
Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932

Note Mat. 31 (2011) n. 1, 139–148. doi:10.1285/i15900932v31n1p139

On the domain of a Fleming–Viot-type

operator on an Lp-space with invariant

measure

Delio Mugnolo

Institut für Analysis
Universität Ulm
Helmholtzstraße 18
D-89081 Ulm - Germany
delio.mugnolo@uni-ulm.de

Abdelaziz Rhandi
i

Dipartimento di Matematica
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Abstract. We characterize the domain of a Fleming-Viot type operator of the form Lϕ(x) :=�
N

i=1 xi(1− xi)Diiϕ(x) +
�

N

i=1(αi(1− xi)− αi+1xi)Diϕ(x) on Lp([0, 1]N , µ) for 1 < p < ∞,
where µ is the corresponding invariant measure. Our approach relies on the characterization of
the domain of the one-dimensional Fleming-Viot operator and the Dore-Venni operator sum
method.
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1 Introduction

In this paper we are dealing with the following Fleming-Viot type operator

Lϕ(x) :=
N�

i=1

xi(1− xi)Diiϕ(x) +
N�

i=1

(αi(1− xi)− αi+1xi)Diϕ(x), x ∈ [0, 1]N ,

where the constants αi > 0 for all i = 1, . . . , N + 1. Note that in the one-dimensional case
the above given operator is the classical Fleming-Viot operator arising in population genetics,
whereas the usual N -dimensional formulation of the Fleming–Viot model takes place on a
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simplex instead of a cube (see however also [2]). We refer to [10] for the original derivation of
the model and to [8,9] for surveys on the theory of Fleming–Viot processes and its applications
to the genetic evolution of a population.

Let

βi :=
1

� 1

0
xαi−1(1− x)αi+1−1 dx

.

Since αi > 0 for all i = 1, . . . , N + 1, it is not difficult to see that 0 < βi < ∞ for all
i = 1, . . . , N + 1 and the probability measure

dµ(x) =
N�

i=1

βix
αi−1
i

(1− xi)
αi+1−1 dx, x = (x1, . . . , xN ) ∈ [0, 1]N

is an invariant measure for the operator L, i.e.

�

[0,1]N
Lϕ(x) dµ(x) = 0, for all ϕ ∈ C2([0, 1]N ).

We refer e.g. to [5, Chapter 11] or [6] for an introduction to this theory.

It is known that if N = 1 then

Lϕ(x) = x(1− x)ϕ��(x) + (α1(1− x)− α2x)ϕ
�(x), x ∈ [0, 1] with domain

D(L) = {ϕ ∈ C1[0, 1] ∩ C2(0, 1) : lim
x→0+, 1−

x(1− x)ϕ��(x) = 0}

generates a C0-semigroup T (·) of contractions on C[0, 1] which is positive and analytic, and
C2[0, 1] is a core (see [11] and [1, § 3]). Hence in particular the invariance of the measure µ1

is equivalent to saying that

�

[0,1]

T (t)ϕ(x) dµ1(x) =

�

[0,1]

ϕ(x) dµ1(x), for all ϕ ∈ C[0, 1] and all t ≥ 0.

Since the probability measure dµ1(x) = β1x
α1−1(1 − x)α2−1dx, x ∈ [0, 1], is an invariant

measure for L, it is known (see e.g. [6, Thm. 3.7]) that the semigroup T (·) can be extended
to an analytic C0-semigroup Tp(·) of contractions on Lp(0, 1;µ1), 1 ≤ p < ∞. However, to the
best of our knowledge an explicit form for the domain of the generators of such Lp-semigroups
has not yet been obtained – not even in the one-dimensional case. Aim of the present article is
to solve this problem. We remark that a related result has been obtained for p = 2 and under
certain technical assumptions in [1, §4].

In [0, 1]N the operator L, defined on C2([0, 1]N ), can be written as

L = L(1) + . . . L(N) with L(i)ϕ = xi(1− xi)Diiϕ+ (αi(1− xi)− αi+1xi)Diϕ.

Since the operators L(i) are commuting in the resolvent sense, it follows that the realization
Lp of L in Lp([0, 1]N , µ) generates an analytic C0-semigroup Tp(·) of contractions. Moreover

Lp is the closure of the sum L(1)
p + . . . L(N)

p defined on D(L(1)
p ) ∩ . . . ∩D(L(N)

p ).

The aim of this paper is to give an explicit characterization of D(Lp) by mean of some
weighted Sobolev spaces. To get such a characterization we have to compute the domain in
the one dimensional case and to apply the Dore-Venni theorem which gives us the closedness
of the operator sum L(1)

p + . . . L(N)
p defined on D(L(1)

p ) ∩ . . . ∩D(L(N)
p ).
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2 Main results

We first investigate the domain of the one-dimensional Fleming-Viot operator

Lϕ(x) := x(1− x)ϕ��(x) + (α1(1− x)− α2x)ϕ
�(x), ϕ ∈ C2([0, 1]),

on the space Lp(µ1) := Lp(0, 1;µ1) for 1 < p < ∞, where

dµ1(x) := β1x
α1−1(1− x)α2−1dx.

To this purpose let us introduce the weighted Sobolev spaces

W 1,p
c (µ1) and W 2,p

c (µ1)

as the completion of C1[0, 1] and C2[0, 1] respectively with respect to the norm

�ϕ�p
W

1,p
c (µ1)

:= �ϕ�p
Lp(µ1)

+
��√cϕ���p

Lp(µ1)
and

�ϕ�p
W

2,p
c (µ1)

:= �ϕ�p
W

1,p
c (µ1)

+
��cϕ����p

Lp(µ1)
,

where c(x) := x(1− x), x ∈ [0, 1], 1 < p < ∞.

Lemma 1. If ϕ ∈ W 1,p
c (µ1), 1 < p < ∞, then there is a constant M = M(p,α1,α2) > 0

such that
�(α1(1− x)− α2x)ϕ�

p

Lp(µ1)
≤ M(

��√cϕ
��p

Lp(µ1)
+

��cϕ���p

Lp(µ1)
). (1)

Hence, if ϕ ∈ W 2,p
c (µ1), 1 < p < ∞, then

��(α1(1− x)− α2x)ϕ
���

Lp(µ1)
≤ M �ϕ�

W
2,p
c (µ1)

. (2)

Proof. To prove (1) it suffices to consider ϕ ∈ C1[0, 1]. Then,

� 1

0

|(α1(1− x)− α2x)ϕ(x)|
pdµ1(x)

= β1

� 1

0

|(α1(1− x)− α2x)|
p−1sign(α1(1− x)− α2x)|ϕ(x)|

p d
dx

(xα1(1− x)α2)dx

= −β1

� 1

0

d
dx

[|(α1(1− x)− α2x)|
p−1sign(α1(1− x)− α2x)|ϕ(x)|

p]xα1(1− x)α2dx

= (p− 1)(α1 + α2)

� 1

0

|(α1(1− x)− α2x)|
p−2sign(α1(1− x)− α2x)|ϕ(x)|

pc(x)dµ1

− p

� 1

0

|(α1(1− x)− α2x)|
p−1sign((α1(1− x)− α2x)ϕ(x))ϕ

�(x)|ϕ(x)|p−1c(x)dµ1

=: (p− 1)(α1 + α2)I1 − pI2.

Step 1: 2 ≤ p < ∞.
Applying Hölder and Young inequalities we get

|I1| ≤

�� 1

0

|(α1(1− x)− α2x)ϕ(x)|
pdµ1(x)

� p−2
p

�� 1

0

|ϕ(x)|pc(x)
p
2 dµ1(x)

� 2
p

≤ ε
p

p−2
p− 2
p

� 1

0

|(α1(1− x)− α2x)ϕ(x)|
pdµ1(x) +

2

pε
p
2

� 1

0

|ϕ(x)|pc(x)
p
2 dµ1(x)
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and

|I2| ≤
�� 1

0

|(α1(1− x)− α2x)ϕ(x)|
pdµ1(x)

� p−1
p

�� 1

0

|c(x)ϕ�(x)|pdµ1(x)
� 1

p

≤ ε
p

p−1
p− 1
p

� 1

0

|(α1(1− x)− α2x)ϕ(x)|
pdµ1(x) +

1
pεp

� 1

0

|c(x)ϕ�(x)|pdµ1(x)

for any ε > 0. Hence,

� 1

0

|(α1(1− x)− α2x)ϕ(x)|
pdµ1(x)

≤(p− 1)(α1 + α2)ε
p

p−2
p− 2
p

� 1

0

|(α1(1− x)− α2x)ϕ(x)|
pdµ1(x)

+
2(p− 1)(α1 + α2)

pε
p
2

� 1

0

|ϕ(x)|pc(x)
p
2 dµ1(x)

+ (p− 1)ε
p

p−1

� 1

0

|(α1(1− x)− α2x)ϕ(x)|
pdµ1(x)

+ ε−p

� 1

0

|c(x)ϕ�(x)|pdµ1(x).

Thus,

�
1− (p− 1)(α+ α2)ε

p
p−2

p− 2
p

− (p− 1)ε
p

p−1

� � 1

0

|(α1(1− x)− α2x)ϕ(x)|
pdµ1

≤
2(p− 1)(α1 + α2)

pε
p
2

� 1

0

|ϕ(x)|pc(x)
p
2 dµ1(x) + ε−p

� 1

0

|c(x)ϕ�(x)|pdµ1(x).

So, one gets (1) by taking a sufficiently small ε and (2) follows from (1).
Step 2: 1 < p < 2.
We have only to estimate

� 1

0

|(α1(1− x)− α2x)|
p−2

|ϕ(x)|pc(x)dµ1(x).

Set γ := α1
α1+α2

and consider ε < min(γ, 1− γ). Then

� 1

0

|(α1(1− x)− α2x)|
p−2

|ϕ(x)|pc(x)dµ1(x)

=

�
γ−ε

0

|(α1(1− x)− α2x)|
p−2

|ϕ(x)|pc(x)p/2c(x)1−p/2dµ1(x)

+

� 1

γ+ε

|(α1(1− x)− α2x)|
p−2

|ϕ(x)|pc(x)p/2c(x)1−p/2dµ1(x)

+

�
γ+ε

γ−ε

|(α1(1− x)− α2x)|
p−2

|ϕ(x)|pc(x)dµ1(x)

≤ C1

� 1

0

|ϕ(x)|pc(x)p/2dµ1(x)

�
γ+ε

γ−ε

|(α1(1− x)− α2x)|
p−2

|ϕ(x)|pc(x)dµ1(x).
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Using the Sobolev embedding W 1,p(γ − ε, γ + ε) �→ L∞(γ − ε, γ + ε) we get

�
γ+ε

γ−ε

|(α1(1− x)− α2x)|
p−2

|ϕ(x)|pc(x)dµ1(x)

≤ C2

�
γ+ε

γ−ε

|(α1(1− x)− α2x)|
p−2

|ϕ(x)|p dx

≤ C2

�
sup

|x−γ|<ε

|ϕ(x)|

�
p �

γ+ε

γ−ε

|(α1(1− x)− α2x)|
p−2dx

≤ C3

�
sup

|x−γ|<ε

|ϕ(x)|

�
p

≤ C3

��
γ+ε

γ−ε

|ϕ(x)|p dx+

�
γ+ε

γ−ε

|ϕ�(x)|p dx

�

≤ C4

��
γ+ε

γ−ε

|ϕ(x)|pc(x)p/2dµ1(x) +

�
γ+ε

γ−ε

|ϕ�(x)|pc(x)pdµ1(x)

�

≤ C4

�� 1

0

|ϕ(x)|pc(x)p/2dµ1(x) +

� 1

0

|ϕ�(x)|pc(x)pdµ1(x)

�
,

since the functions c(·)−1 and x �→ x1−α1(1 − x)1−α2 are bounded on [γ − ε, γ + ε]. Thus,
there is a constant M > 0 such that

� 1

0

|(α1(1− x)− α2x)|
p−2

|ϕ(x)|pc(x)dµ1(x) ≤ M
���√cϕ

��p

Lp(µ1)
+

��cϕ���p

Lp(µ1)

�
. (3)

Now, (1) for the case 1 < p < 2 follows from the estimate of |I2| and (3). QED

As a consequence we obtain a first characterization of the domain of the realization Lp of
L in Lp(µ1).

Proposition 1. For 1 < p < ∞ the realization Lp of L in Lp(µ1) is the closure of the
differential operator L defined in W 2,p

c (µ1).

Proof. It is known that Lp is the closure of L defined on C2([0, 1]) (see [1, Theorem
4.3]). So, let ϕ ∈ W 2,p

c (µ1) and (ϕn) ⊂ C2([0, 1]) converges to ϕ in the norm of W 2,p
c (µ1).

Then ϕn ∈ D(Lp) and using (2) one obtains that Lpϕn = Lϕn converges to Lϕ. Since Lp is
closed, it follows that ϕ ∈ D(Lp) and Lpϕ = Lϕ. QED

Our purpose is now to prove that the operator L with domain W 2,p
c (µ1) is closed in Lp(µ1).

We start with the following lemma.

Lemma 2. If ϕ ∈ D(Lp) and 1 ≤ p < ∞ then ϕ ∈ W 1,p
c (µ1) and the following holds

�ϕ�
W

1,p
c (µ1)

≤ M(�Lpϕ�Lp(µ1)
+ �ϕ�

Lp(µ1)
) (4)

for some constant M > 0.

Proof. Take ϕ ∈ C2([0, 1]) and set f := ϕ− Lϕ and ψ := ϕ�. Then,

f(y)− ϕ(y) = −y(1− y)ψ�(y)− (α1(1− y)− α2y)ψ(y), y ∈ [0, 1].

Integrating we get (assuming for simplicity β1 = 1)

xα1(1− x)α2ψ(x) =

� 1

x

(f(y)− ϕ(y))dµ1(y) (5)
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and

xα1(1− x)α2ψ(x) = −

�
x

0

(f(y)− ϕ(y))dµ1(y). (6)

Setting v(x) := x
α1−1

p (1−x)
α2−1

p ψ(x) and g(x) := x
α1−1

p (1−x)
α2−1

p (f(x)−ϕ(x)), we obtain,
by (5) and (6) respectively,

v(x)
�

c(x) =

� 1

x

g(y)
� y
x

�α1−1
p�

�
1− y
1− x

�α2−1
p� 1�

c(x)
dy (7)

and

v(x)
�

c(x) = −

�
x

0

g(y)
� y
x

�α1−1
p�

�
1− y
1− x

�α2−1
p� 1�

c(x)
dy, (8)

where 1
p
+ 1

p� = 1. Applying first (7) and Hölder’s inequality we deduce

� 1

1
2

|
�

c(x)v(x)|p dx =

� 1

1
2

������

� 1

x

g(y)
� y
x

�α1−1
p�

�
1− y
1− x

�α2−1
p� 1�

c(x)
dy

������

p

dx

≤

� 1

1
2

�� 1

x

1�
c(x)

|g(y)|p dy

��� 1

x

1�
c(x)

� y
x

�
α1−1

�
1− y
1− x

�
α2−1

dy

�
p−1

dx

≤ M1

� 1

1
2

� 1

x

1�
c(x)

|g(y)|p dy dx

= M1

� 1

1
2

|g(y)|p
��

y

1
2

1�
c(x)

dx

�
dy ≤ M

� 1

1
2

|g(y)|p dy,

since
� 1

x

(y/x)α1−1

�
c(x)

� 1− y
1− x

�
α2−1

dy = x
1
2−α1

√
1− x

� 1

0

(1− t(1− x))α1−1tα2−1dt ≤ M1

for any x ∈ [ 12 , 1].
Now, using (8) and by the same arguments we have

� 1
2

0

|
�

c(x)v(x)|p dx ≤ M

� 1
2

0

|g(y)|p dy.

Therefore, ��√cϕ���p

Lp(µ1)
≤ M �f − ϕ�p

Lp(µ1)
.

So, by Proposition 1, the above estimate holds for any ϕ ∈ D(Lp) and this ends the proof of
the lemma. QED

The first main result of this section is the following characterization of the domain of the
operator Lp in dimension one.

Theorem 1. The operator Lp defined by

Lpϕ = x(1− x)ϕ�� + (α1(1− x)− α2x)ϕ
�

with domain
D(Lp) = W 2,p

c (µ1)

generates an analytic C0-semigroup on Lp(µ1) for all 1 < p < ∞.
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Proof. By (2) we know that

�Lpϕ�Lp(µ1)
≤ M1 �ϕ�

W
2,p
c (µ1)

.

Hence it suffices to prove

�ϕ�
W

2,p
c (µ1)

≤ M2(�Lpϕ�Lp(µ1)
+ �ϕ�

Lp(µ1)
). (9)

To this purpose let us recall the first step of the proof of Lemma 1. For ϕ ∈ C2([0, 1]) we have
� 1

0

|ξα1,α2(x)ϕ
�(x)|pdµ1(x) = (p− 1)(α1 + α2)I1 − pI2,

where

ξα1,α2(x) := α1(1− x)− α2x, x ∈ [0, 1],

I1 :=

� 1

0

|ξα1,α2(x)|
p−2sign(ξα1,α2(x))|ϕ

�(x)|pc(x)dµ1(x) and

I2 :=

� 1

0

|ξα1,α2(x)|
p−1sign

�
ξα1,α2(x)ϕ

�(x)
�
ϕ��(x)|ϕ�(x)|p−1c(x)dµ1(x)

=

� 1

0

|ξα1,α2(x)ϕ
�(x)|p−1sign

�
ξα1,α2(x)ϕ

�(x)
�
Lpϕ(x) dµ1(x)−

� 1

0

|ξα1,α2(x)ϕ
�(x)|p dµ1(x).

Thus,

(1− p)

� 1

0

|ξα1,α2(x)ϕ
�(x)|p dµ1(x)

= (p− 1)(α1 + α2)I1−

p

� 1

0

|ξα1,α2(x)ϕ
�(x)|p−1sign

�
ξα1,α2(x)ϕ

�(x)
�
Lpϕ(x) dµ1(x).

So, using Hölder’s and Young’s inequality we deduce that
��ξα1,α2ϕ

���p

Lp(µ1)
≤(α1 + α2)

��ξα1,α2ϕ
���p−2

Lp(µ1)

��√cϕ���2

Lp(µ1)

+
p

p− 1

��ξα1,α2ϕ
���p−1

Lp(µ1)
�Lpϕ�Lp(µ1)

for 2 ≤ p < ∞. Therefore,
��ξα1,α2ϕ

���2

Lp(µ1)
≤ (α1 + α2)

��√cϕ���2

Lp(µ1)
+

p
p− 1

��ξα1,α2ϕ
���

Lp(µ1)
�Lpϕ�Lp(µ1)

≤ (α1 + α2)
��√cϕ���2

Lp(µ1)
+

pε
2(p− 1)

��ξα1,α2ϕ
���2

Lp(µ1)
+

p
2ε(p− 1)

�Lpϕ�
2
Lp(µ1)

for 2 ≤ p < ∞ and any ε > 0. Hence, using Lemma 2 and taking ε sufficiently small we obtain
(9) for 2 ≤ p < ∞.
Let us now consider the case 1 < p < 2.

Take ϕ ∈ C2([0, 1]) and set f := ϕ − Lϕ, v(x) := x
α1−1

p (1 − x)
α2−1

p ϕ�(x) and g(x) :=

x
α1−1

p (1− x)
α2−1

p (f(x)− ϕ(x)). Using (7) and (8) we get

v(x)ξα1,α2(x) =

� 1

x

g(y)
� y
x

�α1−1
p�

�
1− y
1− x

�α2−1
p�

�
α1

x
−

α2

1− x

�
dy (10)
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and

v(x)ξα1,α2(x) = −

�
x

0

g(y)
� y
x

�α1−1
p�

�
1− y
1− x

�α2−1
p�

�
α1

x
−

α2

1− x

�
dy. (11)

By the same arguments as in the proof of Lemma 2 we have, applying (10) and Hölder’s
inequality

� 1

1
2

|ξα1,α2(x)v(x)|
p dx

=

� 1

1
2

������

� 1

x

g(y)
� y
x

�α1−1
p�

�
1− y
1− x

�α2−1
p�

�
α1

x
−

α2

1− x

�
dy

������

p

dx

≤

� 1

1
2

�� 1

x

����
α1

x
−

α2

1− x

����
p−1

|g(y)|p dy

�
·

·

�� 1

x

����
α1

x
−

α2

1− x

����
� y
x

�
α1−1

�
1− y
1− x

�
α2−1

dy

�
p−1

dx

≤ M1

� 1

1
2

� 1

x

����
α1

x
−

α2

1− x

����
p−1

|g(y)|p dy dx

= M1

� 1

1
2

|g(y)|p
��

y

1
2

����
α1

x
−

α2

1− x

����
p−1

dx

�
dy ≤ M

� 1

1
2

|g(y)|p dy,

since 2− p > 0 and

� 1

x

����
α1

x
−

α2

1− x

����
� y
x

�
α1−1

�
1− y
1− x

�
α2−1

dy

= x1−α1

����
α1(1− x)

x
− α2

����
� 1

0

(1− t(1− x))α1−1tα2−1 dt ≤ M1

for any x ∈ [ 12 , 1]. We repeat the same argument and use (11), we obtain

� 1
2

0

|ξα1,α2(x)v(x)|
p dx ≤ M

� 1
2

0

|g(y)|p dy.

Thus, ��ξα1,α2ϕ
���

Lp(µ1)
≤ M �Lϕ�

Lp(µ1)
.

This and Lemma 2 imply (9). QED

We now treat the N -dimensional case. To this purpose let us denote by C the diagonal
matrix

C(x) := diag(c(x1), . . . , c(xN )), x = (x1, . . . , xN ) ∈ [0, 1]N ,

and consider the N -dimensional weighted Sobolev spaces

W k,p

C
(µ) :=

N�

i=1

W k,p

ci
(µ), k = 1, 2,
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endowed respectively with the norm

�ϕ�p
W

1,p
C (µ)

:= �ϕ�p
Lp(µ) +

N�

i=1

�
√
ciDiϕ�

p

Lp(µ) ,

�ϕ�p
W

2,p
C (µ)

:= �ϕ�p
W

1,p
C (µ)

+
N�

i=1

�ciDiiϕ�
p

Lp(µ) ,

where ci(x) := xi(1− xi) and Lp(µ) := Lp([0, 1]N , µ(dx)).
We come now to the main result of this paper.

Theorem 2. Let 1 < p < ∞. Then the realization Lp of L in Lp(µ) with domain W 2,p
C

(µ)
generates a C0-semigroup of contractions which is positive and analytic.

Proof. By Theorem 1 we know that the operator L(i)
p := (L(i),W 2,p

ci
(µ)) generates a

positive C0-semigroup of contractions on Lp(µ) which is analytic. Thanks to the transference

principle [4, Section 4] (see [3, Theorem 5.8]) the operator I −L(i)
p admits bounded imaginary

powers on Lp(µ) with power angle

θ(L(i)
p ) := lim

|s|→∞

1
|s|

log
���(I − L(i)

p )is
��� ≤

π
2
.

Moreover, L(i)
2 is self adjoint on L2(µ) and thus has power angle 0 on L2(µ). So, by the

Riesz-Thorin interpolation theorem, we get

θ(L(i)
p ) <

π
2
.

Therefore one can apply the Dore-Venni theorem [7] in the version of [12, Corollary 4], since the

resolvents of L(i)
p commute. Thus, L(1)

p + . . .+L(N)
p is closed on the intersection of D(L(i)

p ), 1 ≤

i ≤ N . Hence, D(Lp) = W 2,p
C

(µ) and the theorem is proved. QED
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