On the domain of a Fleming-Viot-type operator on an L^{p}-space with invariant measure

Delio Mugnolo

Institut für Analysis
Universität Ulm
Helmholtzstraße 18
D-89081 Ulm - Germany
delio.mugnolo@uni-ulm.de

Abdelaziz Rhandi ${ }^{\text {i }}$
Dipartimento di Matematica
Università degli Studi di Salerno
Via Ponte Don Melillo
84084 Fisciano (Sa) - Italy
arhandi@unisa.it

Received: 08/09/2010; accepted: 29/09/2010.
Abstract. We characterize the domain of a Fleming-Viot type operator of the form $L \varphi(x):=$ $\sum_{i=1}^{N} x_{i}\left(1-x_{i}\right) D_{i i} \varphi(x)+\sum_{i=1}^{N}\left(\alpha_{i}\left(1-x_{i}\right)-\alpha_{i+1} x_{i}\right) D_{i} \varphi(x)$ on $L^{p}\left([0,1]^{N}, \mu\right)$ for $1<p<\infty$, where μ is the corresponding invariant measure. Our approach relies on the characterization of the domain of the one-dimensional Fleming-Viot operator and the Dore-Venni operator sum method.
Keywords: Fleming-Viot process, degenerate elliptic problems, analytic C_{0}-semigroups
MSC 2000 classification: primary 47D07, secondary 60J35

Dedicated to the memory of V.B. Moscatelli

1 Introduction

In this paper we are dealing with the following Fleming-Viot type operator

$$
L \varphi(x):=\sum_{i=1}^{N} x_{i}\left(1-x_{i}\right) D_{i i} \varphi(x)+\sum_{i=1}^{N}\left(\alpha_{i}\left(1-x_{i}\right)-\alpha_{i+1} x_{i}\right) D_{i} \varphi(x), \quad x \in[0,1]^{N},
$$

where the constants $\alpha_{i}>0$ for all $i=1, \ldots, N+1$. Note that in the one-dimensional case the above given operator is the classical Fleming-Viot operator arising in population genetics, whereas the usual N-dimensional formulation of the Fleming-Viot model takes place on a

[^0]simplex instead of a cube (see however also [2]). We refer to [10] for the original derivation of the model and to $[8,9]$ for surveys on the theory of Fleming-Viot processes and its applications to the genetic evolution of a population.

Let

$$
\beta_{i}:=\frac{1}{\int_{0}^{1} x^{\alpha_{i}-1}(1-x)^{\alpha_{i+1}-1} d x}
$$

Since $\alpha_{i}>0$ for all $i=1, \ldots, N+1$, it is not difficult to see that $0<\beta_{i}<\infty$ for all $i=1, \ldots, N+1$ and the probability measure

$$
d \mu(x)=\prod_{i=1}^{N} \beta_{i} x_{i}^{\alpha_{i}-1}\left(1-x_{i}\right)^{\alpha_{i+1}-1} d x, \quad x=\left(x_{1}, \ldots, x_{N}\right) \in[0,1]^{N}
$$

is an invariant measure for the operator L, i.e.

$$
\int_{[0,1]^{N}} L \varphi(x) d \mu(x)=0, \quad \text { for all } \varphi \in C^{2}\left([0,1]^{N}\right)
$$

We refer e.g. to [5, Chapter 11] or [6] for an introduction to this theory.
It is known that if $N=1$ then

$$
\begin{aligned}
L \varphi(x) & =x(1-x) \varphi^{\prime \prime}(x)+\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi^{\prime}(x), \quad x \in[0,1] \text { with domain } \\
D(L) & =\left\{\varphi \in C^{1}[0,1] \cap C^{2}(0,1): \lim _{x \rightarrow 0^{+}, 1^{-}} x(1-x) \varphi^{\prime \prime}(x)=0\right\}
\end{aligned}
$$

generates a C_{0}-semigroup $T(\cdot)$ of contractions on $C[0,1]$ which is positive and analytic, and $C^{2}[0,1]$ is a core (see [11] and $[1, \S 3]$). Hence in particular the invariance of the measure μ_{1} is equivalent to saying that

$$
\int_{[0,1]} T(t) \varphi(x) d \mu_{1}(x)=\int_{[0,1]} \varphi(x) d \mu_{1}(x), \quad \text { for all } \varphi \in C[0,1] \text { and all } t \geq 0
$$

Since the probability measure $d \mu_{1}(x)=\beta_{1} x^{\alpha_{1}-1}(1-x)^{\alpha_{2}-1} d x, x \in[0,1]$, is an invariant measure for L, it is known (see e.g. [6, Thm. 3.7]) that the semigroup $T(\cdot)$ can be extended to an analytic C_{0}-semigroup $T_{p}(\cdot)$ of contractions on $L^{p}\left(0,1 ; \mu_{1}\right), 1 \leq p<\infty$. However, to the best of our knowledge an explicit form for the domain of the generators of such L^{p}-semigroups has not yet been obtained - not even in the one-dimensional case. Aim of the present article is to solve this problem. We remark that a related result has been obtained for $p=2$ and under certain technical assumptions in $[1, \S 4]$.

In $[0,1]^{N}$ the operator L, defined on $C^{2}\left([0,1]^{N}\right)$, can be written as

$$
L=L^{(1)}+\ldots L^{(N)} \text { with } L^{(i)} \varphi=x_{i}\left(1-x_{i}\right) D_{i i} \varphi+\left(\alpha_{i}\left(1-x_{i}\right)-\alpha_{i+1} x_{i}\right) D_{i} \varphi
$$

Since the operators $L^{(i)}$ are commuting in the resolvent sense, it follows that the realization L_{p} of L in $L^{p}\left([0,1]^{N}, \mu\right)$ generates an analytic C_{0}-semigroup $T_{p}(\cdot)$ of contractions. Moreover L_{p} is the closure of the sum $L_{p}^{(1)}+\ldots L_{p}^{(N)}$ defined on $D\left(L_{p}^{(1)}\right) \cap \ldots \cap D\left(L_{p}^{(N)}\right)$.

The aim of this paper is to give an explicit characterization of $D\left(L_{p}\right)$ by mean of some weighted Sobolev spaces. To get such a characterization we have to compute the domain in the one dimensional case and to apply the Dore-Venni theorem which gives us the closedness of the operator sum $L_{p}^{(1)}+\ldots L_{p}^{(N)}$ defined on $D\left(L_{p}^{(1)}\right) \cap \ldots \cap D\left(L_{p}^{(N)}\right)$.

2 Main results

We first investigate the domain of the one-dimensional Fleming-Viot operator

$$
L \varphi(x):=x(1-x) \varphi^{\prime \prime}(x)+\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi^{\prime}(x), \quad \varphi \in C^{2}([0,1]),
$$

on the space $L^{p}\left(\mu_{1}\right):=L^{p}\left(0,1 ; \mu_{1}\right)$ for $1<p<\infty$, where

$$
d \mu_{1}(x):=\beta_{1} x^{\alpha_{1}-1}(1-x)^{\alpha_{2}-1} d x .
$$

To this purpose let us introduce the weighted Sobolev spaces

$$
W_{c}^{1, p}\left(\mu_{1}\right) \text { and } W_{c}^{2, p}\left(\mu_{1}\right)
$$

as the completion of $C^{1}[0,1]$ and $C^{2}[0,1]$ respectively with respect to the norm

$$
\begin{aligned}
& \|\varphi\|_{W_{c}^{1, p}\left(\mu_{1}\right)}^{p}:=\|\varphi\|_{L^{p}\left(\mu_{1}\right)}^{p}+\left\|\sqrt{c} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{p} \quad \text { and } \\
& \|\varphi\|_{W_{c}^{2, p}\left(\mu_{1}\right)}^{p}:=\|\varphi\|_{W_{c}^{1, p}\left(\mu_{1}\right)}^{p}+\left\|c \varphi^{\prime \prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{p},
\end{aligned}
$$

where $c(x):=x(1-x), x \in[0,1], 1<p<\infty$.
Lemma 1. If $\varphi \in W_{c}^{1, p}\left(\mu_{1}\right), 1<p<\infty$, then there is a constant $M=M\left(p, \alpha_{1}, \alpha_{2}\right)>0$ such that

$$
\begin{equation*}
\left\|\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi\right\|_{L^{p}\left(\mu_{1}\right)}^{p} \leq M\left(\|\sqrt{c} \varphi\|_{L^{p}\left(\mu_{1}\right)}^{p}+\left\|c \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{p}\right) . \tag{1}
\end{equation*}
$$

Hence, if $\varphi \in W_{c}^{2, p}\left(\mu_{1}\right), 1<p<\infty$, then

$$
\begin{equation*}
\left\|\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)} \leq M\|\varphi\|_{W_{c}^{2, p}\left(\mu_{1}\right)} . \tag{2}
\end{equation*}
$$

Proof. To prove (1) it suffices to consider $\varphi \in C^{1}[0,1]$. Then,

$$
\begin{aligned}
& \int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi(x)\right|^{p} d \mu_{1}(x) \\
& =\beta_{1} \int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-1} \operatorname{sign}\left(\alpha_{1}(1-x)-\alpha_{2} x\right)|\varphi(x)|^{p} \frac{d}{d x}\left(x^{\alpha_{1}}(1-x)^{\alpha_{2}}\right) d x \\
& =-\beta_{1} \int_{0}^{1} \frac{d}{d x}\left[\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-1} \operatorname{sign}\left(\alpha_{1}(1-x)-\alpha_{2} x\right)|\varphi(x)|^{p}\right] x^{\alpha_{1}}(1-x)^{\alpha_{2}} d x \\
& =(p-1)\left(\alpha_{1}+\alpha_{2}\right) \int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-2} \operatorname{sign}\left(\alpha_{1}(1-x)-\alpha_{2} x\right)|\varphi(x)|^{p} c(x) d \mu_{1} \\
& -p \int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-1} \operatorname{sign}\left(\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi(x)\right) \varphi^{\prime}(x)|\varphi(x)|^{p-1} c(x) d \mu_{1} \\
& =:(p-1)\left(\alpha_{1}+\alpha_{2}\right) I_{1}-p I_{2} .
\end{aligned}
$$

Step 1: $2 \leq p<\infty$.
Applying Hölder and Young inequalities we get

$$
\begin{aligned}
\left|I_{1}\right| & \leq\left(\int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi(x)\right|^{p} d \mu_{1}(x)\right)^{\frac{p-2}{p}}\left(\int_{0}^{1}|\varphi(x)|^{p} c(x)^{\frac{p}{2}} d \mu_{1}(x)\right)^{\frac{2}{p}} \\
& \leq \varepsilon^{\frac{p}{p-2}} \frac{p-2}{p} \int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi(x)\right|^{p} d \mu_{1}(x)+\frac{2}{p \varepsilon^{\frac{p}{2}}} \int_{0}^{1}|\varphi(x)|^{p} c(x)^{\frac{p}{2}} d \mu_{1}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|I_{2}\right| & \leq\left(\int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi(x)\right|^{p} d \mu_{1}(x)\right)^{\frac{p-1}{p}}\left(\int_{0}^{1}\left|c(x) \varphi^{\prime}(x)\right|^{p} d \mu_{1}(x)\right)^{\frac{1}{p}} \\
& \leq \varepsilon^{\frac{p}{p-1}} \frac{p-1}{p} \int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi(x)\right|^{p} d \mu_{1}(x)+\frac{1}{p \varepsilon^{p}} \int_{0}^{1}\left|c(x) \varphi^{\prime}(x)\right|^{p} d \mu_{1}(x)
\end{aligned}
$$

for any $\varepsilon>0$. Hence,

$$
\begin{aligned}
& \int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi(x)\right|^{p} d \mu_{1}(x) \\
& \quad \leq(p-1)\left(\alpha_{1}+\alpha_{2}\right) \varepsilon^{\frac{p}{p-2}} \frac{p-2}{p} \int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi(x)\right|^{p} d \mu_{1}(x) \\
& \quad+\frac{2(p-1)\left(\alpha_{1}+\alpha_{2}\right)}{p \varepsilon^{\frac{p}{2}}} \int_{0}^{1}|\varphi(x)|^{p} c(x)^{\frac{p}{2}} d \mu_{1}(x) \\
& \quad+(p-1) \varepsilon^{\frac{p}{p-1}} \int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi(x)\right|^{p} d \mu_{1}(x) \\
& \quad+\varepsilon^{-p} \int_{0}^{1}\left|c(x) \varphi^{\prime}(x)\right|^{p} d \mu_{1}(x) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& {\left[1-(p-1)\left(\alpha+\alpha_{2}\right) \varepsilon^{\frac{p}{p-2}} \frac{p-2}{p}-(p-1) \varepsilon^{\frac{p}{p-1}}\right] \int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi(x)\right|^{p} d \mu_{1}} \\
& \leq \frac{2(p-1)\left(\alpha_{1}+\alpha_{2}\right)}{p \varepsilon^{\frac{p}{2}}} \int_{0}^{1}|\varphi(x)|^{p} c(x)^{\frac{p}{2}} d \mu_{1}(x)+\varepsilon^{-p} \int_{0}^{1}\left|c(x) \varphi^{\prime}(x)\right|^{p} d \mu_{1}(x) .
\end{aligned}
$$

So, one gets (1) by taking a sufficiently small ε and (2) follows from (1).
Step 2: $1<p<2$.
We have only to estimate

$$
\int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-2}|\varphi(x)|^{p} c(x) d \mu_{1}(x) .
$$

Set $\gamma:=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}$ and consider $\varepsilon<\min (\gamma, 1-\gamma)$. Then

$$
\begin{aligned}
& \int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-2}|\varphi(x)|^{p} c(x) d \mu_{1}(x) \\
& =\int_{0}^{\gamma-\varepsilon}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-2}|\varphi(x)|^{p} c(x)^{p / 2} c(x)^{1-p / 2} d \mu_{1}(x) \\
& +\int_{\gamma+\varepsilon}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-2}|\varphi(x)|^{p} c(x)^{p / 2} c(x)^{1-p / 2} d \mu_{1}(x) \\
& +\int_{\gamma-\varepsilon}^{\gamma+\varepsilon}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-2}|\varphi(x)|^{p} c(x) d \mu_{1}(x) \\
& \leq C_{1} \int_{0}^{1}|\varphi(x)|^{p} c(x)^{p / 2} d \mu_{1}(x) \int_{\gamma-\varepsilon}^{\gamma+\varepsilon}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-2}|\varphi(x)|^{p} c(x) d \mu_{1}(x)
\end{aligned}
$$

Using the Sobolev embedding $W^{1, p}(\gamma-\varepsilon, \gamma+\varepsilon) \hookrightarrow L^{\infty}(\gamma-\varepsilon, \gamma+\varepsilon)$ we get

$$
\begin{aligned}
& \int_{\gamma-\varepsilon}^{\gamma+\varepsilon}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-2}|\varphi(x)|^{p} c(x) d \mu_{1}(x) \\
& \quad \leq C_{2} \int_{\gamma-\varepsilon}^{\gamma+\varepsilon}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-2}|\varphi(x)|^{p} d x \\
& \quad \leq C_{2}\left(\sup _{|x-\gamma|<\varepsilon}|\varphi(x)|\right)^{p} \int_{\gamma-\varepsilon}^{\gamma+\varepsilon}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-2} d x \\
& \quad \leq C_{3}\left(\sup _{|x-\gamma|<\varepsilon}|\varphi(x)|\right)^{p} \\
& \quad \leq C_{3}\left(\int_{\gamma-\varepsilon}^{\gamma+\varepsilon}|\varphi(x)|^{p} d x+\int_{\gamma-\varepsilon}^{\gamma+\varepsilon}\left|\varphi^{\prime}(x)\right|^{p} d x\right) \\
& \quad \leq C_{4}\left(\int_{\gamma-\varepsilon}^{\gamma+\varepsilon}|\varphi(x)|^{p} c(x)^{p / 2} d \mu_{1}(x)+\int_{\gamma-\varepsilon}^{\gamma+\varepsilon}\left|\varphi^{\prime}(x)\right|^{p} c(x)^{p} d \mu_{1}(x)\right) \\
& \quad \leq C_{4}\left(\int_{0}^{1}|\varphi(x)|^{p} c(x)^{p / 2} d \mu_{1}(x)+\int_{0}^{1}\left|\varphi^{\prime}(x)\right|^{p} c(x)^{p} d \mu_{1}(x)\right)
\end{aligned}
$$

since the functions $c(\cdot)^{-1}$ and $x \mapsto x^{1-\alpha_{1}}(1-x)^{1-\alpha_{2}}$ are bounded on $[\gamma-\varepsilon, \gamma+\varepsilon]$. Thus, there is a constant $M>0$ such that

$$
\begin{equation*}
\int_{0}^{1}\left|\left(\alpha_{1}(1-x)-\alpha_{2} x\right)\right|^{p-2}|\varphi(x)|^{p} c(x) d \mu_{1}(x) \leq M\left(\|\sqrt{c} \varphi\|_{L^{p}\left(\mu_{1}\right)}^{p}+\left\|c \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{p}\right) . \tag{3}
\end{equation*}
$$

Now, (1) for the case $1<p<2$ follows from the estimate of $\left|I_{2}\right|$ and (3).
As a consequence we obtain a first characterization of the domain of the realization L_{p} of L in $L^{p}\left(\mu_{1}\right)$.

Proposition 1. For $1<p<\infty$ the realization L_{p} of L in $L^{p}\left(\mu_{1}\right)$ is the closure of the differential operator L defined in $W_{c}^{2, p}\left(\mu_{1}\right)$.

Proof. It is known that L_{p} is the closure of L defined on $C^{2}([0,1])$ (see [1, Theorem 4.3]). So, let $\varphi \in W_{c}^{2, p}\left(\mu_{1}\right)$ and $\left(\varphi_{n}\right) \subset C^{2}([0,1])$ converges to φ in the norm of $W_{c}^{2, p}\left(\mu_{1}\right)$. Then $\varphi_{n} \in D\left(L_{p}\right)$ and using (2) one obtains that $L_{p} \varphi_{n}=L \varphi_{n}$ converges to $L \varphi$. Since L_{p} is closed, it follows that $\varphi \in D\left(L_{p}\right)$ and $L_{p} \varphi=L \varphi$.

Our purpose is now to prove that the operator L with domain $W_{c}^{2, p}\left(\mu_{1}\right)$ is closed in $L^{p}\left(\mu_{1}\right)$. We start with the following lemma.

Lemma 2. If $\varphi \in D\left(L_{p}\right)$ and $1 \leq p<\infty$ then $\varphi \in W_{c}^{1, p}\left(\mu_{1}\right)$ and the following holds

$$
\begin{equation*}
\|\varphi\|_{W_{c}^{1, p}\left(\mu_{1}\right)} \leq M\left(\left\|L_{p} \varphi\right\|_{L^{p}\left(\mu_{1}\right)}+\|\varphi\|_{L^{p}\left(\mu_{1}\right)}\right) \tag{4}
\end{equation*}
$$

for some constant $M>0$.
Proof. Take $\varphi \in C^{2}([0,1])$ and set $f:=\varphi-L \varphi$ and $\psi:=\varphi^{\prime}$. Then,

$$
f(y)-\varphi(y)=-y(1-y) \psi^{\prime}(y)-\left(\alpha_{1}(1-y)-\alpha_{2} y\right) \psi(y), \quad y \in[0,1] .
$$

Integrating we get (assuming for simplicity $\beta_{1}=1$)

$$
\begin{equation*}
x^{\alpha_{1}}(1-x)^{\alpha_{2}} \psi(x)=\int_{x}^{1}(f(y)-\varphi(y)) d \mu_{1}(y) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\alpha_{1}}(1-x)^{\alpha_{2}} \psi(x)=-\int_{0}^{x}(f(y)-\varphi(y)) d \mu_{1}(y) . \tag{6}
\end{equation*}
$$

Setting $v(x):=x^{\frac{\alpha_{1}-1}{p}}(1-x)^{\frac{\alpha_{2}-1}{p}} \psi(x)$ and $g(x):=x^{\frac{\alpha_{1}-1}{p}}(1-x)^{\frac{\alpha_{2}-1}{p}}(f(x)-\varphi(x))$, we obtain, by (5) and (6) respectively,

$$
\begin{equation*}
v(x) \sqrt{c(x)}=\int_{x}^{1} g(y)\left(\frac{y}{x}\right)^{\frac{\alpha_{1}-1}{p^{\prime}}}\left(\frac{1-y}{1-x}\right)^{\frac{\alpha_{2}-1}{p^{\prime}}} \frac{1}{\sqrt{c(x)}} d y \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
v(x) \sqrt{c(x)}=-\int_{0}^{x} g(y)\left(\frac{y}{x}\right)^{\frac{\alpha_{1}-1}{p^{\prime}}}\left(\frac{1-y}{1-x}\right)^{\frac{\alpha_{2}-1}{p^{\prime}}} \frac{1}{\sqrt{c(x)}} d y \tag{8}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Applying first (7) and Hölder's inequality we deduce

$$
\begin{aligned}
& \int_{\frac{1}{2}}^{1}|\sqrt{c(x)} v(x)|^{p} d x=\int_{\frac{1}{2}}^{1}\left|\int_{x}^{1} g(y)\left(\frac{y}{x}\right)^{\frac{\alpha_{1}-1}{p^{\prime}}}\left(\frac{1-y}{1-x}\right)^{\frac{\alpha_{2}-1}{p^{\prime}}} \frac{1}{\sqrt{c(x)}} d y\right|^{p} d x \\
& \leq \int_{\frac{1}{2}}^{1}\left(\int_{x}^{1} \frac{1}{\sqrt{c(x)}}|g(y)|^{p} d y\right)\left(\int_{x}^{1} \frac{1}{\sqrt{c(x)}}\left(\frac{y}{x}\right)^{\alpha_{1}-1}\left(\frac{1-y}{1-x}\right)^{\alpha_{2}-1} d y\right)^{p-1} d x \\
& \leq M_{1} \int_{\frac{1}{2}}^{1} \int_{x}^{1} \frac{1}{\sqrt{c(x)}}|g(y)|^{p} d y d x \\
&=M_{1} \int_{\frac{1}{2}}^{1}|g(y)|^{p}\left(\int_{\frac{1}{2}}^{y} \frac{1}{\sqrt{c(x)}} d x\right) d y \leq M \int_{\frac{1}{2}}^{1}|g(y)|^{p} d y
\end{aligned}
$$

since

$$
\int_{x}^{1} \frac{(y / x)^{\alpha_{1}-1}}{\sqrt{c(x)}}\left(\frac{1-y}{1-x}\right)^{\alpha_{2}-1} d y=x^{\frac{1}{2}-\alpha_{1}} \sqrt{1-x} \int_{0}^{1}(1-t(1-x))^{\alpha_{1}-1} t^{\alpha_{2}-1} d t \leq M_{1}
$$

for any $x \in\left[\frac{1}{2}, 1\right]$.
Now, using (8) and by the same arguments we have

$$
\int_{0}^{\frac{1}{2}}|\sqrt{c(x)} v(x)|^{p} d x \leq M \int_{0}^{\frac{1}{2}}|g(y)|^{p} d y .
$$

Therefore,

$$
\left\|\sqrt{c} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{p} \leq M\|f-\varphi\|_{L^{p}\left(\mu_{1}\right)}^{p} .
$$

So, by Proposition 1, the above estimate holds for any $\varphi \in D\left(L_{p}\right)$ and this ends the proof of the lemma.

The first main result of this section is the following characterization of the domain of the operator L_{p} in dimension one.

Theorem 1. The operator L_{p} defined by

$$
L_{p} \varphi=x(1-x) \varphi^{\prime \prime}+\left(\alpha_{1}(1-x)-\alpha_{2} x\right) \varphi^{\prime}
$$

with domain

$$
D\left(L_{p}\right)=W_{c}^{2, p}\left(\mu_{1}\right)
$$

generates an analytic C_{0}-semigroup on $L^{p}\left(\mu_{1}\right)$ for all $1<p<\infty$.

Proof. By (2) we know that

$$
\left\|L_{p} \varphi\right\|_{L^{p}\left(\mu_{1}\right)} \leq M_{1}\|\varphi\|_{W_{c}^{2, p}\left(\mu_{1}\right)} .
$$

Hence it suffices to prove

$$
\begin{equation*}
\|\varphi\|_{W_{c}^{2, p}\left(\mu_{1}\right)} \leq M_{2}\left(\left\|L_{p} \varphi\right\|_{L^{p}\left(\mu_{1}\right)}+\|\varphi\|_{L^{p}\left(\mu_{1}\right)}\right) . \tag{9}
\end{equation*}
$$

To this purpose let us recall the first step of the proof of Lemma 1 . For $\varphi \in C^{2}([0,1])$ we have

$$
\int_{0}^{1}\left|\xi_{\alpha_{1}, \alpha_{2}}(x) \varphi^{\prime}(x)\right|^{p} d \mu_{1}(x)=(p-1)\left(\alpha_{1}+\alpha_{2}\right) I_{1}-p I_{2}
$$

where

$$
\begin{aligned}
\xi_{\alpha_{1}, \alpha_{2}}(x) & :=\alpha_{1}(1-x)-\alpha_{2} x, \quad x \in[0,1], \\
I_{1} & :=\int_{0}^{1}\left|\xi_{\alpha_{1}, \alpha_{2}}(x)\right|^{p-2} \operatorname{sign}\left(\xi_{\alpha_{1}, \alpha_{2}}(x)\right)\left|\varphi^{\prime}(x)\right|^{p} c(x) d \mu_{1}(x) \text { and } \\
I_{2} & :=\int_{0}^{1}\left|\xi_{\alpha_{1}, \alpha_{2}}(x)\right|^{p-1} \operatorname{sign}\left(\xi_{\alpha_{1}, \alpha_{2}}(x) \varphi^{\prime}(x)\right) \varphi^{\prime \prime}(x)\left|\varphi^{\prime}(x)\right|^{p-1} c(x) d \mu_{1}(x) \\
& =\int_{0}^{1}\left|\xi_{\alpha_{1}, \alpha_{2}}(x) \varphi^{\prime}(x)\right|^{p-1} \operatorname{sign}\left(\xi_{\alpha_{1}, \alpha_{2}}(x) \varphi^{\prime}(x)\right) L_{p} \varphi(x) d \mu_{1}(x)- \\
& \int_{0}^{1}\left|\xi_{\alpha_{1}, \alpha_{2}}(x) \varphi^{\prime}(x)\right|^{p} d \mu_{1}(x) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
(1-p) & \int_{0}^{1}\left|\xi_{\alpha_{1}, \alpha_{2}}(x) \varphi^{\prime}(x)\right|^{p} d \mu_{1}(x) \\
= & (p-1)\left(\alpha_{1}+\alpha_{2}\right) I_{1}- \\
& p \int_{0}^{1}\left|\xi_{\alpha_{1}, \alpha_{2}}(x) \varphi^{\prime}(x)\right|^{p-1} \operatorname{sign}\left(\xi_{\alpha_{1}, \alpha_{2}}(x) \varphi^{\prime}(x)\right) L_{p} \varphi(x) d \mu_{1}(x)
\end{aligned}
$$

So, using Hölder's and Young's inequality we deduce that

$$
\begin{aligned}
\left\|\xi_{\alpha_{1}, \alpha_{2}} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{p} \leq & \left(\alpha_{1}+\alpha_{2}\right)\left\|\xi_{\alpha_{1}, \alpha_{2}} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{p-2}\left\|\sqrt{c} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{2} \\
& +\frac{p}{p-1}\left\|\xi_{\alpha_{1}, \alpha_{2}} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{p-1}\left\|L_{p} \varphi\right\|_{L^{p}\left(\mu_{1}\right)}
\end{aligned}
$$

for $2 \leq p<\infty$. Therefore,

$$
\begin{aligned}
& \left\|\xi_{\alpha_{1}, \alpha_{2}} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{2} \leq\left(\alpha_{1}+\alpha_{2}\right)\left\|\sqrt{c} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{2}+\frac{p}{p-1}\left\|\xi_{\alpha_{1}, \alpha_{2}} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}\left\|L_{p} \varphi\right\|_{L^{p}\left(\mu_{1}\right)} \\
& \leq\left(\alpha_{1}+\alpha_{2}\right)\left\|\sqrt{c} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{2}+\frac{p \varepsilon}{2(p-1)}\left\|\xi_{\alpha_{1}, \alpha_{2}} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)}^{2}+\frac{p}{2 \varepsilon(p-1)}\left\|L_{p} \varphi\right\|_{L^{p}\left(\mu_{1}\right)}^{2}
\end{aligned}
$$

for $2 \leq p<\infty$ and any $\varepsilon>0$. Hence, using Lemma 2 and taking ε sufficiently small we obtain (9) for $2 \leq p<\infty$.

Let us now consider the case $1<p<2$.
Take $\varphi \in C^{2}([0,1])$ and set $f:=\varphi-L \varphi, v(x):=x^{\frac{\alpha_{1}-1}{p}}(1-x)^{\frac{\alpha_{2}-1}{p}} \varphi^{\prime}(x)$ and $g(x):=$ $x^{\frac{\alpha_{1}-1}{p}}(1-x)^{\frac{\alpha_{2}-1}{p}}(f(x)-\varphi(x))$. Using (7) and (8) we get

$$
\begin{equation*}
v(x) \xi_{\alpha_{1}, \alpha_{2}}(x)=\int_{x}^{1} g(y)\left(\frac{y}{x}\right)^{\frac{\alpha_{1}-1}{p^{\prime}}}\left(\frac{1-y}{1-x}\right)^{\frac{\alpha_{2}-1}{p^{\prime}}}\left(\frac{\alpha_{1}}{x}-\frac{\alpha_{2}}{1-x}\right) d y \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
v(x) \xi_{\alpha_{1}, \alpha_{2}}(x)=-\int_{0}^{x} g(y)\left(\frac{y}{x}\right)^{\frac{\alpha_{1}-1}{p^{\prime}}}\left(\frac{1-y}{1-x}\right)^{\frac{\alpha_{2}-1}{p^{\prime}}}\left(\frac{\alpha_{1}}{x}-\frac{\alpha_{2}}{1-x}\right) d y \tag{11}
\end{equation*}
$$

By the same arguments as in the proof of Lemma 2 we have, applying (10) and Hölder's inequality

$$
\begin{aligned}
& \int_{\frac{1}{2}}^{1}\left|\xi_{\alpha_{1}, \alpha_{2}}(x) v(x)\right|^{p} d x \\
&=\int_{\frac{1}{2}}^{1}\left|\int_{x}^{1} g(y)\left(\frac{y}{x}\right)^{\frac{\alpha_{1}-1}{p^{\prime}}}\left(\frac{1-y}{1-x}\right)^{\frac{\alpha_{2}-1}{p^{\prime}}}\left(\frac{\alpha_{1}}{x}-\frac{\alpha_{2}}{1-x}\right) d y\right|^{p} d x \\
& \leq \int_{\frac{1}{2}}^{1}\left(\int_{x}^{1}\left|\frac{\alpha_{1}}{x}-\frac{\alpha_{2}}{1-x}\right|^{p-1}|g(y)|^{p} d y\right) \\
& \cdot\left(\int_{x}^{1}\left|\frac{\alpha_{1}}{x}-\frac{\alpha_{2}}{1-x}\right|\left(\frac{y}{x}\right)^{\alpha_{1}-1}\left(\frac{1-y}{1-x}\right)^{\alpha_{2}-1} d y\right)^{p-1} d x \\
& \leq M_{1} \int_{\frac{1}{2}}^{1} \int_{x}^{1}\left|\frac{\alpha_{1}}{x}-\frac{\alpha_{2}}{1-x}\right|^{p-1}|g(y)|^{p} d y d x \\
& \quad= M_{1} \int_{\frac{1}{2}}^{1}|g(y)|^{p}\left(\int_{\frac{1}{2}}^{y}\left|\frac{\alpha_{1}}{x}-\frac{\alpha_{2}}{1-x}\right|^{p-1} d x\right) d y \leq M \int_{\frac{1}{2}}^{1}|g(y)|^{p} d y
\end{aligned}
$$

since $2-p>0$ and

$$
\begin{aligned}
& \int_{x}^{1}\left|\frac{\alpha_{1}}{x}-\frac{\alpha_{2}}{1-x}\right|\left(\frac{y}{x}\right)^{\alpha_{1}-1}\left(\frac{1-y}{1-x}\right)^{\alpha_{2}-1} d y \\
& \quad=x^{1-\alpha_{1}}\left|\frac{\alpha_{1}(1-x)}{x}-\alpha_{2}\right| \int_{0}^{1}(1-t(1-x))^{\alpha_{1}-1} t^{\alpha_{2}-1} d t \leq M_{1}
\end{aligned}
$$

for any $x \in\left[\frac{1}{2}, 1\right]$. We repeat the same argument and use (11), we obtain

$$
\int_{0}^{\frac{1}{2}}\left|\xi_{\alpha_{1}, \alpha_{2}}(x) v(x)\right|^{p} d x \leq M \int_{0}^{\frac{1}{2}}|g(y)|^{p} d y
$$

Thus,

$$
\left\|\xi_{\alpha_{1}, \alpha_{2}} \varphi^{\prime}\right\|_{L^{p}\left(\mu_{1}\right)} \leq M\|L \varphi\|_{L^{p}\left(\mu_{1}\right)}
$$

This and Lemma 2 imply (9).

We now treat the N-dimensional case. To this purpose let us denote by C the diagonal matrix

$$
C(x):=\operatorname{diag}\left(c\left(x_{1}\right), \ldots, c\left(x_{N}\right)\right), \quad x=\left(x_{1}, \ldots, x_{N}\right) \in[0,1]^{N}
$$

and consider the N-dimensional weighted Sobolev spaces

$$
W_{C}^{k, p}(\mu):=\bigcap_{i=1}^{N} W_{c_{i}}^{k, p}(\mu), \quad k=1,2
$$

endowed respectively with the norm

$$
\begin{aligned}
& \|\varphi\|_{W_{C}^{1, p}(\mu)}^{p}:=\|\varphi\|_{L^{p}(\mu)}^{p}+\sum_{i=1}^{N}\left\|\sqrt{c_{i}} D_{i} \varphi\right\|_{L^{p}(\mu)}^{p}, \\
& \|\varphi\|_{W_{C}^{2, p}(\mu)}^{p}:=\|\varphi\|_{W_{C}^{1, p}(\mu)}^{p}+\sum_{i=1}^{N}\left\|c_{i} D_{i i} \varphi\right\|_{L^{p}(\mu)}^{p},
\end{aligned}
$$

where $c_{i}(x):=x_{i}\left(1-x_{i}\right)$ and $L^{p}(\mu):=L^{p}\left([0,1]^{N}, \mu(d x)\right)$.
We come now to the main result of this paper.
Theorem 2. Let $1<p<\infty$. Then the realization L_{p} of L in $L^{p}(\mu)$ with domain $W_{C}^{2, p}(\mu)$ generates a C_{0}-semigroup of contractions which is positive and analytic.

Proof. By Theorem 1 we know that the operator $L_{p}^{(i)}:=\left(L^{(i)}, W_{c_{i}}^{2, p}(\mu)\right)$ generates a positive C_{0}-semigroup of contractions on $L^{p}(\mu)$ which is analytic. Thanks to the transference principle [4, Section 4] (see [3, Theorem 5.8]) the operator $I-L_{p}^{(i)}$ admits bounded imaginary powers on $L^{p}(\mu)$ with power angle

$$
\theta\left(L_{p}^{(i)}\right):=\lim _{|s| \rightarrow \infty} \frac{1}{|s|} \log \left\|\left(I-L_{p}^{(i)}\right)^{i s}\right\| \leq \frac{\pi}{2} .
$$

Moreover, $L_{2}^{(i)}$ is self adjoint on $L^{2}(\mu)$ and thus has power angle 0 on $L^{2}(\mu)$. So, by the Riesz-Thorin interpolation theorem, we get

$$
\theta\left(L_{p}^{(i)}\right)<\frac{\pi}{2} .
$$

Therefore one can apply the Dore-Venni theorem [7] in the version of [12, Corollary 4], since the resolvents of $L_{p}^{(i)}$ commute. Thus, $L_{p}^{(1)}+\ldots+L_{p}^{(N)}$ is closed on the intersection of $D\left(L_{p}^{(i)}\right), 1 \leq$ $i \leq N$. Hence, $D\left(L_{p}\right)=W_{C}^{2, p}(\mu)$ and the theorem is proved.

References

[1] S. Cerrai, Ph. Clément: On a class of degenerate elliptic operators arinsing from Fleming-Viot process, J. Evol. Equ., 1 (2001), 243-276.
[2] S. Cerrai, Ph. Clément: Schauder estimates for a degenerate second order elliptic operator on a cube, J. Diff. Equ., 242 (2007), 287-321.
[3] Ph. Clément, J. Prüss: Completely positive measures and Feller semigroups, Math. Ann., 287 (1990), 73-105.
[4] R.R. Coifman, G. Weiss: Transference Methods in Analysis, Amer. Math. Soc., 1977.
[5] G. Da Prato, J. Zabczyk: Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, 1992.
[6] G. Da Prato: An Introduction to Markov Semigroups, in: M. Iannelli, R. Nagel, S. Piazzera, "Functional Analytical Methods for Evolution Equations", Lect. Notes Math. 1855, Springer-Verlag, (2004), 1-63.
[7] G. Dore, A. Venni: On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201.
[8] S.N. Ethier, T.G. Kurtz: Markov Processes, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, 1986.
[9] S.N. Ethier, T.G. Kurtz: Fleming-Viot Processes in Population Genetics, SIAM J. Control Optim., 31 (1993), 345-386.
[10] W.H. Fleming, M. Viot: Some measure-valued Markov processes in population genetics theory, Indiana Univ. Math. J., 28 (1979), 817-843.
[11] G. Metafune: Analyticity for some degenerate one-dimensional evolution equations, Studia Math., 127 (1998), 251-276.
[12] J. Prüss, H. Sohr: On operators with bounded imaginary powers in Banach spaces, Math. Z., 203 (1990), 429-452.

[^0]: ${ }^{i}$ This work was done while A. Rhandi visited the university of Ulm, Germany. He wishes to express his gratitude to the University of Ulm for the financial support.
 http://siba-ese.unisalento.it/ (C) 2011 Università del Salento

