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Abstract. Let (X,,) be a sequence of infinite-dimensional Banach spaces. For E being the
space @, ; Xn, the following equivalences are shown: 1. Every closed subspace Y of E, with
the Mackey topology p(Y,Y"), is an (LB)-space. 2. Every separated quotient of E’ [u(E’, E)]
is locally complete. 3. X, is quasi-reflexive, n € N. Besides this, the following two properties

\
are seen to be equivalent: 1. E' [u(E’, )] has the Krein-Smulian property. 2. X, is reflexive,
n € N.
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1 Introduction and notation

The linear spaces that we shall use here are assumed to be defined over the field K of real
or complex numbers, and the topologies on them will all be Hausdorff. As usual, N represents
the set of positive integers. If (E, F') is a dual pair, then o(E, F'), u(E, F) and S(E, F') denote
the weak, Mackey and strong topologies on F, respectively; we shall write (-, -) for the bilinear
functional associated to (F, F). If F is a locally convex space, E’ is its topological dual and
(E,E'), and also (E’, E), denote the standard duality. E” stands for the dual of E'[3(E’, E)].
We identify, in the usual manner, E with a linear subspace of E”. If B is a subset of E, then
B is the closure of B in E”[o(E",E')]. If A is an arbitrary subset of E, by A° we denote the
subset of £ given by the polar of A.

If X is a Banach space, then B(X) will denote its closed unit ball, X* is the Banach space
conjugate of X, and X™* is its second conjugate, that is, the conjugate of X ™. In the usual
manner, we suppose that X is a subspace of X**. We say that X is quasi-reflexive when it has
finite codimension in X**. In [2], R. C. James gives an example of a quasi-reflexive Banach
space which is not reflexive.

If A is a bounded absolutely convex subset of a locally convex space E, by E4 we mean
the linear span of A with the norm provided by the gauge of A; the space E is said to be
locally complete whenever E 4 is complete for each closed bounded absolutely convex subset A
of E. If F is sequentially complete, in particular if £ is complete, then E is locally complete.
We write w to denote the space K with the product topology.
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Following [6] (see also [1, p. 299]), we say that a locally convex space E is B-complete if
each subspace F of E'[o(E’, E)] is closed provided it intersects every closed absolutely convex
subset which is equicontinuous in a closed set.

A locally convex space E is said to be an (LB)-space if it is the inductive limit of a sequence
of Banach spaces, or, equivalently, if ' is the separated quotient of the topological direct sum
of a sequence of Banach spaces.

In [7], we obtain the following result: a) Let (X,) be a sequence of infinite-dimensional
Banach spaces. If E := @:7_ | Xn, then the following are equivalent: 1. E'[u(E', E)] is B-
complete. 2. Every separated quotient of E'[u(E’, E)] is complete. 3. X,, is quasi-reflexive,
n € N.

In Section 2 of this paper, we obtain a theorem which adds new equivalences to the three
before stated.

A locally convex space E is said to have the Krein-Smulian Property whenever a convex
subset A of E' is 0(E’, E)-closed provided that, for each absolutely convex o(E’, E)-closed and
equicontinuous subset M of E’, the set AN M is o(E’, E)-closed. Krein-Smulian’s theorem
asserts that every Fréchet space has the Krein-Smulian Property [1, p. 246].

In this paper, we characterize when E’ [u(E’, E)] has the Krein-Smulian Property, when
E =@, Xn, with X,,, n € N, being a Banach space of infinite dimension.

2 (LB)-spaces and quasi-reflexivity
Theorem 1. Let (X,) be a sequence of infinite-dimensional Banach spaces. For E being
D2, Xn, the following are equivalent:
(1) Every separated quotient of E' [u(E', E)] is locally complete.
(2) Every closed subspace Y of E, with the Mackey topology u(Y',Y), is an (LB)-space.
(3) Xn is quasi-reflezive, n € N.

PROOF. For each n € N, we write £y, := €D]_, X; and we consider, in the usual way, that
E, is a subspace of E. We set

B.:= n PB(X;), neN.
j=1

1 = 2. Let us assume that 2. is not satisfied for a certain closed subspace Y of E. We put
Y,:=FE,NY and A, := B,NY,n € N. We find a linear functional v on Y such that it is not
continuous although its restriction to each subspace Y,, is continuous. After Hahn-Banach’s
extension theorem we obtain, for each n € N, an element u, of Y’ such that

Un|Y, = Y|Y,-
For an arbitrary « of Y, we find ng € N such that z € Y,,,. Then
<I7u”7-> = <$,1}>, ’I’LZ'I’LO,

and thus {u, : n € N} is a bounded subset of Y’ [o(Y”',Y)]. If T denotes the polar subset in
Y of {un : n € N}, we have that T is a barrel in Y that absorbs each of the sets A,, n € N.
We now find a sequence of positive integers (j,,) such that

1
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Let A be the convex hull of

1
Since A is absorbing in Y, we have that A° is a closed bounded absolutely convex subset of
Y'[o(Y',Y)].We prove next that Y4o is not a Banach space. Let || - || denote the norm in

Y)o. Given € > 0, we find no € N such that 2%0 < §. We take two integers p,q such that

p > q > no. We can find an element z of A for which
[up —uq |l < 4 | (2,up —uq) | .

z may be written in the form

o0 1 oo
Zomzn, an >0, zn € —— , n€EN, Zanzl,
]n2 n n=1

n=1

where the terms of the sequence (o) are all zero from a certain subindex on. Then

o0
[up —ug | < 4] (z,up —ug) | S4Z | {anzn, up — ug) |
n=1

= 4 Z on | (zn,up —ug) | < 4 Z an(| (zn,up) | + | (2n,uq) |)
n=ng+1 n=ng+1
1 8
<3 Z 27 = 270 < €.
n=ng+1

Consequently, (u,) is a Cauchy sequence in Yjo. If this were a Banach space, this sequence
would converge to a certain element u of Y4.. Clearly, u should coincide with v, which is a
contradiction. 2 = 3. Assuming that 3 does not hold, after result a), there is a closed subspace
Z of E'[u(E’, E)] such that E'[u(E’, E)]/Z is not complete. Let Y represent the subspace of
FE orthogonal to Z. Let w be a linear functional on Y which belongs to the completion of
E'[u(E’, E)]/Z but does not belong to E'[u(E’, E)]/Z. From the theorem of Ptak-Collins, [4, p.
271], w™*(0) intersects every weakly compact absolutely convex subset of Y in a closed subset,
hence w is bounded in every bounded subset of Y. Since w is not continuous in Y, we deduce
from above that Y[u(Y,Y”)] is not an (LB)-space. 3 = 1. After result a), every separated
quotient of E'[u(E’, E)] is complete and thus it is locally complete.

In the previous theorem, we have considered closed subspaces Y of E = @, , X, endowed
with the Mackey topology u(Y,Y”). It may happen that for some closed subspace Y of E, Y
is not an (LB)-space and nevertheless Y[u(Y,Y”)] is indeed an (LB)-space. In Theorem 2, this
property is considered when X, is a reflexive Banach space, n € N.

We shall then use the following result that we obtained in [8]: b) Let F be a Fréchet
space such that for each closed subspace G of F' and each bounded subset B of F'/G there is a
bounded subset A of F' for which ¢(A) = B, where ¢ is the canonical projection from F onto
F /G, then one of the following assertions holds: 1. F is a Banach space. 2. F is a Schwartz
space. 3. F' is the product of a Banach space by w.

Theorem 2. Let (X,) be a sequence of reflexive Banach spaces of infinite dimension.
Then, there is a closed subspace Y of E := @, | Xn whose topology is not that of Mackey’s
u(Y,Y").

PROOF. By applying result b) we obtain a closed subspace G of F' := [[2, X, and a
closed bounded absolutely convex subset B of F/G such that there is no bounded subset A
of F with ¢(A) = B, where ¢ is the canonical projection from F' onto F/G. Clearly, F/G is
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reflexive and so B is weakly compact. We have that F'[u(F’, F)] = E. We identify, in the usual
manner, (F/G)" with the subspace Y of E orthogonal to G. If B° is the polar set of B in Y,
then B° is a zero-neighborhood in Y [u(Y, Y”)]. Now, given that B is not the image by ¢ of any
bounded subset of F', there is no zero-neighborhood U in E for which UNY C B°. Therefore,
the subspace Y of E does not have the Mackey topology. Y [u(Y,Y”)] is an (I.B)-space in light
of our former theorem.

3 The Krein-Smulian Property

Theorem 3. Let (X,) be a sequence of Banach spaces of infinite dimension. If E is
D>, Xn, then E'[u(E', E)] has the Krein-Smulian property if and only if X, 1is reflexive,
n € N.

Before giving the proof of this theorem, we shall obtain some previous results. For the
next four propositions, we shall consider the sequence (Z,) of infinite-dimensional separable
Banach spaces such that Z; is quasi-reflexive non-reflexive and Z,, is reflexive, forn = 2,3, ...
we put I = ;7 Zn and F, := @)_, Z;, and identify, in the usual fashion, F;, with a
subspace of F and F, with F, n € N. We take a vector y in Z;* \ Z1. We fix now j in N. In
Fiy1 [o(Fjp1, Fii1)), Fj + B(Zj11) is a closed subset whose intersection with Z; 41 coincides
with B(Z;41) and, since B(Z;41) is not a weak neighborhood of zero in Z; 1, we have that
Fj + B(Zj+1) has no interior points. On the other hand,

1 ~
;y e Ih C Fj + B(ZjJrl)

and Fji1 [B(Fjt1, Fj..)] is separable, so there is a sequence (zn) in
Fii\ (Fy + B(Zj41))

which converges to 2y in Fj 1[0 (Fjy1, F{.1)]. We may now find a subsequence (zjn) of (zn)
which is basic in Fj41, [5]. Let Tj41 be the projection from Fj41 onto Z;j4+1 along Fj. Then,
Tit1zjn ¢ B(Zj+1), n € N, and the sequence (Tj4+1z;jn) converges weakly to the origin in
Zyn+1. Consequently, we may find in (z;,) a subsequence (y;») such that (T}j41y;») is basic in
Zit1, (3, p. 334). In Fj1[o(Fjia, F}.1)], we put A; for the closed convex hull of {y;, : n € N}.
We have that {y;n, : n € N} U {%y} is compact and hence A; is also compact. We choose in

F{.1 asequence (ujn) such that

<yj"7uj”7«> =1, <yjm7ujn> =0, m 7é n, m,ne N.

Proposition 1. An element z of ﬁ’j+1 is in Aj if and only if it can be represented as

oo oo
1
z = Zanym + -ay, azo,anZO,neN,Zan +a=1,
n=1 J n=1
where the coefficients a and an, n € N, are univocally determined by z.

Proor. Clearly, if an element z of Fj+1 has the representation above given, then it belongs
to Aj.
An arbitrary element of the convex hull M; of {y;, : n € N} U {%y} has the form

oo 1 (oo}
Zanyjn + —ay, a>0,a,>0,n€eN, ZanJra =1,
n=1 J

n=1
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where the terms of the sequence (a,) are all zero except for a finite number of them. Given z
in Aj, we find a net

{Zan yj ()y 7'617 t}

in M; such that it O'(Fj+17 FjH)—converges to z. Given r in N, we have that

1
Zan y]" )y Ur > = ar )+ a< <y7u’f>
o 4 0 (o) = ¥,
n
thus, in R,
hma(z) = (z,ur) =: ar.

Clearly, >-72  ar < 1. Let a :==1—3_°2, a,. We consider the vector

S 1
Z anyjn + -ay
n=1 J

of Fjy1lo(Fj41,F}y1)] and we proceed to show that it coincides with z. Given u in FJ,,
having in mind that {y;» : » € N} is bounded in Fj;1, we find \; > 0 such that

|<yj’ﬂ7u>|< Aja TLEN, |<yau>|< Aj'

Given € > 0, we find s € N such that
=G| <5 n>a

We now determine ig in I such that, for 7 > 4o,

n ) :1725 ’ 9y

|an —ay’ | < a5 n s

(2= (O ayn + ~aVy)u) | < =
n=1

Then, for such values of i,

|@—Q)wm+§w> V1< | (2 §j yin +a<mw\

3
1
—

> g
+ \(Z fly]n—k ZaWy —( Zanygn—k ay) u) | < 3
n=1 n=1
() _ R YNON _ €
+ | < (an an)y]n + ](a a)y7u> | 3
n=1
o0 Z 1 i oo
+ 1O @ = an)yn + J1—§j¢’ (1= an))y,u)
n=1 n=1

c,o\m

oo
1 i
| Q@) = an)yin + 7 E (an —ai)y,u) |
n=1

n=1
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€ > i 1< i
< g+ 1@ —an)ym + 5 Y (an —ai )y u) |
J
n=1 n=1
1Y (@ —an)ym + = D (an —ai)y,u) |
n=s+1 J n=s+1
3 : i > i 1
< g 2 lan—al [+ D0 fan—al |- [ (yin = Sy |
J
n=1 n=s+1
£ £ £
< S 4 2Ns— + 25 =
=3 e T % ©

from where we deduce that, in Fj1[o(Fjt1, Fl41)],
- 1
z = Zanyjn + -—ay.
n=1 J

Besides, it is plain that

an = (z,un), nEN, a:le(z,un)

n=1

QED

Corollary 1. We have that
(oo} (oo}
AjﬂFj+1 = {Zanyjn: anZO,TLGN,ZCLnZI}.
n=1 n=1

Corollary 2. If z € Aj, then z may be univocally expressed as
1
z = bu+-=-cy, 1 €A;NFjy1, b>0, ¢>0, b+c=1.
J

In the sequel, we put D for the convex hull of
U{4; N Fjp1: j €N}
and D, for the convex hull of
U{A;NFjp: j=1,2,...,r}, reN.
Proposition 2. For each r € N, we have that
D, = DNFrj.

PrOOF. Given a positive integer s, we take an element z of Dsy1. Then, z may be written

in the form
s+1 s+1

z = ZO&ij, zj € Aj N Fjqq, OchO,j:l,Q,...,s-ﬁ-LZOCjZL
j=1

Jj=1

Let us first assume that as41 7# 0. After Corollary 1, zj41 can be written as

oo o0
Zany(5+1)n,an >0,n €N, Zan =1.

n=1 n=1
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We have that (Tsy2(y(s+1)n)) is a basic sequence in Zs;2 and thus the vector of Z,

Tst2(2s41) = TS+2(Zany(s+1)n) = ZanTS+2(y(s+1)n)

n=1 n=1
is non-zero. Then

As412s+1 ¢ FS+1
and since

S

> a;z; € Fopa,

Jj=1

it follows that
s+1

z = Zajzj ¢ Foy1.
j=1
On the other hand, if as11 = 0, we have that z belongs to D;.
We deduce from above that

Dsy1NFsp1 C Ds
and, since D; is clearly contained in Ds11 N Fsy1, it follows that

Ds = Dsp1NFey.
Finally, given r € N, we have that

D, = DyyiNFry1 = Do NEFryoNFryr = DepoNFrp

and, proceeding recurrently, we have that, for each m € N,

D, = DrymNFry,
from where we conclude that

D, = (Up—1Drym)NFry1 = DNFryr
QED

Proposition 3. For each r € N, D, is closed in Fy41.

_Proor. We write C, for the convex hull of W{4, : j = 1,2,...,r}. Clearly, C, is
o(Fri1, F4+1)-compact and so it suffices to show that D, coincides with C, N Fy+1. We take
z in C).. After Corollary 2, z may be written in the form

- 1
> ajlaz + jbjyj), a; 20, b; >0, a; >0,

j=1
T

a;j+b;=1, z; € A;NFj41, 7=12,...,r, ZO&j:l.
j=1

If z belongs to F,y1, then Z;Zl %a‘jbj =0 and thus a;b; =0, j =1,2,...,r. Then

T T s
=Y a5z =y a(1=b)z = > asz,
i=1 =1 =1

from where we deduce that z is in D,.. Therefore
Cr N Fry1 C Dy

On the other hand, it is immediate that D, is contained in C, N F41 and the result follows.
QED
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Proposition 4. In F, each weakly compact absolutely convexr subset intersects D in a
closed set. Besides, D is not closed in F'.

ProoFr. Let M be a weakly compact absolutely convex subset of F'. Then there is r € N
such that M is contained in F,4i. Then

MND=MOnZFi ND=MnN D,

and, after the previous proposition, we have that M N D, is closed in F,4+1, from where we
get that M N D is closed in F. On the other hand, the origin of F' is not in D. We consider
a weak neighborhood U of the origin in F'. We find an open neighborhood V' of the origin in
F" [o(F",F")] such that VN F C U. We find s € N so that Xy € V. Now, since V is a
neighborhood of 1y in F” [o(F", F')] and (y.n) converges in this space to 2y, there is m € N
for which ysm € V. Consequently, U N D # (), thus the weak closure of D in E contains the
origin and hence D is not closed in F' QED

Finally, we give the proof of Theorem 3, but for that we shall need the following result to
be found in [9]: ¢) Let X be an infinite-dimensional Banach space such that X** is separable.
Let T be a closed subspace of X** containing X . Then there is an infinite-dimensional closed
subspace Y of X such that X +Y =T.

PrOOF. If X, is reflexive, n € N, then E is the Mackey dual of the space E’ [u(E’, E)]
and so this space has the Krein-Smulian Property. If some of the spaces X,, n € N, is not
quasi-reflexive, then we apply result a) to obtain that E’ [u(E’, E)] is not B-complete and so
it does not have the Krein-Smulian Property. It remains to consider the case in which all the
spaces X,, n € N, are quasi-reflexive and there is at least one of them which is not reflexive.
More precisely, let us assume that X; is not reflexive. From Eberlein’s theorem, B(X1) is not
weakly countably compact and so there is a sequence (z,) in B(X;) with no weak cluster
points in X;. Let Z; be the closed linear span in X; of {x,: n € N}. Then, Z; is a separable
Banach space which is quasi-reflexive but not reflexive. For each n € N, n > 1, we find in X,
a separable closed subspace Y,, of infinite dimension. Since Y,, is quasi-reflexive, it follows that
Y,©* is separable, from where, applying result c) for the case T = X = Y, we have that there
is a separable closed subspace Z, of Y,, with infinite dimension, such that Y, + Z, = Y,
that is, Zn C Y, and so Z, is reflexive. We have that I := @20:1 Y, is a closed subspace of
E =@, , Xn. On the other hand, after Proposition 4, there is a convex subset D of F, not
closed, which meets each weakly compact absolutely convex subset of F' in a closed set. Then
D is a convex non-closed subset of E that meets each weakly compact absolutely convex subset
of E in a closed subset of E. Consequently, E' [u(E’, E)] does not have the Krein-Smulian
Property. QED
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