Note di Matematica Note Mat. **31** (2011) n. 1, 191–199.

(LB)-spaces and quasi-reflexivity

Manuel Valdiviaⁱ Departamento de Análisis Matemático, Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot (Valencia), Spain manuel.valdivia@uv.es

Received: 03/06/2010; accepted: 24/09/2010.

Abstract. Let (X_n) be a sequence of infinite-dimensional Banach spaces. For E being the space $\bigoplus_{n=1}^{\infty} X_n$, the following equivalences are shown: 1. Every closed subspace Y of E, with the Mackey topology $\mu(Y, Y')$, is an (LB)-space. 2. Every separated quotient of $E' [\mu(E', E)]$ is locally complete. 3. X_n is quasi-reflexive, $n \in \mathbb{N}$. Besides this, the following two properties are seen to be equivalent: 1. $E' [\mu(E', E)]$ has the Krein- $\stackrel{\vee}{S}$ mulian property. 2. X_n is reflexive, $n \in \mathbb{N}$.

MSC 2000 classification: primary 46A13, secondary 46A04

Dedicated to the memory of V.B. Moscatelli

1 Introduction and notation

The linear spaces that we shall use here are assumed to be defined over the field \mathbb{K} of real or complex numbers, and the topologies on them will all be Hausdorff. As usual, \mathbb{N} represents the set of positive integers. If $\langle E, F \rangle$ is a dual pair, then $\sigma(E, F)$, $\mu(E, F)$ and $\beta(E, F)$ denote the weak, Mackey and strong topologies on E, respectively; we shall write $\langle \cdot, \cdot \rangle$ for the bilinear functional associated to $\langle E, F \rangle$. If E is a locally convex space, E' is its topological dual and $\langle E, E' \rangle$, and also $\langle E', E \rangle$, denote the standard duality. E'' stands for the dual of $E'[\beta(E', E)]$. We identify, in the usual manner, E with a linear subspace of E''. If B is a subset of E, then \tilde{B} is the closure of B in $E''[\sigma(E'', E')]$. If A is an arbitrary subset of E, by A° we denote the subset of E' given by the polar of A.

If X is a Banach space, then B(X) will denote its closed unit ball, X^* is the Banach space conjugate of X, and X^{**} is its second conjugate, that is, the conjugate of X^* . In the usual manner, we suppose that X is a subspace of X^{**} . We say that X is quasi-reflexive when it has finite codimension in X^{**} . In [2], R. C. James gives an example of a quasi-reflexive Banach space which is not reflexive.

If A is a bounded absolutely convex subset of a locally convex space E, by E_A we mean the linear span of A with the norm provided by the gauge of A; the space E is said to be locally complete whenever E_A is complete for each closed bounded absolutely convex subset A of E. If E is sequentially complete, in particular if E is complete, then E is locally complete. We write ω to denote the space $\mathbb{K}^{\mathbb{N}}$ with the product topology.

ⁱSupported in part by MICINN and FEDER Project MTM2008-03211 http://siba-ese.unisalento.it/ © 2011 Università del Salento

Following [6] (see also [1, p. 299]), we say that a locally convex space E is B-complete if each subspace F of $E'[\sigma(E', E)]$ is closed provided it intersects every closed absolutely convex subset which is equicontinuous in a closed set.

A locally convex space E is said to be an (LB)-space if it is the inductive limit of a sequence of Banach spaces, or, equivalently, if E is the separated quotient of the topological direct sum of a sequence of Banach spaces.

In [7], we obtain the following result: a) Let (X_n) be a sequence of infinite-dimensional Banach spaces. If $E := \bigoplus_{n=1}^{\infty} X_n$, then the following are equivalent: 1. $E'[\mu(E', E)]$ is Bcomplete. 2. Every separated quotient of $E'[\mu(E', E)]$ is complete. 3. X_n is quasi-reflexive, $n \in \mathbb{N}$.

In Section 2 of this paper, we obtain a theorem which adds new equivalences to the three before stated.

A locally convex space E is said to have the Krein-Šmulian Property whenever a convex subset A of E' is $\sigma(E', E)$ -closed provided that, for each absolutely convex $\sigma(E', E)$ -closed and equicontinuous subset M of E', the set $A \cap M$ is $\sigma(E', E)$ -closed. Krein-Šmulian's theorem asserts that every Fréchet space has the Krein-Šmulian Property [1, p. 246].

In this paper, we characterize when $E' [\mu(E', E)]$ has the Krein-Šmulian Property, when $E := \bigoplus_{n=1}^{\infty} X_n$, with $X_n, n \in \mathbb{N}$, being a Banach space of infinite dimension.

2 (LB)-spaces and quasi-reflexivity

Theorem 1. Let (X_n) be a sequence of infinite-dimensional Banach spaces. For E being $\bigoplus_{n=1}^{\infty} X_n$, the following are equivalent:

- (1) Every separated quotient of E' [$\mu(E', E)$] is locally complete.
- (2) Every closed subspace Y of E, with the Mackey topology $\mu(Y', Y)$, is an (LB)-space.
- (3) X_n is quasi-reflexive, $n \in \mathbb{N}$.

PROOF. For each $n \in \mathbb{N}$, we write $E_n := \bigoplus_{j=1}^n X_j$ and we consider, in the usual way, that E_n is a subspace of E. We set

$$B_n := n \bigoplus_{j=1}^n B(X_j), \quad n \in \mathbb{N}.$$

 $1 \Rightarrow 2$. Let us assume that 2. is not satisfied for a certain closed subspace Y of E. We put $Y_n := E_n \cap Y$ and $A_n := B_n \cap Y$, $n \in \mathbb{N}$. We find a linear functional v on Y such that it is not continuous although its restriction to each subspace Y_n is continuous. After Hahn-Banach's extension theorem we obtain, for each $n \in \mathbb{N}$, an element u_n of Y' such that

$$u_{n|Y_n} = v_{|Y_n}$$

For an arbitrary x of Y, we find $n_0 \in \mathbb{N}$ such that $x \in Y_{n_0}$. Then

$$\langle x, u_n \rangle = \langle x, v \rangle, \quad n \ge n_0,$$

and thus $\{u_n : n \in \mathbb{N}\}\$ is a bounded subset of $Y'[\sigma(Y', Y)]$. If T denotes the polar subset in Y of $\{u_n : n \in \mathbb{N}\}\$, we have that T is a barrel in Y that absorbs each of the sets $A_n, n \in \mathbb{N}$. We now find a sequence of positive integers (j_n) such that

$$\frac{1}{j_n}A_n \subset T, \quad n \in \mathbb{N}.$$

(LB)-spaces and quasi-reflexivity

Let A be the convex hull of

$$\cup \{\frac{1}{j_n 2^n} A_n : n \in \mathbb{N}\}$$

Since A is absorbing in Y, we have that A° is a closed bounded absolutely convex subset of $Y'[\sigma(Y',Y)]$. We prove next that $Y'_{A^{\circ}}$ is not a Banach space. Let $\|\cdot\|$ denote the norm in $Y'_{A^{\circ}}$. Given $\varepsilon > 0$, we find $n_0 \in \mathbb{N}$ such that $\frac{1}{2^{n_0}} < \frac{\varepsilon}{8}$. We take two integers p, q such that $p > q > n_0$. We can find an element z of A for which

$$|| u_p - u_q || \le 4 | \langle z, u_p - u_q \rangle |.$$

z may be written in the form

$$\sum_{n=1}^{\infty} \alpha_n z_n, \quad \alpha_n \ge 0, \quad z_n \in \frac{1}{j_n 2^n}, \quad n \in \mathbb{N}, \quad \sum_{n=1}^{\infty} \alpha_n = 1,$$

where the terms of the sequence (α_n) are all zero from a certain subindex on. Then

$$\| u_p - u_q \| \le 4 | \langle z, u_p - u_q \rangle | \le 4 \sum_{n=1}^{\infty} | \langle \alpha_n z_n, u_p - u_q \rangle |$$

$$= 4 \sum_{n=n_0+1}^{\infty} \alpha_n | \langle z_n, u_p - u_q \rangle | \le 4 \sum_{n=n_0+1}^{\infty} \alpha_n (| \langle z_n, u_p \rangle | + | \langle z_n, u_q \rangle |)$$

$$\le 8 \sum_{n=n_0+1}^{\infty} \frac{1}{2^n} = \frac{8}{2^{n_0}} < \varepsilon.$$

Consequently, (u_n) is a Cauchy sequence in Y'_{A° . If this were a Banach space, this sequence would converge to a certain element u of Y'_{A° . Clearly, u should coincide with v, which is a contradiction. $2 \Rightarrow 3$. Assuming that 3 does not hold, after result a), there is a closed subspace Z of $E'[\mu(E', E)]$ such that $E'[\mu(E', E)]/Z$ is not complete. Let Y represent the subspace of E orthogonal to Z. Let w be a linear functional on Y which belongs to the completion of $E'[\mu(E', E)]/Z$ but does not belong to $E'[\mu(E', E)]/Z$. From the theorem of Ptàk-Collins, [4, p. 271], $w^{-1}(0)$ intersects every weakly compact absolutely convex subset of Y in a closed subset, hence w is bounded in every bounded subset of Y. Since w is not continuous in Y, we deduce from above that $Y[\mu(Y, Y')]$ is not an (LB)-space. $3 \Rightarrow 1$. After result a), every separated quotient of $E'[\mu(E', E)]$ is complete and thus it is locally complete.

In the previous theorem, we have considered closed subspaces Y of $E = \bigoplus_{n=1}^{\infty} X_n$ endowed with the Mackey topology $\mu(Y, Y')$. It may happen that for some closed subspace Y of E, Y is not an (LB)-space and nevertheless $Y[\mu(Y, Y')]$ is indeed an (LB)-space. In Theorem 2, this property is considered when X_n is a reflexive Banach space, $n \in \mathbb{N}$.

We shall then use the following result that we obtained in [8]: b) Let F be a Fréchet space such that for each closed subspace G of F and each bounded subset B of F/G there is a bounded subset A of F for which $\varphi(A) = B$, where φ is the canonical projection from F onto F/G, then one of the following assertions holds: 1. F is a Banach space. 2. F is a Schwartz space. 3. F is the product of a Banach space by ω .

Theorem 2. Let (X_n) be a sequence of reflexive Banach spaces of infinite dimension. Then, there is a closed subspace Y of $E := \bigoplus_{n=1}^{\infty} X_n$ whose topology is not that of Mackey's $\mu(Y, Y')$.

PROOF. By applying result b) we obtain a closed subspace G of $F := \prod_{n=1}^{\infty} X_n^*$ and a closed bounded absolutely convex subset B of F/G such that there is no bounded subset A of F with $\varphi(A) = B$, where φ is the canonical projection from F onto F/G. Clearly, F/G is

reflexive and so B is weakly compact. We have that $F'[\mu(F', F)] = E$. We identify, in the usual manner, (F/G)' with the subspace Y of E orthogonal to G. If B° is the polar set of B in Y, then B° is a zero-neighborhood in $Y[\mu(Y, Y')]$. Now, given that B is not the image by φ of any bounded subset of F, there is no zero-neighborhood U in E for which $U \cap Y \subset B^{\circ}$. Therefore, the subspace Y of E does not have the Mackey topology. $Y[\mu(Y, Y')]$ is an (LB)-space in light of our former theorem.

3 The Krein-Šmulian Property

Theorem 3. Let (X_n) be a sequence of Banach spaces of infinite dimension. If E is $\bigoplus_{n=1}^{\infty} X_n$, then $E'[\mu(E', E)]$ has the Krein-Šmulian property if and only if X_n is reflexive, $n \in \mathbb{N}$.

Before giving the proof of this theorem, we shall obtain some previous results. For the next four propositions, we shall consider the sequence (Z_n) of infinite-dimensional separable Banach spaces such that Z_1 is quasi-reflexive non-reflexive and Z_n is reflexive, for $n = 2, 3, \ldots$ we put $F := \bigoplus_{n=1}^{\infty} Z_n$ and $F_n := \bigoplus_{j=1}^{n} Z_j$, and identify, in the usual fashion, F_n with a subspace of F and \tilde{F}_n with F''_n , $n \in \mathbb{N}$. We take a vector y in $Z_1^{**} \setminus Z_1$. We fix now j in \mathbb{N} . In \tilde{F}_{j+1} [$\sigma(\tilde{F}_{j+1}, F'_{j+1})$], $\tilde{F}_j + B(Z_{j+1})$ is a closed subset whose intersection with Z_{j+1} coincides with $B(Z_{j+1})$ and, since $B(Z_{j+1})$ is not a weak neighborhood of zero in Z_{j+1} , we have that $\tilde{F}_j + B(Z_{j+1})$ has no interior points. On the other hand,

$$\frac{1}{j}y \in \tilde{F}_1 \subset \tilde{F}_j + B(Z_{j+1})$$

and \tilde{F}_{j+1} $[\beta(\tilde{F}_{j+1}, F'_{j+1})]$ is separable, so there is a sequence (z_n) in

$$F_{j+1} \setminus (\tilde{F}_j + B(Z_{j+1}))$$

which converges to $\frac{1}{j}y$ in $\tilde{F}_{j+1}[\sigma(\tilde{F}_{j+1}, F'_{j+1})]$. We may now find a subsequence (z_{jn}) of (z_n) which is basic in F_{j+1} , [5]. Let T_{j+1} be the projection from F_{j+1} onto Z_{j+1} along F_j . Then, $T_{j+1}z_{jn} \notin B(Z_{j+1})$, $n \in \mathbb{N}$, and the sequence $(T_{j+1}z_{jn})$ converges weakly to the origin in Z_{n+1} . Consequently, we may find in (z_{jn}) a subsequence (y_{jn}) such that $(T_{j+1}y_{jn})$ is basic in Z_{j+1} , [3, p. 334]. In $\tilde{F}_{j+1}[\sigma(\tilde{F}_{j+1}, F'_{j+1})]$, we put A_j for the closed convex hull of $\{y_{jn} : n \in \mathbb{N}\}$. We have that $\{y_{jn} : n \in \mathbb{N}\} \cup \{\frac{1}{j}y\}$ is compact and hence A_j is also compact. We choose in F'_{j+1} a sequence (u_{jn}) such that

$$\langle y_{jn}, u_{jn} \rangle = 1, \ \langle y_{jm}, u_{jn} \rangle = 0, \ m \neq n, \ m, n \in \mathbb{N}$$

Proposition 1. An element z of \tilde{F}_{j+1} is in A_j if and only if it can be represented as

$$z = \sum_{n=1}^{\infty} a_n y_{jn} + \frac{1}{j} a y, \quad a \ge 0, a_n \ge 0, n \in \mathbb{N}, \sum_{n=1}^{\infty} a_n + a = 1,$$

where the coefficients a and a_n , $n \in \mathbb{N}$, are univocally determined by z.

PROOF. Clearly, if an element z of \tilde{F}_{j+1} has the representation above given, then it belongs to A_j .

An arbitrary element of the convex hull M_j of $\{y_{jn} : n \in \mathbb{N}\} \cup \{\frac{1}{j}y\}$ has the form

$$\sum_{n=1}^{\infty} a_n y_{jn} + \frac{1}{j} ay, \quad a \ge 0, a_n \ge 0, n \in \mathbb{N}, \ \sum_{n=1}^{\infty} a_n + a = 1,$$

(LB)-spaces and quasi-reflexivity

where the terms of the sequence (a_n) are all zero except for a finite number of them. Given z in A_j , we find a net

$$\{\sum_{n=1}^{\infty} a_n^{(i)} y_{jn} + \frac{1}{j} a^{(i)} y : i \in I, \succeq\}$$

in M_j such that it $\sigma(\tilde{F}_{j+1}, F'_{j+1})$ -converges to z. Given r in \mathbb{N} , we have that

$$\langle \sum_{n=1}^{\infty} a_n^{(i)} y_{jn} + \frac{1}{j} a^{(i)} y, u_r \rangle = a_r^{(i)} + \frac{1}{j} a^{(i)} \langle y, u_r \rangle$$
$$= a_r^{(i)} + a^{(i)} \lim_n \langle y_{jn}, u_r \rangle = a_r^{(i)},$$

thus, in \mathbb{R} ,

$$\lim_{i \to \infty} a_r^{(i)} = \langle z, u_r \rangle =: a_r.$$

Clearly, $\sum_{r=1}^{\infty} a_r \leq 1$. Let $a := 1 - \sum_{r=1}^{\infty} a_r$. We consider the vector

$$\sum_{n=1}^{\infty} a_n y_{jn} + \frac{1}{j} a y$$

of $\tilde{F}_{j+1}[\sigma(\tilde{F}_{j+1}, F'_{j+1})]$ and we proceed to show that it coincides with z. Given u in F'_{j+1} , having in mind that $\{y_{jn} : n \in \mathbb{N}\}$ is bounded in F_{j+1} , we find $\lambda_j > 0$ such that

$$|\langle y_{jn}, u \rangle| < \lambda_j, n \in \mathbb{N}, |\langle y, u \rangle| < \lambda_j.$$

Given $\varepsilon > 0$, we find $s \in \mathbb{N}$ such that

$$|\langle y_{jn} - \frac{1}{j}y, u \rangle| < \frac{\varepsilon}{6}, \quad n \ge s.$$

We now determine i_0 in I such that, for $i \succeq i_0$,

$$|a_n - a_n^{(i)}| < \frac{\varepsilon}{6\lambda_j s}, \quad n = 1, 2, \dots, s,$$
$$|\langle z - (\sum_{n=1}^{\infty} a_n^{(i)} y_{jn} + \frac{1}{j} a^{(i)} y), u \rangle| < \frac{\varepsilon}{3}.$$

Then, for such values of i,

$$\begin{aligned} |\langle z - (\sum_{n=1}^{\infty} a_n y_{jn} + \frac{1}{j} ay), u\rangle | &\leq |\langle z - (\sum_{n=1}^{\infty} a_n^{(i)} y_{jn} + \frac{1}{j} a^{(i)} y), u\rangle | \\ + &|\langle \sum_{n=1}^{\infty} a_n^{(i)} y_{jn} + \frac{1}{j} a^{(i)} y - (\sum_{n=1}^{\infty} a_n y_{jn} + \frac{1}{j} ay), u\rangle | < \frac{\varepsilon}{3} \\ + &|\langle \sum_{n=1}^{\infty} (a_n^{(i)} - a_n) y_{jn} + \frac{1}{j} (a^{(i)} - a) y, u\rangle | = \frac{\varepsilon}{3} \\ + &|\langle \sum_{n=1}^{\infty} (a_n^{(i)} - a_n) y_{jn} + \frac{1}{j} (1 - \sum_{n=1}^{\infty} a_n^{(i)} - (1 - \sum_{n=1}^{\infty} a_n)) y, u\rangle | \\ = &\frac{\varepsilon}{3} + &|\langle \sum_{n=1}^{\infty} (a_n^{(i)} - a_n) y_{jn} + \frac{1}{j} \sum_{n=1}^{\infty} (a_n - a_n^{(i)}) y, u\rangle | \end{aligned}$$

M. Valdivia

$$\leq \frac{\varepsilon}{3} + |\langle \sum_{n=1}^{s} (a_n^{(i)} - a_n) y_{jn} + \frac{1}{j} \sum_{n=1}^{s} (a_n - a_n^{(i)}) y, u \rangle |$$

+ $|\langle \sum_{n=s+1}^{\infty} (a_n^{(i)} - a_n) y_{jn} + \frac{1}{j} \sum_{n=s+1}^{\infty} (a_n - a_n^{(i)}) y, u \rangle |$
$$\leq \frac{\varepsilon}{3} + 2\lambda_j \sum_{n=1}^{s} |a_n - a_n^{(i)}| + \sum_{n=s+1}^{\infty} |a_n - a_n^{(i)}| \cdot |\langle y_{jn} - \frac{1}{j} y, u \rangle$$

$$\leq \frac{\varepsilon}{3} + 2\lambda_j s \frac{\varepsilon}{6\lambda_j s} + 2\frac{\varepsilon}{6} = \varepsilon,$$

from where we deduce that, in $\tilde{F}_{j+1}[\sigma(\tilde{F}_{j+1}, F'_{j+1})]$,

$$z = \sum_{n=1}^{\infty} a_n y_{jn} + \frac{1}{j} a y.$$

Besides, it is plain that

$$a_n = \langle z, u_n \rangle, \quad n \in \mathbb{N}, \quad a = 1 - \sum_{n=1}^{\infty} \langle z, u_n \rangle.$$

QED

Corollary 1. We have that

$$A_j \cap F_{j+1} = \{\sum_{n=1}^{\infty} a_n y_{jn} : a_n \ge 0, n \in \mathbb{N}, \sum_{n=1}^{\infty} a_n = 1\}.$$

Corollary 2. If $z \in A_j$, then z may be univocally expressed as

$$z = bz_1 + \frac{1}{j}cy, \quad z_1 \in A_j \cap F_{j+1}, \quad b \ge 0, \quad c \ge 0, \quad b+c=1.$$

In the sequel, we put D for the convex hull of

$$\cup \{A_j \cap F_{j+1} : j \in \mathbb{N}\}$$

and D_r for the convex hull of

$$\cup \{A_i \cap F_{i+1} : j = 1, 2, \dots, r\}, r \in \mathbb{N}.$$

Proposition 2. For each $r \in \mathbb{N}$, we have that

$$D_r = D \cap F_{r+1}.$$

PROOF. Given a positive integer s, we take an element z of $D_{s+1}.$ Then, z may be written in the form

$$z = \sum_{j=1}^{s+1} \alpha_j z_j, \quad z_j \in A_j \cap F_{j+1}, \quad \alpha_j \ge 0, \ j = 1, 2, \dots, s+1, \sum_{j=1}^{s+1} \alpha_j = 1.$$

Let us first assume that $\alpha_{s+1} \neq 0$. After Corollary 1, z_{j+1} can be written as

$$\sum_{n=1}^{\infty} a_n y_{(s+1)n}, a_n \ge 0, n \in \mathbb{N}, \sum_{n=1}^{\infty} a_n = 1.$$

196

(LB)-spaces and quasi-reflexivity

We have that $(T_{s+2}(y_{(s+1)n}))$ is a basic sequence in Z_{s+2} and thus the vector of Z_{s+2}

$$T_{s+2}(z_{s+1}) = T_{s+2}(\sum_{n=1}^{\infty} a_n y_{(s+1)n}) = \sum_{n=1}^{\infty} a_n T_{s+2}(y_{(s+1)n})$$

is non-zero. Then

$$\alpha_{s+1} z_{s+1} \notin F_{s+1}$$

and since

$$\sum_{j=1}^{s} \alpha_j z_j \in F_{s+1},$$

it follows that

$$z = \sum_{j=1}^{s+1} \alpha_j z_j \notin F_{s+1}.$$

On the other hand, if $\alpha_{s+1} = 0$, we have that z belongs to D_s . We deduce from above that

$$D_{s+1} \cap F_{s+1} \subset D_s$$

and, since
$$D_s$$
 is clearly contained in $D_{s+1} \cap F_{s+1}$, it follows that

$$D_s = D_{s+1} \cap F_{s+1}.$$

Finally, given $r \in \mathbb{N}$, we have that

$$D_r = D_{r+1} \cap F_{r+1} = D_{r+2} \cap F_{r+2} \cap F_{r+1} = D_{r+2} \cap F_{r+1}$$

and, proceeding recurrently, we have that, for each $m \in \mathbb{N}$,

$$D_r = D_{r+m} \cap F_{r+1},$$

from where we conclude that

$$D_r = (\bigcup_{m=1}^{\infty} D_{r+m}) \cap F_{r+1} = D \cap F_{r+1}$$

QED

Proposition 3. For each $r \in \mathbb{N}$, D_r is closed in F_{r+1} .

PROOF. We write C_r for the convex hull of $\cup \{A_j : j = 1, 2, ..., r\}$. Clearly, C_r is $\sigma(\tilde{F}_{r+1}, F'_{r+1})$ -compact and so it suffices to show that D_r coincides with $C_r \cap F_{r+1}$. We take z in C_r . After Corollary 2, z may be written in the form

$$\sum_{j=1}^{r} \alpha_j (a_j z_j + \frac{1}{j} b_j y_j), \quad a_j \ge 0, \ b_j \ge 0, \ \alpha_j \ge 0,$$
$$a_j + b_j = 1, \quad z_j \in A_j \cap F_{j+1}, \quad j = 1, 2, \dots, r, \ \sum_{j=1}^{r} \alpha_j = 1$$

If z belongs to F_{r+1} , then $\sum_{j=1}^{r} \frac{1}{j} \alpha_j b_j = 0$ and thus $\alpha_j b_j = 0, j = 1, 2, \dots, r$. Then

$$z = \sum_{j=1}^{r} \alpha_j a_j z_j = \sum_{j=1}^{r} \alpha_j (1-b_j) z_j = \sum_{j=1}^{r} \alpha_j z_j,$$

from where we deduce that z is in D_r . Therefore

$$C_r \cap F_{r+1} \subset D_r.$$

On the other hand, it is immediate that D_r is contained in $C_r \cap F_{r+1}$ and the result follows. QED

197

Proposition 4. In F, each weakly compact absolutely convex subset intersects D in a closed set. Besides, D is not closed in F.

PROOF. Let M be a weakly compact absolutely convex subset of F. Then there is $r \in \mathbb{N}$ such that M is contained in F_{r+1} . Then

$$M \cap D = M \cap F_{r+1} \cap D = M \cap D_r$$

and, after the previous proposition, we have that $M \cap D_r$ is closed in F_{r+1} , from where we get that $M \cap D$ is closed in F. On the other hand, the origin of F is not in D. We consider a weak neighborhood U of the origin in F. We find an open neighborhood V of the origin in F'' $[\sigma(F'', F')]$ such that $V \cap F \subset U$. We find $s \in \mathbb{N}$ so that $\frac{1}{s}y \in V$. Now, since V is a neighborhood of $\frac{1}{s}y$ in F'' $[\sigma(F'', F')]$ and (y_{sn}) converges in this space to $\frac{1}{s}y$, there is $m \in \mathbb{N}$ for which $y_{sm} \in V$. Consequently, $U \cap D \neq \emptyset$, thus the weak closure of D in E contains the origin and hence D is not closed in F.

Finally, we give the proof of Theorem 3, but for that we shall need the following result to be found in [9]: c) Let X be an infinite-dimensional Banach space such that X^{**} is separable. Let T be a closed subspace of X^{**} containing X. Then there is an infinite-dimensional closed subspace Y of X such that $X + \tilde{Y} = T$.

PROOF. If X_n is reflexive, $n \in \mathbb{N}$, then E is the Mackey dual of the space $E'[\mu(E', E)]$ and so this space has the Krein-Smulian Property. If some of the spaces $X_n, n \in \mathbb{N}$, is not quasi-reflexive, then we apply result a) to obtain that $E'[\mu(E', E)]$ is not B-complete and so it does not have the Krein-Šmulian Property. It remains to consider the case in which all the spaces $X_n, n \in \mathbb{N}$, are quasi-reflexive and there is at least one of them which is not reflexive. More precisely, let us assume that X_1 is not reflexive. From Eberlein's theorem, $B(X_1)$ is not weakly countably compact and so there is a sequence (x_n) in $B(X_1)$ with no weak cluster points in X_1 . Let Z_1 be the closed linear span in X_1 of $\{x_n : n \in \mathbb{N}\}$. Then, Z_1 is a separable Banach space which is quasi-reflexive but not reflexive. For each $n \in \mathbb{N}$, n > 1, we find in X_n a separable closed subspace Y_n of infinite dimension. Since Y_n is quasi-reflexive, it follows that Y_n^{**} is separable, from where, applying result c) for the case $T = X = Y_n$, we have that there is a separable closed subspace Z_n of Y_n , with infinite dimension, such that $Y_n + \tilde{Z}_n = Y_n$, that is, $\tilde{Z}_n \subset Y_n$ and so Z_n is reflexive. We have that $F := \bigoplus_{n=1}^{\infty} Y_n$ is a closed subspace of $E = \bigoplus_{n=1}^{\infty} X_n$. On the other hand, after Proposition 4, there is a convex subset D of F, not closed, which meets each weakly compact absolutely convex subset of F in a closed set. Then D is a convex non-closed subset of E that meets each weakly compact absolutely convex subset of E in a closed subset of E. Consequently, $E' [\mu(E', E)]$ does not have the Krein-Šmulian Property. QED

References

- J. HORVÁT: Topological Vector Spaces and Distributions I, Addison-Wesley, Reading, Massachussets, 1966.
- [2] R.C. JAMES: Bases and reflexivity of Banach spaces, Ann. Math., 52 (1950), 518–527.
- [3] G.J.O. JAMESON: Topology and Normed Spaces, Chapman and Hall, London, 1974.
- [4] G. KÖTHE: Topological Vector Spaces I., Berlin-Heidelberg-New York: Springer, 1969.
- [5] A. PELCZYNSKI: A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math., 21 (1962), 372–374.
- [6] V. PTÁK: Completeness and the open mapping theorem, Bull. Soc. Math., 21 (1962), 351–369.

- [7] M. VALDIVIA: On certain (LB)-spaces, Bull. Belg. Math. Soc. Simon Stevin, 14 (2007), 565–575.
- [8] M. VALDIVIA: Basic sequences in the dual of a Fréchet space, Math. Nachr., 231 (2001),169–185.
- [9] M. VALDIVIA: Shrinking bases and Banach spaces Z^{**}/Z, Israel J. Math., 62 (1987), 347–354.