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Introduction

Positive C0-semigroups have proved to be a large and important subject of investigation
with a vast range of applications from evolution equations to probability theory and to quantum
statistical mechanics, just to quote a few.
The main aspects of the subject are documented in several monographs (see, e.g., [9], [10],
[12], [13], [14], [16], [17]). In particular, the theory of positive C0-semigroups has reached a
satisfactory level of completeness in the setting of spaces of bounded continuous functions
where, among other things, it is strongly connected with probability theory (see, e.g., [11],
[12], [20]).i

Rather recently ( [1], [3], [6]) positive C0-semigroups have been investigated in some Ba-
nach lattices of unbounded continuous functions, namely, in weighted continuous function
spaces on a locally compact Hausdorff space X.

In this setting, the positive C0-semigroups satisfying the so-called Feller property, i.e., they
leave invariant the space C0(X) and the restrictions to C0(X) are contractive and strongly
continuous, play an important role because they are the only possible positive C0-semigroups on
the bigger weighted continuous function spaces that are associated with probability transition
functions and hence with right-continuous Markov processes.

This special class of positive semigroup was object of investigation in [1], [3] and [6]. Here
we deepen their study by reformulating the previous results in a more general form and by
highlighting some new additional aspects.

In Section 2 we first discuss a simple counterexample showing that, in general, the Feller
property can fail also in the framework of weighted continuous function spaces.

In the above mentioned setting we then characterize the generators of those positive C0-
semigroups that leave invariant a given closed sublattice of bounded continuous functions and
whose relevant restrictions are Feller semigroups.

The given characterization involves, in particular, a generalized positive maximum prin-
ciple. We also establish some additive and multiplicative perturbation results for this class
of generators and we show some applications concerning multiplicative perturbations of the
Laplacian on Rn, n ≥ 1, (see also [5]). Finally, Section 3 is devoted to applications to second-
order differential operators on unbounded real intervals.

1 Positive semigroups on weighted continuous func-
tion spaces

In this section we shall present a characterization of the generators of a particular class
of positive C0-semigroups on weighted continuous function spaces, namely those positive C0-
semigroups that leave invariant a given closed sublattice of bounded continuous functions
and whose relevant restrictions are Feller semigroups. As we explained in the Introduction,
the main interest for these classes of positive C0-semigroups rests on the fact that they are
the only possible C0-semigroups associated with probability transition functions (and hence
with right-continuous Markov processes) (for more details on the theory of C0-semigroups of
operators we refer, e.g., to [12], [16]).

Let X be a locally compact noncompact Hausdorff space. As usual we shall denote by
C(X) the space of all real valued continuous functions on X and by Cb(X) and C0(X) the
Banach lattices of all bounded continuous functions and of all continuous functions vanishing
at infinity, respectively, endowed with the natural pointwise order and the uniform norm �·�∞.

Given a bounded weight w on X, i.e., w ∈ Cb(X) and w(x) > 0 for every x ∈ X, we denote
by Cw

0 (X) the Banach lattice of all functions f ∈ C(X) such that wf ∈ C0(X), endowed with
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the natural pointwise order and the weighted norm �·�w defined by

�f�w:= �wf�∞ (f ∈ Cw

0 (X)). (1)

Note that the space C0(X) is contained in Cw

0 (X) and it is dense in it.
Moreover,

�f�w≤ �w�∞�f�∞ (f ∈ C0(X)). (2)

If, in addition, w ∈ C0(X), then Cb(X) ⊂ Cw

0 (X) and (2) holds true for every f ∈ Cb(X).
Throughout this section we shall fix a bounded weight w on X and we shall denote by E

the space C0(X) or, if w ∈ C0(X), an arbitrary closed sublattice of Cb(X) that is dense in
Cw

0 (X). Therefore, E, endowed with the uniform norm and the natural pointwise order, is a
Banach lattice.

Typical examples of such Banach lattices are, other than C0(X) and Cb(X), the space

C∗(X) := {f ∈ C(X) : f is convergent at infinity} (3)

or, more generally, the space

EY (X) := {f ∈ C(X) : there exists a (unique) �f ∈ C(Y )

such that �f |X= f} (4)

where Y is a compact metric space such that X is a dense open subset of Y and the topology
of X is inherited by Y .

Our main aim is to characterize those linear operators A : D(A) ⊂ Cw

0 (X) → Cw

0 (X)
that are the generators of a C0-semigroup (T (t))t≥0 of positive linear operators on Cw

0 (X)
satisfying the following additional properties:

(F1) T (t)(E) ⊂ E for every t ≥ 0,

(F2) (T (t) |E)t≥0 is strongly continuous on (E, �·�∞)

and

(F3) 0 ≤ T (t)f ≤ 1 for every t ≥ 0 and f ∈ E, 0 ≤ f ≤ 1 (i.e., each T (t) is positive and
contractive on (E, �·�∞)).

It is customary to refer to properties (F1)-(F3) by saying that (T (t) |E)t≥0 is a Feller
semigroup on E. Accordingly, we shall also say that (T (t))t≥0 satisfies the Feller property with
respect to E.

The main interest for these particular classes of positive semigroups rests on the fact that,
as it was shown in [1, Theorem 2.10], when X has a countable base and E = C0(X), then
properties (F1)-(F3) hold true if and only if there exists a uniformly stochastically continuous
normal C0-transition function (Pt)t≥0 on X, such that

(1) lim
x→∞

sup
0≤t≤s

Pt(x,K) = 0 for every s > 0 and for every compact subset K of X;

(2) each function f ∈ Cw

0 (X) is Pt(x, ·)-integrable and

T (t)(f)(x) =

�

X

fdPt(x, ·) (5)

for every t ≥ 0 and x ∈ X.

Moreover, there exists a right-continuous Markov process

(Ω,Σ, (P x)x∈X∞ , (Zt)0≤t≤+∞)

with state space X∞ and whose paths have left-hand limits almost surely, such that
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(i) P x

Zt
(B) = Pt(x,B) for every t ≥ 0, x ∈ X and B ∈ B(X),

(ii) w−1 as well as each function f ∈ Cw

0 (X) is P x

Zt
-integrable,

and

(iii) T (t)(f)(x) =

�

X

fdP x

Zt = Ex(f
∗(Zt)),

where f∗ is the extension of f to X∞ vanishing at ∞ and B(X) denotes the σ-algebra of
Borel subsets of X. Here X∞ := X ∪ {∞} denotes the one-point compactification of X (for
more details on C0-transition functions and Markov processes we refer, e.g., to [1, Section
1], [12], [15], [20]).

We also point out that, if E = EY (X), then properties (F1)-(F3) hold true if and only
if there exists a uniformly stochastically continuous normal Feller function (Pt)t≥0 on Y such
that

(1) Pt(x, Y \X) = 0 for every t ≥ 0 and x ∈ X;

(2) each function f ∈ Cw

0 (X) is Pt(x, ·)-integrable and

T (t)(f)(x) =

�

X

fdPt(x, ·) (6)

for every t ≥ 0 and x ∈ X.

Moreover, there exists a right-continuous Markov process

(Ω,Σ, (P x)x∈Yϑ , (Zt)0≤t≤+∞)

with state space Yϑ and whose paths have left-hand limits almost surely, such that

(i) P x

Zt
(B) = Pt(x,B) for every t ≥ 0, x ∈ X and B ∈ B(Y ),

(ii) w−1 as well as each function f ∈ Cw

0 (X) is P x

Zt
-integrable,

and

(iii) T (t)(f)(x) =

�

X

fdP x

Zt = Ex(f
∗(Zt))

where now f∗ denotes the extension of f to Yϑ vanishing outside X and Yϑ = Y ∪ {ϑ}, where
ϑ is an isolated point (see [1, Theorem 2.8]; see also [1, Theorem 2.9] and [3, Theorem 2.1]).

On the other hand we point out that there exist positive C0-semigroups on Cw

0 (X) that
do not satisfy property (F3). A simple example is given below.

Example 1. Consider a function γ ∈ Cb(X) such that γ(x) > 0 for every x ∈ X and
consider the positive bounded linear operator A : Cw

0 (X) → Cw

0 (X) defined by

Af := γf (f ∈ Cw

0 (X)). (7)

Then A is the generator of the positive C0-semigroup (T (t))t≥0 on Cw

0 (X) defined by

T (t)f := exp(tγ) f (f ∈ Cw

0 (X), t ≥ 0), (8)

(see, e.g., [16, Chapter II, Section 2.9, p. 65]).
In particular �T (t)�= �exp(tγ)�∞≤ exp(ωt) where ω := sup

x∈X

γ(x). Clearly
�
T (t) |C0(X)

�
t≥0

is a positive C0-semigroup on C0(X) too but it is not contractive because �T (t) |C0(X) �=
�exp(tγ)�∞> 1 for every t > 0.
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The next result provides a necessary and sufficient condition under which a linear operator
is the pre-generator (i.e., it is closable and its closure is the generator) of a positive C0-
semigroup satisfying properties (F1)-(F3). An important role to this respect is played by the
following property that we shall refer to as ”generalized positive maximum principle” with
respect to a fixed ω ∈ R.

Definition 1. We say that a linear operator A : D(A) ⊂ Cw

0 (X) → Cw

0 (X) satisfies the
generalized positive maximum principle (briefly, g.p.m. principle) with respect to ω ∈ R if

Au(x0) ≤ ωu(x0) (9)

for every u ∈ D(A) and x0 ∈ X such that sup
x∈X

w(x)u(x) = w(x0)u(x0) > 0.

In such a case, A−ωI is necessary dissipative (see the proof of Corollary 2.4 of [1]), where
I denotes the identity operator on Cw

0 (X). Therefore, if in addition D(A) is dense in Cw

0 (X),
then A− ωI and, hence A, are closable (see [16, Proposition 3.14, (iv)]).

Theorem 1. Given a linear operator A : D(A) ⊂ Cw

0 (X) −→ Cw

0 (X) and ω ∈ R, the
following statements are equivalent:

(a) the operator (A,D(A)) is closable and its closure generates a positive C0-semigroup
(T (t))t≥0 on Cw

0 (X) satisfying the Feller property with respect to E, and

�T (t)�≤ eωt for every t ≥ 0; (10)

(b) (i) D(A) is dense in Cw

0 (X) and (A,D(A)) satisfies the g.p.m. principle (9) with
respect to ω;

(ii) denoted by (A,D(A)) the closure of (A,D(A)), there exists a subspace D0 of
D(A)∩E such that A(D0) ⊂ E and

�
A |D0 , D0

�
generates a Feller semigroup on

E.

Furthermore, if (a) or (b) holds true, then (T (t) |E)t≥0 is the C0-semigroup generated by�
A |D0 , D0

�
.

Proof. (a) ⇒ (b). Statement (i) is a consequence of Proposition 2.3 of [1]. As regards

statement (ii), consider the generator ( �A,D( �A)) of the Feller semigroup (T (t) |E)t≥0 on E

and set D0 := D( �A) ⊂ E. If u ∈ D0, then lim
t→0+

T (t)u− u
t

= �A(u) with respect to �·�∞

and hence with respect to �·�w, because of (2). Therefore, u ∈ D(A) and Au = �Au. Hence

A(D0) = �A(D0) ⊂ E and
�
A |D0 , D0

�
= ( �A,D( �A)) so that the result follows.

(b) ⇒ (a). First note that there exists λ > 0 such that

E = (λI −A)(D0) ⊂ (λI −A)(D(A)),

so that (λI−A)(D(A)) is dense in Cw

0 (X). Therefore, given f ∈ Cw

0 (X) and � > 0, there exists
u ∈ D(A) such that �λu−Au− f�w≤ � and there exists v ∈ D(A) such that �v−u�w≤ � and
�Av −Au�w≤ �. Then

�(λv −Av)− f�w ≤ �(λv −Av)− (λu−Au)�w+�λu−Au− f�w

≤ (λ+ 2)�.

Accordingly, (λI−A)(D(A)) is dense in Cw

0 (X) and hence, by Proposition 2.3 of [1], (A,D(A))
is the generator of a positive C0-semigroup (T (t))t≥0 satisfying (10).
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In order to show properties (F1)-(F3), denote by (S(t))t≥0 the Feller semigroup on E
generated by

�
A |D0 , D0

�
. Given u0 ∈ D0, then the function u(t) := S(t)u0 (t ≥ 0) is a

solution to the abstract Cauchy problem (in (E, �·�∞) and hence in (Cw

0 (X), �·�w))






u̇(t) = Au(t), t ≥ 0,

u(0) = u0,

so that (see, e.g., [16, Section II.6]) u(t) = T (t)u0 for every t ≥ 0. Thus, for each t ≥ 0, T (t) =
S(t) on the subspace D0 that is dense in (E, �·�∞). On the other hand both operators T (t)
and S(t) are continuous from (E, �·�∞) into (Cw

0 (X), �·�w) because of (2); hence T (t) = S(t)
on E and the result follows. QED

A simple situation where condition (ii) of (b) is satisfied is indicated below.

Corollary 1. Consider a linear operator A : D(A) ⊂ Cw

0 (X) −→ Cw

0 (X) satisfying the
g.p.m. principle with respect to some ω ∈ R and assume that there exists a subspace D0 of
D(A)∩E such that A(D0) ⊂ E, (A |D0 , D0) is closable in E and its closure generates a Feller
semigroup on E.

Then (A,D(A)) is closable in Cw

0 (X) and its closure generates a positive C0-semigroup
(T (t))t≥0 on Cw

0 (X) satisfying (10) as well as the Feller property with respect to E.
Moreover, the semigroup (T (t) |E)t≥0 is generated by the closure of (A |D0 , D0).

Proof. First note that the subspace D0 is dense in Cw

0 (X) and hence D(A) is dense in

Cw

0 (X) as well. Denote by (A,D(A)) the closure of (A,D(A)) in Cw

0 (X) and by ( �A,D( �A)) the

closure of (A |D0 , D0) in E. Setting �D0 := D( �A) ⊂ E, we note that, if u ∈ �D0, there exists

(un)n≥1 in D0 ⊂ D(A) ⊂ D(A) such that un → u and Aun → �Au with respect to �·�∞ and,

hence, with respect to �·�w. Therefore, u ∈ D(A) and Au = �Au. Accordingly, �D0 ⊂ D(A) and

A |�D0
= �A and hence the result follows from Theorem 1. QED

Another consequence of Theorem 1 is concerned with the extension of positive semigroups
from E to Cw

0 (X).

Corollary 2. Let (S(t))t≥0 be a Feller semigroup on E and denote by A0 : D(A0) ⊂

E −→ E its generator. Let A : D(A) ⊂ Cw

0 (X) −→ Cw

0 (X) a linear operator satisfying the
g.p.m. principle with respect to some ω ∈ R and assume that D(A0) ⊂ D(A) and A |D(A0)= A0.
Then

(1) there exists a (unique) positive semigroup (T (t))t≥0 on Cw

0 (X) satisfying (10) such that
T (t) |E= S(t) for every t ≥ 0;

(2) (A,D(A)) is closable and its closure is the generator of the semigroup (T (t))t≥0.

Proof. By the inclusion D(A0) ⊂ D(A) and the denseness of D(A0) in E and hence in
Cw

0 (X), it follows that D(A) is dense in Cw

0 (X). Denoted by (A,D(A)) the closure of (A,D(A)
then

D(A0) ⊂ D(A) ⊂ D(A) and A |D(A0)= A |D(A0)= A0.

Therefore, by Theorem 1, (A,D(A)) is the generator of a positive C0-semigroup (T (t))t≥0

satisfying (F1)-(F3) and (10). Moreover, since (S(t))t≥0 is generated by
�
A |D(A0), D(A0)

�
,

then S(t) = T (t) |E for every t ≥ 0 and hence part (1) follows as well. Finally, the semigroup
in statement (1) is unique because E is dense in Cw

0 (X). QED

Below we discuss some further applications of Theorem 1 in the particular case where
E = C0(X) or E = C∗(X) (see (3)). In this setting we recall that a linear operator B :
D(B) ⊂ E −→ E is closable and its closure generates a Feller semigroup on E if and only if
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(i) D(B) is dense in E and (λI −B)(D(B)) is dense in E for some/every λ > 0;

(11)

(ii) (B,D(B)) verifies the positive maximum principle, i.e.,

Bu(x0) ≤ 0 (12)

for every u ∈ D(B) and x0 ∈ X such that sup
x∈X

u(x) = u(x0) > 0 (resp., x0 ∈ X∞ such

that sup
x∈X∞

u(x) = u(x0) > 0, where, if x0 = ∞, then u(∞) := lim
x→∞

u(x)).

(see [11, Chapter 0, pp. 386-388] or [4, Theorem 2.2]).

Corollary 3. Let (A,D(A)) be the generator of a positive C0-semigroup on Cw

0 (X) satis-
fying the Feller property with respect to E = C0(X) or E = C∗(X), provided w ∈ C0(X), and
(10) with respect to some ω1 ∈ R. Consider a bounded linear operator B on Cw

0 (X) such that

(i) B(E) ⊂ E and B |E satisfies the positive maximum principle (12).

(ii) B satisfies the g.p.m. principle on Cw

0 (X) with respect to some ω2 ∈ R.
Then (A+B,D(A)) is the generator of a positive C0-semigroup on Cw

0 (X) satisfying the Feller
property with respect to E = C0(X) or E = C∗(X), resp., and (10) with respect to ω := ω1+ω2.

Proof. Clearly A+B is closed, it is densely defined and it satisfies the g.p.m. principle
with respect to ω := ω1 +ω2. By Theorem 1 there exists a subspace D0 of D(A)∩E such that
A(D0) ⊂ E and (A |D0 , D0) is the generator of a Feller semigroup on E. Because of assumption
(i), it turns out that ((A+B) |D0 , D0) is the generator of a Feller semigroup on E and hence
the result follows from Theorem 1. QED

Remarks 1. 1. An example of bounded linear operator B on Cw

0 (X) satisfying condi-
tion (i)-(ii) of Corollary 3 is given by B(f) := γf (f ∈ Cw

0 (X)) where γ ∈ Cb(X), γ ≤ 0
(resp., if E = C∗(X), γ ∈ C∗(X), γ ≤ 0 and w ∈ C0(X)). In this case ω2 = sup

x∈X

γ(x).

2. Note that every bounded linear operator B on Cw

0 (X) verifies the g.p.m. principle with
respect to ω = �B�.

Consider, indeed, u ∈ Cw

0 (X) and x0 ∈ X such that sup
x∈X

w(x)u(x) = w(x0)u(x0) > 0.

Then

Bu(x0) ≤
1

w(x0)
�Bu�w≤

�B�

w(x0)
�u�w =

�B�

w(x0)
w(x0)u(x0) = �B�u(x0).

Another application is concerned with multiplicative perturbations of generators of posi-
tive C0-semigroups.

Theorem 2. Consider a linear operator A : D(A) ⊂ Cw

0 (X) −→ Cw

0 (X) satisfying the
g.p.m. principle with respect to some ω ∈ R and assume that there exists a subspace D0 of
D(A) ∩ C0(X) such that A(D0) ⊂ C0(X), (A |D0 , D0) is closable and its closure generates a
Feller semigroup on C0(X).

If α ∈ Cb(X) and α(x) > 0 for every x ∈ X, then (αA,D(A)) is closable and its closure
generates a positive C0-semigroup on Cw

0 (X) satisfying the Feller property with respect to
C0(X) as well as the inequality (10) with ω1 := ω+

�α�∞, where ω+ := sup{ω, 0}.

Proof. Clearly (αA,D(A)) verifies the g.p.m. principle with respect to ω1 := ω+
�α�∞.

Denoted by (B,D(B)) the closure of (A |D0 , D0) in C0(X), then both (B,D(B)) and (αB,D(B))
satisfy the positive maximum principle (12). Therefore, by virtue of Theorem 2 of [18], we infer
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that (αB,D(B)) is closable and its closure generates a Feller semigroup on C0(X).
Given λ > 0, we point out that

(λI − αB)(D(B)) ⊂ (λI − αA)(D0).

Consider indeed f ∈ (λI − αB)(D(B)) and u ∈ D(B) such that f = λu − αBu. Then there
exists a sequence (un)n≥1 in D0 such that un → u and Aun → Bu. Since α is bounded, we
infer that λun − αAun → λu− αBu = f so that f ∈ (λI − αA)(D0).
On the other hand, by (11) we know that

C0(X) = (λI − αB)(D(B))

and hence (λI − αA)(D0) = C0(X) as well. Since ((αA) |D0 , D0) satisfies the positive maxi-
mum principle we then conclude that ((αA) |D0 , D0) is closable and its closure generates a
Feller semigroup on C0(X) and hence the result follows from Corollary 1. QED

As an immediate consequence of Theorem 2 we obtain the following result that should be
compared with [5, Theorem 3.1] (see also [18, Théorème 4]).

Consider X = Rn, n ≥ 1, and α ∈ Cb(Rn) such that α(x) > 0 for every x ∈ Rn. Let w be
a ”smooth” weight on Rn, i.e., w ∈ Cb(Rn) ∩ C2(Rn) and w(x) > 0 for every x ∈ Rn. Further
assume that

ω := sup
x∈Rn

1
w(x)2

n�

i=1

�
2

�
∂w
∂xi

(x)

�2

− w(x)
∂2w
∂x2

i

(x)

�
< +∞. (13)

We shall consider the Laplace operator

∆u :=
n�

i=1

∂2u
∂x2

i

�
u ∈ C2(Rn)

�
(14)

defined on the domain

Dw(∆) := {u ∈ Cw

0 (Rn) ∩ C2(Rn) : ∆u ∈ Cw

0 (Rn)}. (15)

Theorem 3. The operator (α∆, Dw(∆)) is closable and its closure generates a positive
C0-semigroup on Cw

0 (Rn) satisfying the Feller property with respect to C0(Rn) and (10) with
respect to ω := ω+

�α�∞ where ω+ = sup{ω, 0} and ω is defined by (13).

Proof. Let u ∈ Dw(∆) and x0 ∈ Rn such that sup
x∈Rn

w(x)u(x) = w(x0)u(x0) > 0. Setting

v := w · u, then ∆v(x0) ≤ 0 and
∂v
∂xi

(x0) = 0 for every i = 1, . . . . . . , n. Therefore,

∆u(x0) =
1

w(x0)3
�
w(x0)

2 ∆v(x0)− w(x0) v(x0)∆w(x0) +2v(x0)
n�

i=1

�
∂w(x0)
∂xi

�2
�

≤
v(x0)
w(x0)3

�
2

n�

i=1

�
∂w(x0)
∂xi

�2

− w(x0)∆w(x0)

�
≤ ω u(x0).

Hence (∆, Dw(∆)) verifies the g.p.m. principle with respect to ω.
On the other hand, setting

D0 := {u ∈ C0(Rn) ∩ C2(Rn) : ∆u ∈ C0(Rn)},

then D0 ⊂ Dw(∆) ∩ C0(Rn), ∆(D0) ⊂ C0(Rn) and (∆ |D0 , D0) is closable and its closure
generates a Feller semigroup on C0(Rn) (see, e.g., [12, p.15]). Therefore, the result follows
from Theorem 2. QED
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Remarks 2. (1) Condition (13) is satisfied, e.g., by the weight

w(x) :=
1

1 + �x�2m
(x ∈ Rn, m ≥ 1).

In this case it is not difficult to show that

ω ≤ max{2(2(m− 1) + n)(m− 1), 2n}.

(2) A result similar to Theorem 3 holds true by replacing Rn with an arbitrary bounded
open subset of Rn on which the classical Dirichlet problem is solvable. The relevant
proof is the same as the previous one by referring, in this case, to Corollary 2.3 of [12].

2 On a class of degenerate second-order differential
operators on [0,+∞[

In this section we shall apply the general results of Section 2 to study a class of degenerate
second-order differential operators acting on weighted continuous function spaces defined on
the interval [0,+∞[. Our results should also be compared with similar ones obtained in [2],
[7], [8], [19], in order to have a quite complete picture of the results that are available in this
field.

In particular we point out that the main results of [2] can be obtained more directly by
using the methods of Section 2. For the sake of brevity we omit the detail and we proceed to
show some new results that differ from those of [2] only when the underlying interval is of the
form [a,+∞[ or ]−∞, a].

Without no loss of generality we shall therefore consider the interval [0,+∞[. Consider
w ∈ Cb([0,+∞[) ∩ C2(]0,+∞[) such that w(x) > 0 for every x ≥ 0. Consider also α,β ∈

C(]0,+∞[), γ ∈ Cb([0,+∞[) and assume that

α(x) > 0 for everyx > 0. (16)

For every u ∈ C2(]0,+∞[) set

Au(x) := α(x)u��(x) + β(x)u�(x) (x > 0) (17)

and consider the maximal domain DM (A) consisting of those functions u ∈ Cw

0 ([0,+∞[) ∩
C2(]0,+∞[) such that

lim
x→0+

Au(x) ∈ R and lim
x→+∞

w(x)Au(x) = 0. (18)

If u ∈ DM (A), then Au continuously extends to a function in Cw

0 ([0,+∞[) that we shall
continue to denote by Au.
Finally consider the complete operator L : DM (L) −→ Cw

0 ([0,+∞[) defined by

Lu := Au+ γu (19)

for every u ∈ DM (L) := DM (A). Thus, if u ∈ DM (L), then

Lu(x) =






α(x)u��(x) + β(x)u�(x) + γ(x)u(x) if x > 0,

lim
t→0+

α(t)u��(t) + β(t)u�(t) + γ(0)u(0) if x = 0.
(20)
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In order to provide a generation result for the operator (L,DM (L)) we fix some conditions on
α,β, γ and w. First we assume that

lim
x→0+

α(x)
�
2w�(x)2 − w��(x)w(x)

�
− β(x)w(x)w�(x)

w(x)2
∈ R. (21)

Moreover, given x0 > 0 and denoted by

W (x) := exp

�
−

�
x

x0

β(t)
α(t)

dt

�
(x > 0) (22)

the so-called Wronskian, consider the following properties:

(M0)

�
x0

0

W (x)

��
x0

x

1
α(t)W (t)

dt

�
dx = +∞,

(Mw

0 )

�
x0

0

w(x)2 W (x)

��
x0

x

1
α(t)w(t)2 W (t)

dt

�
dx = +∞,

(V∞)

� +∞

x0

W (x) dx < +∞ or

� +∞

x0

1
α(x)W (x)

��
x

x0

W (t) dt

�
dx = +∞

or both,

(V w

∞)

� +∞

x0

w(x)2W (x)dx < +∞ or

� +∞

x0

1
α(x)w(x)2W (x)

��
x

x0

w(t)2W (t)dt

�
dx = +∞ or both.

Finally assume that

ω := sup
x>0

α(x)
�
2w�(x)2 − w��(x)w(x)

�
− β(x)w(x)w�(x)

w(x)2
< +∞ (23)

and consider the following domains

DMV (A) := {u ∈ C∗([0,+∞[) ∩ C2(]0,+∞[) : lim
x→0+

Au(x) ∈ R and lim
x→+∞

Au(x) = 0}

where C∗([0,+∞[) = {u ∈ C([0,+∞[) : lim
x→+∞

f(x) ∈ R}, and

D0
MV (A) := DMV (A) ∩ C0([0,+∞[). (24)

Proposition 1. Under assumption (16), if properties (M0) and (V∞) hold true, then
(A,DMV (A)) and (A,D0

MV (A)) generate Feller semigroups on C∗([0,+∞[) and C0([0,+∞[),
respectively.

Proof. By [21, Theorem 4, Lemma 8 and Lemma 9] we know that (A,DMV (A)) generates
a Feller semigroup on C∗([0,+∞[) and, hence, it satisfies the positive maximum principle. Since
D0

MV (A) ⊂ DMV (A), (A,D0
MV (A)) satisfies the positive maximum principle as well.

Note also that the subalgebra of all functions u ∈ C0([0,+∞[) ∩ C2(]0,+∞[) that are
constant on a neighborhood of 0 and vanish in a neighborhood of +∞ is contained in D0

MV (A)
and it is dense in C0([0,+∞[) by Stone-Weierstrass theorem. Therefore, D0

MV (A) is dense in
C0([0,+∞[) as well.

Finally, given λ > 0 and f ∈ C0([0,+∞[), there exists u ∈ DMV (A) such that λu−Au = f .
Since Au ∈ C0([0,+∞[) it turns out that u ∈ C0([0,+∞[) and hence u ∈ D0

MV (A).
In conclusion, we have proved that (λI−A)(D0

MV (A)) = C0([0,+∞[) and hence the result
follows by [11, Chapter 0, pp. 386-388]. QED
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We are now in the position to prove the main result of this section.

Theorem 4. Assume that properties (Mw

0 ) and (V w

∞) are satisfied. Under assumption
(16), (21) and (23), the operator (L,DM (L)) is the generator of a positive C0-semigroup on
Cw

0 ([0,+∞[) satisfying (10) with respect to ω = ω+γ∞ where γ∞ := sup
x≥0

γ(x) and ω is defined

by (23).
Moreover, if γ ≤ 0 and both properties (M0) and (V∞) are true, then the above semigroup

satisfies the Feller property with respect to C0([0,+∞[), and (10) with respect to ω = ω.
In such a case, if in addition γ ∈ C∗([0,+∞[) and w ∈ C0([0,+∞[), then the semigroup

verifies the Feller property with respect to C∗([0,+∞[) as well.

Proof. Consider the lattice isomorphism Φ : Cw

0 ([0,+∞[) −→ C0([0,+∞[) defined by
Φ(f) := wf (f ∈ Cw

0 ([0,+∞[). Then the operator (A,DM (A)) defined by (17) and (18) is

transformed by the similarity induced by Φ to the operator �A : D( �A) ⊂ C0([0,+∞[) −→

C0([0,+∞[) defined by

�Av(x) :=






�α(x)v��(x) + �β(x)v�(x) + �γ(x)v(x) if x > 0,

lim
t→0+

�α(t)v��(t) + �β(t)v�(t) + �γ(0)v(0) if x = 0,

for every x ≥ 0 and for every v ∈ D( �A), where

D( �A) := {v ∈ C0([0,+∞[)∩C2(]0,+∞[) : lim
x→0+

�α(x)v��(x) + �β(x)v�(x) ∈ R

and lim
x→+∞

�α(x)v��(x) + �β(x)v�(x) = 0},

�α(x) = α(x), �β(x) = β(x)w(x)− 2α(x)w�(x)
w(x)

and

�γ(x) = α(x) [2w�(x)2 − w��(x)w(x)]− β(x)w(x)w�(x)
w(x)2

for every x > 0. In other words,

D( �A) = {v ∈ C0([0,+∞[) :
v
w

∈ DM (A)}

and
�A = wA

� v
w

�
for every v ∈ D( �A).

Note that the Wronskian �W associated with �A is given by

�W (x) = exp

�
−

�
x

x0

�β(t)
�α(t) dt

�
=

W (x)w(x)2

w(x0)2
(x > 0)

where W is defined by (22). Furthermore, by (21) and (23), �γ ∈ Cb([0,+∞[) and hence the

bounded linear operator �Bv := �γv (v ∈ C0([0,+∞[)) satisfies the g.p.m. principle with respect
to ω.
Conditions (Mw

0 ) and (V w

∞), together with Proposition 1 applied to ( �A− �B,D( �A)), guarantee

that this operator generates a Feller semigroup on C0([0,+∞[) and, hence, the operator �A =

( �A− �B)+ �B defined on D( �A) generates a positive C0-semigroup ( �T (t))t≥0 on C0([0,+∞[) such
that

� �T (t)�≤ exp(ω t) for every t ≥ 0.
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By similarity (see, e.g., [16, p. 43 and p. 59]) the operator (A,DM (A)) generates a positive
C0-semigroup on Cw

0 ([0,+∞[) satisfying the same estimates as above.
Considering now the bounded linear operator Bu := γ u (u ∈ Cw

0 ([0,+∞[)) since L = A+ B
and B verifies the g.p.m. principle with respect to γ∞ := sup

x>0
γ(x), then the first part of the

theorem follows from Corollary 2.5 of [1].
As regards the second part, under the assumptions (M0) and (V∞), by Proposition 1 and

Corollary 1, (A,D(A)) and B verify all the hypotheses of Corollary 3 (see also Remark 1, 1.)
and hence the result follows. QED

Remark 1. Note that, if w is decreasing, then (M0) implies (Mw

0 ) and the second alter-
native in (V∞) implies the corresponding one in (V w

∞).

We end the paper by showing an example where Theorem 4 can be applied.

Example 2. Consider the differential operator defined as in (20) with

α(x) = a x2, β(x) = b x, w(x) =
1

1 + xm
(x ≥ 0) (25)

where a > 0, b ∈ R and m ≥ 1, and γ ∈ Cb([0,+∞[).
Note that the above class of differential operators includes in particular the one related to the
Black-Scholes equation (see, e.g., [2, Section 4, (4.3)], [7, Section 3], [8, Section 3.4]).
If α, β and w are given by (25), then, for x0 = 1, the Wronskian turns into

W (x) = x− b
a (x > 0) (26)

and (21) and (23) can be easily verified (see also [2, Remark 2.4]). Moreover,

ω < am(m− 1) + bm. (27)

Finally properties (M0) and (V∞) can be directly checked without no difficulties and, conse-
quently, the second alternatives of (Mw

0 ) and (V w

∞) hold true as well since w is decreasing (see
Remark 1). Therefore, Theorem 4 applies to the differential operator

Lu(x) =






a x2 u��(x) + b x u�(x) + γ(x)u(x) if x > 0,

lim
t→0+

a t2 u��(t) + b t u�(t) + γ(0)u(0) if x = 0,
(28)

defined on the domain

DM (L) = {u ∈ Cw

0 ([0,+∞[) ∩ C2(]0,+∞[) : lim
x→0+

a x2 u��(x) + b x u�(x) ∈ R

and lim
x→+∞

a x2 u��(x) + b x u�(x)
1 + xm

= 0}. (29)
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