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Abstract. Let (Xn) be a sequence of infinite-dimensional Banach spaces. For E being the
space

�∞
n=1 Xn, the following equivalences are shown: 1. Every closed subspace Y of E, with

the Mackey topology µ(Y, Y �), is an (LB)-space. 2. Every separated quotient of E� [µ(E�, E)]
is locally complete. 3. Xn is quasi-reflexive, n ∈ N. Besides this, the following two properties

are seen to be equivalent: 1. E� [µ(E�, E)] has the Krein-
∨
Smulian property. 2. Xn is reflexive,

n ∈ N.
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1 Introduction and notation

The linear spaces that we shall use here are assumed to be defined over the field K of real
or complex numbers, and the topologies on them will all be Hausdorff. As usual, N represents
the set of positive integers. If �E,F � is a dual pair, then σ(E,F ), µ(E,F ) and β(E,F ) denote
the weak, Mackey and strong topologies on E, respectively; we shall write �·, ·� for the bilinear
functional associated to �E,F �. If E is a locally convex space, E� is its topological dual and
�E,E�

�, and also �E�, E�, denote the standard duality. E�� stands for the dual of E�[β(E�, E)].
We identify, in the usual manner, E with a linear subspace of E��. If B is a subset of E, then
B̃ is the closure of B in E��[σ(E��, E�)]. If A is an arbitrary subset of E, by A◦ we denote the
subset of E� given by the polar of A.

If X is a Banach space, then B(X) will denote its closed unit ball, X∗ is the Banach space
conjugate of X, and X∗∗ is its second conjugate, that is, the conjugate of X∗. In the usual
manner, we suppose that X is a subspace of X∗∗. We say that X is quasi-reflexive when it has
finite codimension in X∗∗. In [2], R. C. James gives an example of a quasi-reflexive Banach
space which is not reflexive.

If A is a bounded absolutely convex subset of a locally convex space E, by EA we mean
the linear span of A with the norm provided by the gauge of A; the space E is said to be
locally complete whenever EA is complete for each closed bounded absolutely convex subset A
of E. If E is sequentially complete, in particular if E is complete, then E is locally complete.
We write ω to denote the space KN with the product topology.
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Following [6] (see also [1, p. 299]), we say that a locally convex space E is B-complete if
each subspace F of E�[σ(E�, E)] is closed provided it intersects every closed absolutely convex
subset which is equicontinuous in a closed set.

A locally convex space E is said to be an (LB)-space if it is the inductive limit of a sequence
of Banach spaces, or, equivalently, if E is the separated quotient of the topological direct sum
of a sequence of Banach spaces.

In [7], we obtain the following result: a) Let (Xn) be a sequence of infinite-dimensional
Banach spaces. If E :=

�∞
n=1 Xn, then the following are equivalent: 1. E�[µ(E�, E)] is B-

complete. 2. Every separated quotient of E�[µ(E�, E)] is complete. 3. Xn is quasi-reflexive,
n ∈ N.

In Section 2 of this paper, we obtain a theorem which adds new equivalences to the three
before stated.

A locally convex space E is said to have the Krein-S̆mulian Property whenever a convex
subset A of E� is σ(E�, E)-closed provided that, for each absolutely convex σ(E�, E)-closed and
equicontinuous subset M of E�, the set A ∩ M is σ(E�, E)-closed. Krein-S̆mulian’s theorem
asserts that every Fréchet space has the Krein-S̆mulian Property [1, p. 246].

In this paper, we characterize when E� [µ(E�, E)] has the Krein-S̆mulian Property, when
E :=

�∞
n=1 Xn, with Xn, n ∈ N, being a Banach space of infinite dimension.

2 (LB)-spaces and quasi-reflexivity

Theorem 1. Let (Xn) be a sequence of infinite-dimensional Banach spaces. For E being�∞
n=1 Xn, the following are equivalent:

(1) Every separated quotient of E� [µ(E�, E)] is locally complete.

(2) Every closed subspace Y of E, with the Mackey topology µ(Y �, Y ), is an (LB)-space.

(3) Xn is quasi-reflexive, n ∈ N.

Proof. For each n ∈ N, we write En :=
�

n

j=1 Xj and we consider, in the usual way, that
En is a subspace of E. We set

Bn := n
n�

j=1

B(Xj), n ∈ N.

1 ⇒ 2. Let us assume that 2. is not satisfied for a certain closed subspace Y of E. We put
Yn := En ∩Y and An := Bn ∩Y , n ∈ N. We find a linear functional v on Y such that it is not
continuous although its restriction to each subspace Yn is continuous. After Hahn-Banach’s
extension theorem we obtain, for each n ∈ N, an element un of Y � such that

un|Yn = v|Yn .

For an arbitrary x of Y , we find n0 ∈ N such that x ∈ Yn0 . Then

�x, un� = �x, v�, n ≥ n0,

and thus {un : n ∈ N} is a bounded subset of Y � [σ(Y �, Y )]. If T denotes the polar subset in
Y of {un : n ∈ N}, we have that T is a barrel in Y that absorbs each of the sets An, n ∈ N.
We now find a sequence of positive integers (jn) such that

1
jn

An ⊂ T, n ∈ N.
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Let A be the convex hull of

∪{
1

jn2n
An : n ∈ N}.

Since A is absorbing in Y , we have that A◦ is a closed bounded absolutely convex subset of
Y �[σ(Y �, Y )].We prove next that Y �

A◦ is not a Banach space. Let � · � denote the norm in
Y �
A◦ . Given ε > 0, we find n0 ∈ N such that 1

2n0 < ε

8 . We take two integers p, q such that
p > q > n0. We can find an element z of A for which

� up − uq � ≤ 4 | �z, up − uq� | .

z may be written in the form

∞�

n=1

αnzn, αn ≥ 0, zn ∈
1

jn2n n

, n ∈ N,
∞�

n=1

αn = 1,

where the terms of the sequence (αn) are all zero from a certain subindex on. Then

� up − uq � ≤ 4 | �z, up − uq� | ≤ 4
∞�

n=1

| �αnzn, up − uq� |

= 4
∞�

n=n0+1

αn | �zn, up − uq� | ≤ 4
∞�

n=n0+1

αn(| �zn, up� | + | �zn, uq� |)

≤ 8
∞�

n=n0+1

1
2n

=
8

2n0
< ε.

Consequently, (un) is a Cauchy sequence in Y �
A◦ . If this were a Banach space, this sequence

would converge to a certain element u of Y �
A◦ . Clearly, u should coincide with v, which is a

contradiction. 2 ⇒ 3. Assuming that 3 does not hold, after result a), there is a closed subspace
Z of E�[µ(E�, E)] such that E�[µ(E�, E)]/Z is not complete. Let Y represent the subspace of
E orthogonal to Z. Let w be a linear functional on Y which belongs to the completion of
E�[µ(E�, E)]/Z but does not belong to E�[µ(E�, E)]/Z. From the theorem of Ptàk-Collins, [4, p.
271], w−1(0) intersects every weakly compact absolutely convex subset of Y in a closed subset,
hence w is bounded in every bounded subset of Y . Since w is not continuous in Y , we deduce
from above that Y [µ(Y, Y �)] is not an (LB)-space. 3 ⇒ 1. After result a), every separated
quotient of E�[µ(E�, E)] is complete and thus it is locally complete. QED

In the previous theorem, we have considered closed subspaces Y of E =
�∞

n=1 Xn endowed
with the Mackey topology µ(Y, Y �). It may happen that for some closed subspace Y of E, Y
is not an (LB)-space and nevertheless Y [µ(Y, Y �)] is indeed an (LB)-space. In Theorem 2, this
property is considered when Xn is a reflexive Banach space, n ∈ N.

We shall then use the following result that we obtained in [8]: b) Let F be a Fréchet
space such that for each closed subspace G of F and each bounded subset B of F/G there is a
bounded subset A of F for which ϕ(A) = B, where ϕ is the canonical projection from F onto
F/G, then one of the following assertions holds: 1. F is a Banach space. 2. F is a Schwartz
space. 3. F is the product of a Banach space by ω.

Theorem 2. Let (Xn) be a sequence of reflexive Banach spaces of infinite dimension.
Then, there is a closed subspace Y of E :=

�∞
n=1 Xn whose topology is not that of Mackey’s

µ(Y, Y �).

Proof. By applying result b) we obtain a closed subspace G of F :=
�∞

n=1 X
∗
n and a

closed bounded absolutely convex subset B of F/G such that there is no bounded subset A
of F with ϕ(A) = B, where ϕ is the canonical projection from F onto F/G. Clearly, F/G is
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reflexive and so B is weakly compact. We have that F �[µ(F �, F )] = E. We identify, in the usual
manner, (F/G)� with the subspace Y of E orthogonal to G. If B◦ is the polar set of B in Y ,
then B◦ is a zero-neighborhood in Y [µ(Y, Y �)]. Now, given that B is not the image by ϕ of any
bounded subset of F , there is no zero-neighborhood U in E for which U ∩ Y ⊂ B◦. Therefore,
the subspace Y of E does not have the Mackey topology. Y [µ(Y, Y �)] is an (LB)-space in light
of our former theorem. QED

3 The Krein-S̆mulian Property

Theorem 3. Let (Xn) be a sequence of Banach spaces of infinite dimension. If E is�∞
n=1 Xn, then E�[µ(E�, E)] has the Krein-S̆mulian property if and only if Xn is reflexive,

n ∈ N.
Before giving the proof of this theorem, we shall obtain some previous results. For the

next four propositions, we shall consider the sequence (Zn) of infinite-dimensional separable
Banach spaces such that Z1 is quasi-reflexive non-reflexive and Zn is reflexive, for n = 2, 3, . . .
we put F :=

�∞
n=1 Zn and Fn :=

�
n

j=1 Zj , and identify, in the usual fashion, Fn with a

subspace of F and F̃n with F ��
n , n ∈ N. We take a vector y in Z∗∗

1 \ Z1. We fix now j in N. In
F̃j+1 [σ(F̃j+1, F

�
j+1)], F̃j + B(Zj+1) is a closed subset whose intersection with Zj+1 coincides

with B(Zj+1) and, since B(Zj+1) is not a weak neighborhood of zero in Zj+1, we have that
F̃j +B(Zj+1) has no interior points. On the other hand,

1
j
y ∈ F̃1 ⊂ F̃j + B(Zj+1)

and F̃j+1 [β(F̃j+1, F
�
j+1)] is separable, so there is a sequence (zn) in

Fj+1 \ (F̃j + B(Zj+1))

which converges to 1
j
y in F̃j+1[σ(F̃j+1, F

�
j+1)]. We may now find a subsequence (zjn) of (zn)

which is basic in Fj+1, [5]. Let Tj+1 be the projection from Fj+1 onto Zj+1 along Fj . Then,
Tj+1zjn /∈ B(Zj+1), n ∈ N, and the sequence (Tj+1zjn) converges weakly to the origin in
Zn+1. Consequently, we may find in (zjn) a subsequence (yjn) such that (Tj+1yjn) is basic in
Zj+1, [3, p. 334]. In F̃j+1[σ(F̃j+1, F

�
j+1)], we put Aj for the closed convex hull of {yjn : n ∈ N}.

We have that {yjn : n ∈ N} ∪ {
1
j
y} is compact and hence Aj is also compact. We choose in

F �
j+1 a sequence (ujn) such that

�yjn, ujn� = 1, �yjm, ujn� = 0, m �= n, m, n ∈ N.

Proposition 1. An element z of F̃j+1 is in Aj if and only if it can be represented as

z =
∞�

n=1

anyjn +
1
j
ay, a ≥ 0, an ≥ 0, n ∈ N,

∞�

n=1

an + a = 1,

where the coefficients a and an, n ∈ N, are univocally determined by z.

Proof. Clearly, if an element z of F̃j+1 has the representation above given, then it belongs
to Aj .

An arbitrary element of the convex hull Mj of {yjn : n ∈ N} ∪ {
1
j
y} has the form

∞�

n=1

anyjn +
1
j
ay, a ≥ 0, an ≥ 0, n ∈ N,

∞�

n=1

an + a = 1,
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where the terms of the sequence (an) are all zero except for a finite number of them. Given z
in Aj , we find a net

{

∞�

n=1

a(i)
n yjn +

1
j
a(i)y : i ∈ I, �}

in Mj such that it σ(F̃j+1, F
�
j+1)-converges to z. Given r in N, we have that

�

∞�

n=1

a(i)
n yjn +

1
j
a(i)y, ur� = a(i)

r +
1
j
a(i)

�y, ur�

= a(i)
r + a(i) lim

n

�yjn, ur� = a(i)
r ,

thus, in R,
lim
i

a(i)
r = �z, ur� =: ar.

Clearly,
�∞

r=1 ar ≤ 1. Let a := 1−
�∞

r=1 ar. We consider the vector

∞�

n=1

anyjn +
1
j
ay

of F̃j+1[σ(F̃j+1, F
�
j+1)] and we proceed to show that it coincides with z. Given u in F �

j+1,
having in mind that {yjn : n ∈ N} is bounded in Fj+1, we find λj > 0 such that

| �yjn, u� | < λj , n ∈ N, | �y, u� | < λj .

Given ε > 0, we find s ∈ N such that

| �yjn −
1
j
y, u� | <

ε
6
, n ≥ s.

We now determine i0 in I such that, for i � i0,

| an − a(i)
n | <

ε
6λjs

, n = 1, 2, . . . , s,

| �z − (
∞�

n=1

a(i)
n yjn +

1
j
a(i)y), u� | <

ε
3
.

Then, for such values of i,

|�z − (
∞�

n=1

anyjn +
1
j
ay), u� |≤ | �z − (

∞�

n=1

a(i)
n yjn +

1
j
a(i)y), u� |

+ | �

∞�

n=1

a(i)
n yjn +

1
j
a(i)y − (

∞�

n=1

anyjn +
1
j
ay), u� | <

ε
3

+ | �

∞�

n=1

(a(i)
n − an)yjn +

1
j
(a(i)

− a)y, u� | =
ε
3

+ | �

∞�

n=1

(a(i)
n − an)yjn +

1
j
(1−

∞�

n=1

a(i)
n − (1−

∞�

n=1

an))y, u� |

=
ε
3
+ | �

∞�

n=1

(a(i)
n − an)yjn +

1
j

∞�

n=1

(an − a(i)
n )y, u� |
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≤
ε
3
+ | �

s�

n=1

(a(i)
n − an)yjn +

1
j

s�

n=1

(an − a(i)
n )y, u� |

+ | �

∞�

n=s+1

(a(i)
n − an)yjn +

1
j

∞�

n=s+1

(an − a(i)
n )y, u� |

≤
ε
3

+ 2λj

s�

n=1

| an − a(i)
n | +

∞�

n=s+1

| an − a(i)
n | · | �yjn −

1
j
y, u� |

≤
ε
3

+ 2λjs
ε

6λjs
+ 2

ε
6

= ε,

from where we deduce that, in F̃j+1[σ(F̃j+1, F
�
j+1)],

z =
∞�

n=1

anyjn +
1
j
ay.

Besides, it is plain that

an = �z, un�, n ∈ N, a = 1−
∞�

n=1

�z, un�.

QED

Corollary 1. We have that

Aj ∩ Fj+1 = {

∞�

n=1

anyjn : an ≥ 0, n ∈ N,
∞�

n=1

an = 1}.

Corollary 2. If z ∈ Aj , then z may be univocally expressed as

z = bz1 +
1
j
cy, z1 ∈ Aj ∩ Fj+1, b ≥ 0, c ≥ 0, b+ c = 1.

In the sequel, we put D for the convex hull of

∪{Aj ∩ Fj+1 : j ∈ N}

and Dr for the convex hull of

∪{Aj ∩ Fj+1 : j = 1, 2, . . . , r}, r ∈ N.

Proposition 2. For each r ∈ N, we have that

Dr = D ∩ Fr+1.

Proof. Given a positive integer s, we take an element z of Ds+1. Then, z may be written
in the form

z =
s+1�

j=1

αjzj , zj ∈ Aj ∩ Fj+1, αj ≥ 0, j = 1, 2, . . . , s+ 1,
s+1�

j=1

αj = 1.

Let us first assume that αs+1 �= 0. After Corollary 1, zj+1 can be written as

∞�

n=1

any(s+1)n, an ≥ 0, n ∈ N,
∞�

n=1

an = 1.
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We have that (Ts+2(y(s+1)n)) is a basic sequence in Zs+2 and thus the vector of Zs+2

Ts+2(zs+1) = Ts+2(
∞�

n=1

any(s+1)n) =
∞�

n=1

anTs+2(y(s+1)n)

is non-zero. Then
αs+1zs+1 /∈ Fs+1

and since
s�

j=1

αjzj ∈ Fs+1,

it follows that

z =
s+1�

j=1

αjzj /∈ Fs+1.

On the other hand, if αs+1 = 0, we have that z belongs to Ds.
We deduce from above that

Ds+1 ∩ Fs+1 ⊂ Ds

and, since Ds is clearly contained in Ds+1 ∩ Fs+1, it follows that

Ds = Ds+1 ∩ Fs+1.

Finally, given r ∈ N, we have that

Dr = Dr+1 ∩ Fr+1 = Dr+2 ∩ Fr+2 ∩ Fr+1 = Dr+2 ∩ Fr+1

and, proceeding recurrently, we have that, for each m ∈ N,

Dr = Dr+m ∩ Fr+1,

from where we conclude that

Dr = (∪∞
m=1Dr+m) ∩ Fr+1 = D ∩ Fr+1

QED

Proposition 3. For each r ∈ N, Dr is closed in Fr+1.

Proof. We write Cr for the convex hull of ∪{Aj : j = 1, 2, . . . , r}. Clearly, Cr is
σ(F̃r+1, F

�
r+1)-compact and so it suffices to show that Dr coincides with Cr ∩ Fr+1. We take

z in Cr. After Corollary 2, z may be written in the form
r�

j=1

αj(ajzj +
1
j
bjyj), aj ≥ 0, bj ≥ 0, αj ≥ 0,

aj + bj = 1, zj ∈ Aj ∩ Fj+1, j = 1, 2, . . . , r,
r�

j=1

αj = 1.

If z belongs to Fr+1, then
�

r

j=1
1
j
αjbj = 0 and thus αjbj = 0, j = 1, 2, . . . , r. Then

z =
r�

j=1

αjajzj =
r�

j=1

αj(1− bj)zj =
r�

j=1

αjzj ,

from where we deduce that z is in Dr. Therefore

Cr ∩ Fr+1 ⊂ Dr.

On the other hand, it is immediate that Dr is contained in Cr ∩ Fr+1 and the result follows.
QED
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Proposition 4. In F , each weakly compact absolutely convex subset intersects D in a
closed set. Besides, D is not closed in F .

Proof. Let M be a weakly compact absolutely convex subset of F . Then there is r ∈ N
such that M is contained in Fr+1. Then

M ∩ D = M ∩ Fr+1 ∩ D = M ∩ Dr

and, after the previous proposition, we have that M ∩ Dr is closed in Fr+1, from where we
get that M ∩ D is closed in F . On the other hand, the origin of F is not in D. We consider
a weak neighborhood U of the origin in F . We find an open neighborhood V of the origin in
F �� [σ(F ��, F �)] such that V ∩ F ⊂ U . We find s ∈ N so that 1

s
y ∈ V . Now, since V is a

neighborhood of 1
s
y in F �� [σ(F ��, F �)] and (ysn) converges in this space to 1

s
y, there is m ∈ N

for which ysm ∈ V . Consequently, U ∩ D �= ∅, thus the weak closure of D in E contains the
origin and hence D is not closed in F . QED

Finally, we give the proof of Theorem 3, but for that we shall need the following result to
be found in [9]: c) Let X be an infinite-dimensional Banach space such that X∗∗ is separable.
Let T be a closed subspace of X∗∗ containing X. Then there is an infinite-dimensional closed
subspace Y of X such that X + Ỹ = T .

Proof. If Xn is reflexive, n ∈ N, then E is the Mackey dual of the space E� [µ(E�, E)]
and so this space has the Krein-S̆mulian Property. If some of the spaces Xn, n ∈ N, is not
quasi-reflexive, then we apply result a) to obtain that E� [µ(E�, E)] is not B-complete and so
it does not have the Krein-S̆mulian Property. It remains to consider the case in which all the
spaces Xn, n ∈ N, are quasi-reflexive and there is at least one of them which is not reflexive.
More precisely, let us assume that X1 is not reflexive. From Eberlein’s theorem, B(X1) is not
weakly countably compact and so there is a sequence (xn) in B(X1) with no weak cluster
points in X1. Let Z1 be the closed linear span in X1 of {xn : n ∈ N}. Then, Z1 is a separable
Banach space which is quasi-reflexive but not reflexive. For each n ∈ N, n > 1, we find in Xn

a separable closed subspace Yn of infinite dimension. Since Yn is quasi-reflexive, it follows that
Y ∗∗
n is separable, from where, applying result c) for the case T = X = Yn, we have that there

is a separable closed subspace Zn of Yn, with infinite dimension, such that Yn + Z̃n = Yn,
that is, Z̃n ⊂ Yn and so Zn is reflexive. We have that F :=

�∞
n=1 Yn is a closed subspace of

E =
�∞

n=1 Xn. On the other hand, after Proposition 4, there is a convex subset D of F , not
closed, which meets each weakly compact absolutely convex subset of F in a closed set. Then
D is a convex non-closed subset of E that meets each weakly compact absolutely convex subset
of E in a closed subset of E. Consequently, E� [µ(E�, E)] does not have the Krein-S̆mulian
Property. QED
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