(LB)-spaces and quasi-reflexivity

Manuel Valdivia ${ }^{\text {i }}$
Departamento de Análisis Matemático, Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot (Valencia), Spain
manuel.valdivia@uv.es

Received: 03/06/2010; accepted: 24/09/2010.

Abstract

Let $\left(X_{n}\right)$ be a sequence of infinite-dimensional Banach spaces. For E being the space $\bigoplus_{n=1}^{\infty} X_{n}$, the following equivalences are shown: 1. Every closed subspace Y of E, with the Mackey topology $\mu\left(Y, Y^{\prime}\right)$, is an (LB)-space. 2. Every separated quotient of $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ is locally complete. $3 . X_{n}$ is quasi-reflexive, $n \in \mathbb{N}$. Besides this, the following two properties are seen to be equivalent: 1. $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ has the Krein- S mulian property. 2. X_{n} is reflexive, $n \in \mathbb{N}$.

MSC 2000 classification: primary 46A13, secondary 46A04

Dedicated to the memory of V.B. Moscatelli

1 Introduction and notation

The linear spaces that we shall use here are assumed to be defined over the field \mathbb{K} of real or complex numbers, and the topologies on them will all be Hausdorff. As usual, \mathbb{N} represents the set of positive integers. If $\langle E, F\rangle$ is a dual pair, then $\sigma(E, F), \mu(E, F)$ and $\beta(E, F)$ denote the weak, Mackey and strong topologies on E, respectively; we shall write $\langle\cdot, \cdot\rangle$ for the bilinear functional associated to $\langle E, F\rangle$. If E is a locally convex space, E^{\prime} is its topological dual and $\left\langle E, E^{\prime}\right\rangle$, and also $\left\langle E^{\prime}, E\right\rangle$, denote the standard duality. $E^{\prime \prime}$ stands for the dual of $E^{\prime}\left[\beta\left(E^{\prime}, E\right)\right]$. We identify, in the usual manner, E with a linear subspace of $E^{\prime \prime}$. If B is a subset of E, then \tilde{B} is the closure of B in $E^{\prime \prime}\left[\sigma\left(E^{\prime \prime}, E^{\prime}\right)\right]$. If A is an arbitrary subset of E, by A° we denote the subset of E^{\prime} given by the polar of A.

If X is a Banach space, then $B(X)$ will denote its closed unit ball, X^{*} is the Banach space conjugate of X, and $X^{* *}$ is its second conjugate, that is, the conjugate of X^{*}. In the usual manner, we suppose that X is a subspace of $X^{* *}$. We say that X is quasi-reflexive when it has finite codimension in $X^{* *}$. In [2], R. C. James gives an example of a quasi-reflexive Banach space which is not reflexive.

If A is a bounded absolutely convex subset of a locally convex space E, by E_{A} we mean the linear span of A with the norm provided by the gauge of A; the space E is said to be locally complete whenever E_{A} is complete for each closed bounded absolutely convex subset A of E. If E is sequentially complete, in particular if E is complete, then E is locally complete. We write ω to denote the space $\mathbb{K}^{\mathbb{N}}$ with the product topology.

[^0]Following [6] (see also [1, p. 299]), we say that a locally convex space E is B-complete if each subspace F of $E^{\prime}\left[\sigma\left(E^{\prime}, E\right)\right]$ is closed provided it intersects every closed absolutely convex subset which is equicontinuous in a closed set.

A locally convex space E is said to be an (LB)-space if it is the inductive limit of a sequence of Banach spaces, or, equivalently, if E is the separated quotient of the topological direct sum of a sequence of Banach spaces.

In [7], we obtain the following result: a) Let $\left(X_{n}\right)$ be a sequence of infinite-dimensional Banach spaces. If $E:=\bigoplus_{n=1}^{\infty} X_{n}$, then the following are equivalent: 1. $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ is B complete. 2. Every separated quotient of $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ is complete. 3. X_{n} is quasi-reflexive, $n \in \mathbb{N}$.

In Section 2 of this paper, we obtain a theorem which adds new equivalences to the three before stated.

A locally convex space E is said to have the Krein- \breve{S} mulian Property whenever a convex subset A of E^{\prime} is $\sigma\left(E^{\prime}, E\right)$-closed provided that, for each absolutely convex $\sigma\left(E^{\prime}, E\right)$-closed and equicontinuous subset M of E^{\prime}, the set $A \cap M$ is $\sigma\left(E^{\prime}, E\right)$-closed. Krein- \breve{S} mulian's theorem asserts that every Fréchet space has the Krein- \breve{S} mulian Property [1, p. 246].

In this paper, we characterize when $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ has the Krein- \breve{S} mulian Property, when $E:=\bigoplus_{n=1}^{\infty} X_{n}$, with $X_{n}, n \in \mathbb{N}$, being a Banach space of infinite dimension.

2 (LB)-spaces and quasi-reflexivity

Theorem 1. Let $\left(X_{n}\right)$ be a sequence of infinite-dimensional Banach spaces. For E being $\bigoplus_{n=1}^{\infty} X_{n}$, the following are equivalent:
(1) Every separated quotient of $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ is locally complete.
(2) Every closed subspace Y of E, with the Mackey topology $\mu\left(Y^{\prime}, Y\right)$, is an (LB)-space.
(3) X_{n} is quasi-reflexive, $n \in \mathbb{N}$.

Proof. For each $n \in \mathbb{N}$, we write $E_{n}:=\bigoplus_{j=1}^{n} X_{j}$ and we consider, in the usual way, that E_{n} is a subspace of E. We set

$$
B_{n}:=n \bigoplus_{j=1}^{n} B\left(X_{j}\right), \quad n \in \mathbb{N}
$$

$1 \Rightarrow 2$. Let us assume that 2. is not satisfied for a certain closed subspace Y of E. We put $Y_{n}:=E_{n} \cap Y$ and $A_{n}:=B_{n} \cap Y, n \in \mathbb{N}$. We find a linear functional v on Y such that it is not continuous although its restriction to each subspace Y_{n} is continuous. After Hahn-Banach's extension theorem we obtain, for each $n \in \mathbb{N}$, an element u_{n} of Y^{\prime} such that

$$
u_{n \mid Y_{n}}=v_{\mid Y_{n}}
$$

For an arbitrary x of Y, we find $n_{0} \in \mathbb{N}$ such that $x \in Y_{n_{0}}$. Then

$$
\left\langle x, u_{n}\right\rangle=\langle x, v\rangle, \quad n \geq n_{0},
$$

and thus $\left\{u_{n}: n \in \mathbb{N}\right\}$ is a bounded subset of $Y^{\prime}\left[\sigma\left(Y^{\prime}, Y\right)\right]$. If T denotes the polar subset in Y of $\left\{u_{n}: n \in \mathbb{N}\right\}$, we have that T is a barrel in Y that absorbs each of the sets $A_{n}, n \in \mathbb{N}$. We now find a sequence of positive integers $\left(j_{n}\right)$ such that

$$
\frac{1}{j_{n}} A_{n} \subset T, \quad n \in \mathbb{N}
$$

Let A be the convex hull of

$$
\cup\left\{\frac{1}{j_{n} 2^{n}} A_{n}: n \in \mathbb{N}\right\} .
$$

Since A is absorbing in Y, we have that A° is a closed bounded absolutely convex subset of $Y^{\prime}\left[\sigma\left(Y^{\prime}, Y\right)\right]$. We prove next that Y_{A}^{\prime} 。 is not a Banach space. Let $\|\cdot\|$ denote the norm in $Y_{A^{\circ}}^{\prime}$. Given $\varepsilon>0$, we find $n_{0} \in \mathbb{N}$ such that $\frac{1}{2^{n_{0}}}<\frac{\varepsilon}{8}$. We take two integers p, q such that $p>q>n_{0}$. We can find an element z of A for which

$$
\left\|u_{p}-u_{q}\right\| \leq 4\left|\left\langle z, u_{p}-u_{q}\right\rangle\right| .
$$

z may be written in the form

$$
\sum_{n=1}^{\infty} \alpha_{n} z_{n}, \quad \alpha_{n} \geq 0, \quad z_{n} \in{\frac{1}{j_{n} 2^{n}}}_{n}, \quad n \in \mathbb{N}, \quad \sum_{n=1}^{\infty} \alpha_{n}=1,
$$

where the terms of the sequence $\left(\alpha_{n}\right)$ are all zero from a certain subindex on. Then

$$
\begin{aligned}
\left\|u_{p}-u_{q}\right\| & \leq 4\left|\left\langle z, u_{p}-u_{q}\right\rangle\right| \leq 4 \sum_{n=1}^{\infty}\left|\left\langle\alpha_{n} z_{n}, u_{p}-u_{q}\right\rangle\right| \\
& =4 \sum_{n=n_{0}+1}^{\infty} \alpha_{n}\left|\left\langle z_{n}, u_{p}-u_{q}\right\rangle\right| \leq 4 \sum_{n=n_{0}+1}^{\infty} \alpha_{n}\left(\left|\left\langle z_{n}, u_{p}\right\rangle\right|+\left|\left\langle z_{n}, u_{q}\right\rangle\right|\right) \\
& \leq 8 \sum_{n=n_{0}+1}^{\infty} \frac{1}{2^{n}}=\frac{8}{2^{n_{0}}}<\varepsilon .
\end{aligned}
$$

Consequently, $\left(u_{n}\right)$ is a Cauchy sequence in $Y_{A^{\prime}}^{\prime}$. If this were a Banach space, this sequence would converge to a certain element u of $Y_{A^{\circ}}^{\prime}$. Clearly, u should coincide with v, which is a contradiction. $2 \Rightarrow 3$. Assuming that 3 does not hold, after result a), there is a closed subspace Z of $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ such that $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right] / Z$ is not complete. Let Y represent the subspace of E orthogonal to Z. Let w be a linear functional on Y which belongs to the completion of $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right] / Z$ but does not belong to $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right] / Z$. From the theorem of Ptàk-Collins, [4, p. 271], $w^{-1}(0)$ intersects every weakly compact absolutely convex subset of Y in a closed subset, hence w is bounded in every bounded subset of Y. Since w is not continuous in Y, we deduce from above that $Y\left[\mu\left(Y, Y^{\prime}\right)\right]$ is not an (LB)-space. $\quad 3 \Rightarrow 1$. After result a), every separated quotient of $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ is complete and thus it is locally complete.

In the previous theorem, we have considered closed subspaces Y of $E=\bigoplus_{n=1}^{\infty} X_{n}$ endowed with the Mackey topology $\mu\left(Y, Y^{\prime}\right)$. It may happen that for some closed subspace Y of E, Y is not an (LB)-space and nevertheless $Y\left[\mu\left(Y, Y^{\prime}\right)\right]$ is indeed an (LB)-space. In Theorem 2, this property is considered when X_{n} is a reflexive Banach space, $n \in \mathbb{N}$.

We shall then use the following result that we obtained in [8]: b) Let F be a Fréchet space such that for each closed subspace G of F and each bounded subset B of F / G there is a bounded subset A of F for which $\varphi(A)=B$, where φ is the canonical projection from F onto F / G, then one of the following assertions holds: 1. F is a Banach space. 2. F is a Schwartz space. 3. F is the product of a Banach space by ω.

Theorem 2. Let $\left(X_{n}\right)$ be a sequence of reflexive Banach spaces of infinite dimension. Then, there is a closed subspace Y of $E:=\bigoplus_{n=1}^{\infty} X_{n}$ whose topology is not that of Mackey's $\mu\left(Y, Y^{\prime}\right)$.

Proof. By applying result b) we obtain a closed subspace G of $F:=\prod_{n=1}^{\infty} X_{n}^{*}$ and a closed bounded absolutely convex subset B of F / G such that there is no bounded subset A of F with $\varphi(A)=B$, where φ is the canonical projection from F onto F / G. Clearly, F / G is
reflexive and so B is weakly compact. We have that $F^{\prime}\left[\mu\left(F^{\prime}, F\right)\right]=E$. We identify, in the usual manner, $(F / G)^{\prime}$ with the subspace Y of E orthogonal to G. If B° is the polar set of B in Y, then B° is a zero-neighborhood in $Y\left[\mu\left(Y, Y^{\prime}\right)\right]$. Now, given that B is not the image by φ of any bounded subset of F, there is no zero-neighborhood U in E for which $U \cap Y \subset B^{\circ}$. Therefore, the subspace Y of E does not have the Mackey topology. $Y\left[\mu\left(Y, Y^{\prime}\right)\right]$ is an (LB)-space in light of our former theorem.

3 The Krein- \breve{S} mulian Property

Theorem 3. Let $\left(X_{n}\right)$ be a sequence of Banach spaces of infinite dimension. If E is $\bigoplus_{n=1}^{\infty} X_{n}$, then $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ has the Krein-S̆mulian property if and only if X_{n} is reflexive, $n \in \mathbb{N}$.

Before giving the proof of this theorem, we shall obtain some previous results. For the next four propositions, we shall consider the sequence $\left(Z_{n}\right)$ of infinite-dimensional separable Banach spaces such that Z_{1} is quasi-reflexive non-reflexive and Z_{n} is reflexive, for $n=2,3, \ldots$. we put $F:=\bigoplus_{n=1}^{\infty} Z_{n}$ and $F_{n}:=\bigoplus_{j=1}^{n} Z_{j}$, and identify, in the usual fashion, F_{n} with a subspace of F and \tilde{F}_{n} with $F_{n}^{\prime \prime}, n \in \mathbb{N}$. We take a vector y in $Z_{1}^{* *} \backslash Z_{1}$. We fix now j in \mathbb{N}. In $\tilde{F}_{j+1}\left[\sigma\left(\tilde{F}_{j+1}, F_{j+1}^{\prime}\right)\right], \tilde{F}_{j}+B\left(Z_{j+1}\right)$ is a closed subset whose intersection with Z_{j+1} coincides with $B\left(Z_{j+1}\right)$ and, since $B\left(Z_{j+1}\right)$ is not a weak neighborhood of zero in Z_{j+1}, we have that $\tilde{F}_{j}+B\left(Z_{j+1}\right)$ has no interior points. On the other hand,

$$
\frac{1}{j} y \in \quad \tilde{F}_{1} \subset \tilde{F}_{j}+B\left(Z_{j+1}\right)
$$

and $\tilde{F}_{j+1}\left[\beta\left(\tilde{F}_{j+1}, F_{j+1}^{\prime}\right)\right]$ is separable, so there is a sequence $\left(z_{n}\right)$ in

$$
F_{j+1} \backslash\left(\tilde{F}_{j}+B\left(Z_{j+1}\right)\right)
$$

which converges to $\frac{1}{j} y$ in $\tilde{F}_{j+1}\left[\sigma\left(\tilde{F}_{j+1}, F_{j+1}^{\prime}\right)\right]$. We may now find a subsequence $\left(z_{j n}\right)$ of $\left(z_{n}\right)$ which is basic in F_{j+1}, [5]. Let T_{j+1} be the projection from F_{j+1} onto Z_{j+1} along F_{j}. Then, $T_{j+1} z_{j n} \notin B\left(Z_{j+1}\right), n \in \mathbb{N}$, and the sequence $\left(T_{j+1} z_{j n}\right)$ converges weakly to the origin in Z_{n+1}. Consequently, we may find in $\left(z_{j n}\right)$ a subsequence $\left(y_{j n}\right)$ such that $\left(T_{j+1} y_{j n}\right)$ is basic in $Z_{j+1},\left[3\right.$, p. 334]. In $\tilde{F}_{j+1}\left[\sigma\left(\tilde{F}_{j+1}, F_{j+1}^{\prime}\right)\right]$, we put A_{j} for the closed convex hull of $\left\{y_{j n}: n \in \mathbb{N}\right\}$. We have that $\left\{y_{j n}: n \in \mathbb{N}\right\} \cup\left\{\frac{1}{j} y\right\}$ is compact and hence A_{j} is also compact. We choose in F_{j+1}^{\prime} a sequence $\left(u_{j n}\right)$ such that

$$
\left\langle y_{j n}, u_{j n}\right\rangle=1, \quad\left\langle y_{j m}, u_{j n}\right\rangle=0, \quad m \neq n, m, n \in \mathbb{N}
$$

Proposition 1. An element z of \tilde{F}_{j+1} is in A_{j} if and only if it can be represented as

$$
z=\sum_{n=1}^{\infty} a_{n} y_{j n}+\frac{1}{j} a y, \quad a \geq 0, a_{n} \geq 0, n \in \mathbb{N}, \sum_{n=1}^{\infty} a_{n}+a=1
$$

where the coefficients a and $a_{n}, n \in \mathbb{N}$, are univocally determined by z.
Proof. Clearly, if an element z of \tilde{F}_{j+1} has the representation above given, then it belongs to A_{j}.

An arbitrary element of the convex hull M_{j} of $\left\{y_{j n}: n \in \mathbb{N}\right\} \cup\left\{\frac{1}{j} y\right\}$ has the form

$$
\sum_{n=1}^{\infty} a_{n} y_{j n}+\frac{1}{j} a y, \quad a \geq 0, a_{n} \geq 0, n \in \mathbb{N}, \sum_{n=1}^{\infty} a_{n}+a=1,
$$

where the terms of the sequence $\left(a_{n}\right)$ are all zero except for a finite number of them. Given z in A_{j}, we find a net

$$
\left\{\sum_{n=1}^{\infty} a_{n}^{(i)} y_{j n}+\frac{1}{j} a^{(i)} y: \quad i \in I, \succeq\right\}
$$

in M_{j} such that it $\sigma\left(\tilde{F}_{j+1}, F_{j+1}^{\prime}\right)$-converges to z. Given r in \mathbb{N}, we have that

$$
\begin{gathered}
\left\langle\sum_{n=1}^{\infty} a_{n}^{(i)} y_{j n}+\frac{1}{j} a^{(i)} y, u_{r}\right\rangle=a_{r}^{(i)}+\frac{1}{j} a^{(i)}\left\langle y, u_{r}\right\rangle \\
=a_{r}^{(i)}+a^{(i)} \lim _{n}\left\langle y_{j n}, u_{r}\right\rangle=a_{r}^{(i)}
\end{gathered}
$$

thus, in \mathbb{R},

$$
\lim _{i} a_{r}^{(i)}=\left\langle z, u_{r}\right\rangle=: a_{r}
$$

Clearly, $\sum_{r=1}^{\infty} a_{r} \leq 1$. Let $a:=1-\sum_{r=1}^{\infty} a_{r}$. We consider the vector

$$
\sum_{n=1}^{\infty} a_{n} y_{j n}+\frac{1}{j} a y
$$

of $\tilde{F}_{j+1}\left[\sigma\left(\tilde{F}_{j+1}, F_{j+1}^{\prime}\right)\right]$ and we proceed to show that it coincides with z. Given u in F_{j+1}^{\prime}, having in mind that $\left\{y_{j n}: n \in \mathbb{N}\right\}$ is bounded in F_{j+1}, we find $\lambda_{j}>0$ such that

$$
\left|\left\langle y_{j n}, u\right\rangle\right|<\lambda_{j}, \quad n \in \mathbb{N}, \quad|\langle y, u\rangle|<\lambda_{j}
$$

Given $\varepsilon>0$, we find $s \in \mathbb{N}$ such that

$$
\left|\left\langle y_{j n}-\frac{1}{j} y, u\right\rangle\right|<\frac{\varepsilon}{6}, \quad n \geq s
$$

We now determine i_{0} in I such that, for $i \succeq i_{0}$,

$$
\begin{aligned}
& \left|a_{n}-a_{n}^{(i)}\right|<\frac{\varepsilon}{6 \lambda_{j} s}, \quad n=1,2, \ldots, s \\
& \left|\left\langle z-\left(\sum_{n=1}^{\infty} a_{n}^{(i)} y_{j n}+\frac{1}{j} a^{(i)} y\right), u\right\rangle\right|<\frac{\varepsilon}{3}
\end{aligned}
$$

Then, for such values of i,

$$
\begin{aligned}
& \left|\left\langle z-\left(\sum_{n=1}^{\infty} a_{n} y_{j n}+\frac{1}{j} a y\right), u\right\rangle\right| \leq\left|\left\langle z-\left(\sum_{n=1}^{\infty} a_{n}^{(i)} y_{j n}+\frac{1}{j} a^{(i)} y\right), u\right\rangle\right| \\
& +\left|\left\langle\sum_{n=1}^{\infty} a_{n}^{(i)} y_{j n}+\frac{1}{j} a^{(i)} y-\left(\sum_{n=1}^{\infty} a_{n} y_{j n}+\frac{1}{j} a y\right), u\right\rangle\right|<\frac{\varepsilon}{3} \\
& +\left|\left\langle\sum_{n=1}^{\infty}\left(a_{n}^{(i)}-a_{n}\right) y_{j n}+\frac{1}{j}\left(a^{(i)}-a\right) y, u\right\rangle\right|=\frac{\varepsilon}{3} \\
& +\left|\left\langle\sum_{n=1}^{\infty}\left(a_{n}^{(i)}-a_{n}\right) y_{j n}+\frac{1}{j}\left(1-\sum_{n=1}^{\infty} a_{n}^{(i)}-\left(1-\sum_{n=1}^{\infty} a_{n}\right)\right) y, u\right\rangle\right| \\
& =\frac{\varepsilon}{3}+\left|\left\langle\sum_{n=1}^{\infty}\left(a_{n}^{(i)}-a_{n}\right) y_{j n}+\frac{1}{j} \sum_{n=1}^{\infty}\left(a_{n}-a_{n}^{(i)}\right) y, u\right\rangle\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\varepsilon}{3}+\left|\left\langle\sum_{n=1}^{s}\left(a_{n}^{(i)}-a_{n}\right) y_{j n}+\frac{1}{j} \sum_{n=1}^{s}\left(a_{n}-a_{n}^{(i)}\right) y, u\right\rangle\right| \\
& +\left|\left\langle\sum_{n=s+1}^{\infty}\left(a_{n}^{(i)}-a_{n}\right) y_{j n}+\frac{1}{j} \sum_{n=s+1}^{\infty}\left(a_{n}-a_{n}^{(i)}\right) y, u\right\rangle\right| \\
& \leq \frac{\varepsilon}{3}+2 \lambda_{j} \sum_{n=1}^{s}\left|a_{n}-a_{n}^{(i)}\right|+\sum_{n=s+1}^{\infty}\left|a_{n}-a_{n}^{(i)}\right| \cdot\left|\left\langle y_{j n}-\frac{1}{j} y, u\right\rangle\right| \\
& \leq \frac{\varepsilon}{3}+2 \lambda_{j} s \frac{\varepsilon}{6 \lambda_{j} s}+2 \frac{\varepsilon}{6}=\varepsilon,
\end{aligned}
$$

from where we deduce that, in $\tilde{F}_{j+1}\left[\sigma\left(\tilde{F}_{j+1}, F_{j+1}^{\prime}\right)\right]$,

$$
z=\sum_{n=1}^{\infty} a_{n} y_{j n}+\frac{1}{j} a y
$$

Besides, it is plain that

$$
a_{n}=\left\langle z, u_{n}\right\rangle, \quad n \in \mathbb{N}, \quad a=1-\sum_{n=1}^{\infty}\left\langle z, u_{n}\right\rangle .
$$

Corollary 1. We have that

$$
A_{j} \cap F_{j+1}=\left\{\sum_{n=1}^{\infty} a_{n} y_{j n}: a_{n} \geq 0, n \in \mathbb{N}, \sum_{n=1}^{\infty} a_{n}=1\right\} .
$$

Corollary 2. If $z \in A_{j}$, then z may be univocally expressed as

$$
z=b z_{1}+\frac{1}{j} c y, \quad z_{1} \in A_{j} \cap F_{j+1}, \quad b \geq 0, \quad c \geq 0, \quad b+c=1 .
$$

In the sequel, we put D for the convex hull of

$$
\cup\left\{A_{j} \cap F_{j+1}: j \in \mathbb{N}\right\}
$$

and D_{r} for the convex hull of

$$
\cup\left\{A_{j} \cap F_{j+1}: j=1,2, \ldots, r\right\}, \quad r \in \mathbb{N}
$$

Proposition 2. For each $r \in \mathbb{N}$, we have that

$$
D_{r}=D \cap F_{r+1} .
$$

Proof. Given a positive integer s, we take an element z of D_{s+1}. Then, z may be written in the form

$$
z=\sum_{j=1}^{s+1} \alpha_{j} z_{j}, \quad z_{j} \in A_{j} \cap F_{j+1}, \quad \alpha_{j} \geq 0, j=1,2, \ldots, s+1, \sum_{j=1}^{s+1} \alpha_{j}=1 .
$$

Let us first assume that $\alpha_{s+1} \neq 0$. After Corollary $1, z_{j+1}$ can be written as

$$
\sum_{n=1}^{\infty} a_{n} y_{(s+1) n}, a_{n} \geq 0, n \in \mathbb{N}, \sum_{n=1}^{\infty} a_{n}=1
$$

We have that $\left(T_{s+2}\left(y_{(s+1) n}\right)\right)$ is a basic sequence in Z_{s+2} and thus the vector of Z_{s+2}

$$
T_{s+2}\left(z_{s+1}\right)=T_{s+2}\left(\sum_{n=1}^{\infty} a_{n} y_{(s+1) n}\right)=\sum_{n=1}^{\infty} a_{n} T_{s+2}\left(y_{(s+1) n}\right)
$$

is non-zero. Then

$$
\alpha_{s+1} z_{s+1} \notin F_{s+1}
$$

and since

$$
\sum_{j=1}^{s} \alpha_{j} z_{j} \in \quad F_{s+1}
$$

it follows that

$$
z=\sum_{j=1}^{s+1} \alpha_{j} z_{j} \notin F_{s+1}
$$

On the other hand, if $\alpha_{s+1}=0$, we have that z belongs to D_{s}.
We deduce from above that

$$
D_{s+1} \cap F_{s+1} \subset D_{s}
$$

and, since D_{s} is clearly contained in $D_{s+1} \cap F_{s+1}$, it follows that

$$
D_{s}=D_{s+1} \cap F_{s+1}
$$

Finally, given $r \in \mathbb{N}$, we have that

$$
D_{r}=D_{r+1} \cap F_{r+1}=D_{r+2} \cap F_{r+2} \cap F_{r+1}=D_{r+2} \cap F_{r+1}
$$

and, proceeding recurrently, we have that, for each $m \in \mathbb{N}$,

$$
D_{r}=D_{r+m} \cap F_{r+1},
$$

from where we conclude that

$$
D_{r}=\left(\cup_{m=1}^{\infty} D_{r+m}\right) \cap F_{r+1}=D \cap F_{r+1}
$$

Proposition 3. For each $r \in \mathbb{N}, D_{r}$ is closed in F_{r+1}.
Proof. We write C_{r} for the convex hull of $\cup\left\{A_{j}: j=1,2, \ldots, r\right\}$. Clearly, C_{r} is $\sigma\left(\tilde{F}_{r+1}, F_{r+1}^{\prime}\right)$-compact and so it suffices to show that D_{r} coincides with $C_{r} \cap F_{r+1}$. We take z in C_{r}. After Corollary $2, z$ may be written in the form

$$
\begin{gathered}
\sum_{j=1}^{r} \alpha_{j}\left(a_{j} z_{j}+\frac{1}{j} b_{j} y_{j}\right), \quad a_{j} \geq 0, b_{j} \geq 0, \alpha_{j} \geq 0, \\
a_{j}+b_{j}=1, \quad z_{j} \in A_{j} \cap F_{j+1}, \quad j=1,2, \ldots, r, \sum_{j=1}^{r} \alpha_{j}=1 .
\end{gathered}
$$

If z belongs to F_{r+1}, then $\sum_{j=1}^{r} \frac{1}{j} \alpha_{j} b_{j}=0$ and thus $\alpha_{j} b_{j}=0, j=1,2, \ldots, r$. Then

$$
z=\sum_{j=1}^{r} \alpha_{j} a_{j} z_{j}=\sum_{j=1}^{r} \alpha_{j}\left(1-b_{j}\right) z_{j}=\sum_{j=1}^{r} \alpha_{j} z_{j},
$$

from where we deduce that z is in D_{r}. Therefore

$$
C_{r} \cap F_{r+1} \subset D_{r} .
$$

On the other hand, it is immediate that D_{r} is contained in $C_{r} \cap F_{r+1}$ and the result follows.

Proposition 4. In F, each weakly compact absolutely convex subset intersects D in a closed set. Besides, D is not closed in F.

Proof. Let M be a weakly compact absolutely convex subset of F. Then there is $r \in \mathbb{N}$ such that M is contained in F_{r+1}. Then

$$
M \cap D=M \cap F_{r+1} \cap D=M \cap D_{r}
$$

and, after the previous proposition, we have that $M \cap D_{r}$ is closed in F_{r+1}, from where we get that $M \cap D$ is closed in F. On the other hand, the origin of F is not in D. We consider a weak neighborhood U of the origin in F. We find an open neighborhood V of the origin in $F^{\prime \prime}\left[\sigma\left(F^{\prime \prime}, F^{\prime}\right)\right]$ such that $V \cap F \subset U$. We find $s \in \mathbb{N}$ so that $\frac{1}{s} y \in V$. Now, since V is a neighborhood of $\frac{1}{s} y$ in $F^{\prime \prime}\left[\sigma\left(F^{\prime \prime}, F^{\prime}\right)\right]$ and $\left(y_{s n}\right)$ converges in this space to $\frac{1}{s} y$, there is $m \in \mathbb{N}$ for which $y_{s m} \in V$. Consequently, $U \cap D \neq \emptyset$, thus the weak closure of D in E contains the origin and hence D is not closed in F.

Finally, we give the proof of Theorem 3, but for that we shall need the following result to be found in [9]: c) Let X be an infinite-dimensional Banach space such that $X^{* *}$ is separable. Let T be a closed subspace of $X^{* *}$ containing X. Then there is an infinite-dimensional closed subspace Y of X such that $X+\tilde{Y}=T$.

Proof. If X_{n} is reflexive, $n \in \mathbb{N}$, then E is the Mackey dual of the space $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ and so this space has the Krein- \breve{S} mulian Property. If some of the spaces $X_{n}, n \in \mathbb{N}$, is not quasi-reflexive, then we apply result a) to obtain that $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ is not B-complete and so it does not have the Krein- \breve{S} mulian Property. It remains to consider the case in which all the spaces $X_{n}, n \in \mathbb{N}$, are quasi-reflexive and there is at least one of them which is not reflexive. More precisely, let us assume that X_{1} is not reflexive. From Eberlein's theorem, $B\left(X_{1}\right)$ is not weakly countably compact and so there is a sequence $\left(x_{n}\right)$ in $B\left(X_{1}\right)$ with no weak cluster points in X_{1}. Let Z_{1} be the closed linear span in X_{1} of $\left\{x_{n}: n \in \mathbb{N}\right\}$. Then, Z_{1} is a separable Banach space which is quasi-reflexive but not reflexive. For each $n \in \mathbb{N}, n>1$, we find in X_{n} a separable closed subspace Y_{n} of infinite dimension. Since Y_{n} is quasi-reflexive, it follows that $Y_{n}^{* *}$ is separable, from where, applying result c) for the case $T=X=Y_{n}$, we have that there is a separable closed subspace Z_{n} of Y_{n}, with infinite dimension, such that $Y_{n}+\tilde{Z}_{n}=Y_{n}$, that is, $\tilde{Z}_{n} \subset Y_{n}$ and so Z_{n} is reflexive. We have that $F:=\bigoplus_{n=1}^{\infty} Y_{n}$ is a closed subspace of $E=\bigoplus_{n=1}^{\infty} X_{n}$. On the other hand, after Proposition 4 , there is a convex subset D of F, not closed, which meets each weakly compact absolutely convex subset of F in a closed set. Then D is a convex non-closed subset of E that meets each weakly compact absolutely convex subset of E in a closed subset of E. Consequently, $E^{\prime}\left[\mu\left(E^{\prime}, E\right)\right]$ does not have the Krein- \breve{S} mulian Property.

References

[1] J. HorvÁt: Topological Vector Spaces and Distributions I, Addison-Wesley, Reading, Massachussets, 1966.
[2] R.C. James: Bases and reflexivity of Banach spaces, Ann. Math., 52 (1950), 518-527 .
[3] G.J.O. Jameson: Topology and Normed Spaces, Chapman and Hall, London, 1974.
[4] G. KöтнE: Topological Vector Spaces I., Berlin-Heidelberg-New York: Springer, 1969.
[5] A. Pelczynski: A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math., 21 (1962), 372-374.
[6] V. Pták: Completeness and the open mapping theorem, Bull. Soc. Math., 21 (1962), 351-369.
[7] M. Valdivia: On certain (LB)-spaces, Bull. Belg. Math. Soc. Simon Stevin, 14 (2007), 565-575.
[8] M. Valdivia: Basic sequences in the dual of a Fréchet space, Math. Nachr., 231 (2001),169-185.
[9] M. Valdivia: Shrinking bases and Banach spaces $Z^{* *} / Z$, Israel J. Math., 62 (1987), 347-354.

[^0]: ${ }^{\text {i }}$ Supported in part by MICINN and FEDER Project MTM2008-03211
 http://siba-ese.unisalento.it/ (C) 2011 Università del Salento

