs where A = B, or
B is real closed and A = B(

√
−1)).

We refer to [2] for algebra and to [1, 5, 4] for model theory and in particular
elimination of imaginaries.

1 Some trivial and less trivial cases

First let us briefly discuss some trivial situations, where the elimination of
imaginaries is quite obvious. In fact, let A be any field whose theory has the
elimination property, and let B be ∅-definable in A. Then the theory of (A,B)
does eliminate imaginaries (since it essentially equals the theory of A). This is
what happens, in particular, when

? A = B

? A has a prime characteristic p, and B = Ap

or also when

? B is finite
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(in fact B is definable without parameters in A by the formula vpk
= v where

p is the characteristic of A and pk is the cardinality of B). With respect to the
last case, it may be worth emphasizing that, at least for A 6= B and |B| >
2, elimination of imaginaries fails once we forget multiplication and hence we
restrict our attention to the additive structure.

In fact, A becomes in this way a vectorspace of dimension ≥ 2 over the finite
field B of size ≥ 3, and it is known that, in this framework, the elimination of
imaginaries gets lost.

Now let us propose some less trivial results, still concerning arbitrary fields A
and B. The first one is likely to apply to larger settings and to exceed the specific
case of fields. However let us state and show it in our particular framework.

1 Theorem. If the theory of (A,B) eliminates imaginaries in L′, then the
L-theory of B does.

Proof. We can assume (A,B) -hence B- sufficiently saturated. Let ϕ(~v)
be an L-formula with parameters, we are looking for a canonical base C of B.
Relativize ϕ(~v) to P and get a new L′-formula ϕ′(~v). As the theory of (A,B)
eliminates imaginaries, ϕ′(~v) has a canonical base C ′ in (A,B): C ′ is definably
closed in L′ -in particular it is a subfield of A- and, for all automorphisms σ′

of (A,B), σ′ fixes ϕ′(A,B) setwise if and only if it acts identically on C ′. Look
at B(C ′) as an extension of B. In this perspective, B(C ′) does not include any
element b transcendental over B. Otherwise

σ′�
B

= id�
B
, σ′(b) = b+ 1

enlarges to an automorphism of (A,B) preserving ϕ′(~v) (actually ϕ(~v)), but
moving some point in C ′; hence b cannot occur in C ′. Similarly, no element b
separable algebraic over B (and out of B) can lie in B(C ′); in fact the minimum
polynomial of b over B has degree > 1, and again

σ′�B
= id�B

, σ′(b) 6= b coniugate of b over B

defines an automorphism of B and even of (A,B); σ fixes B, hence ϕ′(~v), but
it is not identical on C ′.

So B(C ′) is a purely inseparable extension of B. Let b ∈ C ′ − B. Then the

characteristic of B -and A- is a prime p, and b ∈ Bph −Bph−1

for some positive
integer h (in particular b is the only ph-root of some b′ ∈ B). As C ′ is definably
closed, b ∈ C ′. So b can be taken away from C ′ (as it is anyway represented by
b′, and any automorphism σ′ of (A,B) fixes b if and only if it fixes b′).

In conclusion, we can assume C ′ ⊆ B and, unless replacing C ′ by a suitable
extension in B, C ′ is definably closed in B. Now observe that any automorphism
σ of B can be easily extended to an automorphism σ′ of (A,B). Moreover σ
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fixes C ′ pointwise if and only if σ′ does, hence if and only if σ′ preserves ϕ′(~v)
and, in conclusion, if and only if σ preserves ϕ(~v). QED

Hence, whenever the theory of B cannot eliminate imaginaries in L, the
theory of (A,B) inherits this negative feature in L′. For instance, if B is any
separably closed field of prime characteristic and imperfection degree ≥ 1 and A
is any extension of B (possibly the algebraic closure B itself), then the theory
of the resulting pairs does not eliminate imaginaries. We are going to show a
much more general negative result later.

2 The main analysis

We are moving now to the main part of this paper. In fact, we are going to
show that, for A an algebraically closed field and (A,B) a proper field extension,

the complete theory of (A,B) eliminates imaginaries
if and only if

A is a finite extension of B

(which means B a real closed field and A = B(
√
−1)). In detail, first we will

show that our condition is sufficient (Theorem 2), and then we will see that it
is also necessary (Theorem 3).

2 Theorem. The complete theory of the pairs (A,B) where B is a real
closed field and A = B(i) (so A is an algebraically closed field of characteristic
0) eliminates imaginaries (here i denotes

√
−1, as usual).

Proof. As a preliminary step, let us show that the theory of (A,B, i) with
B real closed and A = B(i) eliminates imaginaries in a language with an addi-
tional constant symbol for i. The crucial point here is that (A,B, i) is ∅-definable
in B as follows:

? A is given by B2 (so identifying any a ∈ A with the ordered pair (a0, a1) ∈
B2 corresponding to the canonical composition a = a0 + ia1),

? B is recovered as {(a0, 0) : a0 ∈ B}, i as (0, 1),

? finally, the addition and multiplication of A are defined in B in the usual
way ruled by i.

Now take a sufficiently saturated (A,B, i). Let X ⊆ Am be definable in (A,B, i);
when referring to the interpretation of (A,B, i) inside B2, X can be represented
by a suitable X ′ ⊆ B2m definable in B (indeed, for every formula ϕ(~v) in
the language of (A,B, i) -or even of (A,B)- there is a corresponding formula
ϕ′(~v(0), ~v(1)) in the language of B such that, for ~a = ~a(0) + i~a(1) a tuple in A,
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(A,B, i) |= ϕ(~a) if and only if B |= ϕ′(~a(0),~a(1))). As real closed fields eliminate
imaginaries, X ′ has a canonical base C in B: for every automorphism σ′ of B, σ′

fixes X setwise if and only if it acts identically on C (and C is definably closed).
Pick an automorphism σ of (A,B, i). Note that σ determines an automorphism
σ′ of B. Indeed this is true for every automorphism σ of (A,B). However, when
enlarged to B2, σ′(0, 1) = (0, 1), and (0, 1) is the element interpreting i in B;
so, in order to make our machinery work, we have to restrict our analysis to the
σ’s with σ(i) = i (and this is the reason why we have included i in the language
at the beginning of the proof). In fact, in our setting, σ fixes X setwise if and
only if σ′(X ′) = X ′, and hence if and only if σ′ (and σ) acts identically on C.

So the (complete) theory of (A,B, i) with A, B as before admits elimination
of imaginaries, and even a uniform elimination of imaginaries, because the un-
derlying language has at least two constants (interpreting different elements).
Note that i is in the algebraic closure of ∅ in (A,B) (but not in the definable
closure of ∅, because it is everywhere accompanied by −i). But this means that
the theory of (A,B) has weak elimination of imaginaries and (as A is a field)
this is enough to ensure elimination of imaginaries even for (A,B).

Let us provide the details. Take an equivalence relation E(~v, ~w) ∅-definable
in (A,B). Working in the language with i, and using the uniform elimination of
imaginaries, we can find a formula ψ(~v, ~z, i) (with a possibly dumb i) and, for
every tuple ~a in A, a unique ~b+ also in A such that (A,B, i) |= ∀~v(E(~v,~a) ↔
ψ(~v,~b+, i)). There is no loss of generality for our purposes in replacing ψ(~v, ~z, i)
by its conjunction with i2 = −1. Moreover

(A,B, i) |= ∀~w ∃ !~z ∀~v (E(~v, ~w) ↔ ψ(~v, ~z, i)),

as said. Recall that (A,B, i) and (A,B, −i) are isomorphic (by conjugation),
hence also (A, B, −i) satisfies the last statement, in particular, given ~a, there
is a unique ~b− such that

(A, B, i) |= ∀~v (E(~v,~a) ↔ ψ(~v,~b−, −i)),

(and (−i)2 = −1, of course). In conclusion, there are at most two different tuples
(~b+, i), (~b−, −i) such that

(A,B) |= ∀~v (E(~v,~a) ↔ ψ(~v,~b±,± i)).

So ψ(~v, ~z, u) (∧u2 = −1) is a formula that weakly eliminates the E-imaginaries.
QED

Note that the previous argument applies to a more general framework, more
precisely to the complete theories of pairs of fields (A,B) where A is a proper
finite extension of B and the theory of B eliminates imaginaries. In all these
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cases, the theory of the pairs inherits this elimination property. In fact, write
A as B(t0, t1, . . . , tn) where n is as small as possible (so n = 0 when the char-
acteristic of A is 0 and more generally when the primitive element theorem
applies). For i ≤ n, let fi(t0, . . . , ti−1) be the minimum polynomial of ti over
B(t0, . . . , ti−1), di denotes its degree; so the products

∏
i≤n b

hi

i (with 0 ≤ hi < di)
form a base of A as a vector space over B. Let ~r be the tuple of the coefficients
in B of the decompositions of the elements tt′ (t, t′ in this base) with respect to
the base itself. At this point, show that the theory of (A,B, t0, . . . , tn) eliminate
imaginaries. The key fact here is that (A,B, t0, . . . , tn) can be interpreted in
(B,~r) as follows:

- A is given by a suitable direct power B
Q

i≤n di ,

- B is recovered as {(b, 0, . . . , 0) : b ∈ B}

- addition, multiplication and the ti’s are defined in the obvious way (re-
quiring ~r).

Also recall from [1], p. 122, that the elimination of imaginaries is preserved
adding parameters; in particular the theory of (B,~r) still eliminates imaginaries.
Furthermore ~r is in the definable closure of ∅ in (A,B, t0, . . . , tn).

Now deduce that the theory (A,B) has weak (and consequently full) elim-
ination of imaginaries. Basically, proceed as in the case of i. Of course, replace
the formula u2 = −1 by

∧
i≤n fi(u0, . . . , ui−1, ui) = 0.

Also notice that, for (t′0, . . . , t
′
n) ∈ A satisfying the last condition, A =

B(t′0, . . . , t
′
n) and (A,B, t0, . . . , tn), (A,B, t′0, . . . , t

′
n) are isomorphic.

Anyway, the only setting to which this generalization applies, when we as-
sume A algebraically closed, is just the original framework (A,B) with B real
closed and A = B(i) (and does not need any tuple ~r of new parameters).

As said at the beginnig of this section, Theorem 2 exhausts the only case
eliminating imaginaries in our sketched framework (so A algebraically closed
and B 6= A). In fact, the following proposition holds.

3 Theorem. If A is an algebraically closed field, B is a subfield of A and
A is not a finite extension of B, then the theory of (A,B) does not eliminate
imaginaries.

Proof. As usual, assume (A,B) sufficiently saturated. First, observe that
there exists some element a ∈ A transcendental overB. This is obvious when
B is algebraically closed or real closed; in the other cases, we can use the fact
(mentioned in [3], lemma 3.1) that, for every positive integer n, A contains some
elements an which are not algebraic of degree ≤ n over B, and then apply a
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straightforward compactness argument to obtain a. At this point, look at the
formula

ϕ(v) : ∃y (P (y) ∧ v = a+ y)

We claim that ϕ(v) (so B + a) cannot admit any canonical base C. Suppose
towards a contradiction that a canonical base exists: C is definably closed (in
particular it is a subfield of A) and, for every automorphism σ of (A,B), σ
preserves ϕ(v) if and only if σ fixes C pointwise.

Case 1: a ∈ C.
Let σ act identically on B (and even on the algebraic closure B of B) and

send a to a+b where b ∈ B and b 6= 0 (whence the element a+b is still transcen-
dental over B); σ can be extended to an automorphism of (A,B). Furthermore,
for every y satisfying P , also y − b satisfies P , and hence σ preserves ϕ(v). In
spite of this, σ(a) 6= a, and so σ does not fix C pointwise.

More generally, assume that a is algebraic overB(C); then there are a1, . . . , an

∈ C algebraically independent over B such that a is algebraic over B(a1, . . . , an).
Notice that, as a is transcendental over B, the tuple (a1, . . . , an) cannot be
empty (so n ≥ 1). Furthermore, we can assume that a is not algebraic any more
over B(a1, . . . , an−1). The exchange property ensures that an is algebraic over
B(a1, . . . , an−1, a). At this point, define an automorphism σ of (A,B) such that
σ acts identically on B(a1, . . . , an−1) (and even on its algebraic closure) but, as
before,

σ(a) = a+ b

for some non zero element b ∈ B such that a + b is not a conjugate of a with
respect to B(a1, . . . , an). Notice that σ(an) has to be different from an (oth-
erwise a and σ(a) admit the same minimum polynomial over B(a1, . . . , an)).
Consequently σ does not fix C pointwise; however σ preserves ϕ(v).

Case 2: a is transcendental over B(C).
Let σ act identically on B(C), in particular on C, σ(a) be transcendental

over B(C), σ(a)− a 6∈ B (for instance, let σ(a) = 2a when the characteristic of
B is not 2). As said, σ fixes C pointwise; however, when y satisfies P , no y′ still
satisfying P can make the equality y′ +σ(a) = y+ a true. So σ cannot preserve
ϕ(v). In conclusion, in both cases, we have reached a contradiction. Hence, no
canonical base C is possible. QED
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