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1 Introduction

In the last years many papers are concerned with the study of the global hypoellipticity
and solvability of linear partial differential operators on compact manifolds, e.g., on the torus,
in large scales of functional spaces (see e.g. [1–6,8–11,13–16,21–26,29] and the references listed
therein). It is well-known that the theory of global properties of differential operators is not
well-developped in comparison with the one of local properties. On the other hand, the local
and global hypoellipticity/solvability are rather different in general.

In this paper we are interested in the problem of global C∞ and Gevrey hypoellipticity
for the following classes of linear partial differential operators on the multidimensional torus
TN = Tm+n:

P1 = −

l�

j=1

�
m�

h=1

ajh(y)∂xh +
n�

k=1

bjk(y)∂yk

�2

, (1)

P2 = −∆y −

m�

j=1

�
aj(y)∂xj +

n�

k=1

bjk(y)∂yk

�2

, (2)

where the coefficients ajh(y), aj(y) and bjk(y) are real–valued functions defined on Tn. Pre-
cisely, in Theorems 1 and 2 (in Theorems 4 and 5) we give sufficient conditions for the global
C∞ hypoellipticity (for the global Gevrey hypoellipticity) for the operator P1 defined in (1).

We point out that in Theorem 2 we partially answer to the following conjecture of Petroni-
lho [25]:
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Let X1, . . . , Xm be a family of real vector fields on TN . If there exist coordinates y on TN

in which the vector field X1 admits the form X1 =
�

N

k=1 λk∂yk with the numbers λ1, . . . , λN

satisfying the following condition: there exist C > 0, K > 0 such that

|

N�

k=1

λkηk| ≥
C

|η|K
, η ∈ ZN

\ {0},

then the operator P = −
�

m

j=1 X
2
j is globally hypoelliptic on TN .

Moreover, in case l = 2 and m = n = 1 in (1) we propose the Example 1 whose coefficients
violate the conditions in Theorem 1 and despite of this fact the operator P1 is still C∞ globally
hypoelliptic on the torus. Therefore, finding complete results for the global hypoellipticity for
the operator P1 remains an open difficult problem.

In Theorem 3 (Theorem 6) we give a necessary and sufficient condition for the global C∞

hypoellipticity (for the global Gevrey hypoellipticity) for the operator P2 defined in (2).

2 Statement of the results

Let TN = RN/2πZN be the N–dimensional torus. A linear partial differential operator
P defined on TN with coefficients in C∞(TN ) is said to be globally hypoelliptic in TN if the
conditions u ∈ E

�(TN ) and Pu ∈ C∞(TN ) imply that u ∈ C∞(TN ) (E �(TN ) denotes the
topological dual of C∞(TN )). If P is defined on an open set Ω of RN , then P is said to be
locally hypoelliptic in Ω if for any U ⊆ Ω open set the conditions u ∈ D

�(U) and Pu ∈ C∞(U)
imply that u ∈ C∞(U). We observe that local hypoellipticity implies global hypoellipticity.
But, the converse is not true in general. For example, the operator P = ∂x+a∂y, with a ∈ R\Q
a non–Liouville number, is globally hypoelliptic in T2 but, it is not locally hypoelliptic in R2,
see [12].

We also recall that a vector a = (a1, . . . , aN ) ∈ RN
\ QN is said to be non–Liouville if

there exist two positive constants C and L such that

|a · ξ − η| ≥
C
|ξ|L

, ξ ∈ ZN
\ {0}, η ∈ Z.

If N = 1, then this is the definition of a non–Liouville number.
We can now state the main results of this paper.

Theorem 1. Let P be the operator on Tm+n given by

P = −

l�

j=1

X2
j , (3)

where

Xj =
m�

h=1

ajh(y)∂xh +
n�

k=1

bjk(y)∂yk , j = 1, . . . , l,

with variables (x, y) ∈ Tm
× Tn, and suppose that the coefficients {ajh}

m

h=1 and {bjk}
n

k=1 are
real valued functions in C∞(Tn) and that divBXj :=

�
n

k=1 ∂ykbjk ≡ 0 on Tn.
If the following conditions hold:

(i) the vector fields
�

n

k=1 bjk(y)∂yk , j = 1, . . . , l, span Ty(Tn) for every y ∈ Tn,

(ii) there exists j0 ∈ {1, . . . , l} such that aj0,h ≡ ah for every h = 1, . . . ,m and bj0k ≡ b �= 0
for every k = 1, . . . , n, and the vector (a1

b
, a2

b
, . . . , am

b
) is non–Liouville,

then the operator P is globally hypoelliptic on Tm+n.
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In case there exists j0 ∈ {1, . . . , l} such that aj0,h ≡ ah for every h = 1, . . . ,m and bj0k ≡ 0
for every k = 1, . . . , n, the operator P given in (3) is globally hypoelliptic on Tm+n provided
the condition (i) together a suitable Diophantine condition hold. Indeed, we have

Theorem 2. Let P be the operator on Tm+n defined according to (3). If the following
conditions hold:

(i) the vector fields
�

n

k=1 bjk(y)∂yk , j = 1, . . . , l, span Ty(Tn) for every y ∈ Tn,

(ii) there exists j0 ∈ {1, . . . , l} such that aj0,h ≡ ah for every h = 1, . . . ,m and bj0k ≡ 0
for every k = 1, . . . , n, and the numbers a1, a2, . . . , am satisfy the following Diophantine
condition: there exist C > 0, L > 0 such that

|

m�

h=1

ahξh| ≥
C
|ξ|L

, ξ ∈ Zm
\ {0}, (4)

then the operator P is globally hypoelliptic on Tm+n.

Finally, we prove

Theorem 3. Let P be the operator on Tm+n given by

P = −∆y −

m�

j=1

X2
j , (5)

where

Xj = aj(y)∂xj +
n�

k=1

bjk(y)∂yk , j = 1, . . . ,m,

with variables (x, y) ∈ Tm
× Tn, and suppose that the coefficients aj and {bjk}

n

k=1 are real
valued functions in C∞(Tn) and that divBXj :=

�
n

k=1 ∂ykbjk ≡ 0 on Tn.
Then the operator P is globally hypoelliptic on Tm+n if and only if aj �≡ 0 for all j =

1, . . . ,m.

3 Proof of Theorem 1

Proof. Without loss of generality, we may suppose that j0 = 1, i.e., thatX1 =
�

m

h=1 ah∂xh

+b
�

m

k=1 ∂yk with (a1
b
, a2

b
, . . . , am

b
) a non–Liouville vector.

Let u ∈ E
�(Tm+m) which satisfies Pu = h ∈ C∞(Tm+n). Taking partial transform with

respect to x ∈ Tm we obtain
�
−

l�

j=1

�
i

m�

h=1

ajh(y)ξh +
n�

k=1

bjk(y)∂yk

�2�
û(ξ, y) = ĥ(ξ, y), ξ ∈ Zm, y ∈ Tn. (6)

Since the operator in (6) is elliptic with respect to y by assumption (i) and ĥ(ξ, ·) ∈ C∞(Tn)
for every ξ ∈ Zm, we necessarily have that û(ξ, ·) ∈ C∞(Tn) for every ξ ∈ Zm. We can then
multiply (6) by û(ξ, y) and integrate by parts with respect to y ∈ Tn. So, by using the fact
that divBXj ≡ 0 for all j = 1, . . . , l, we obtain

l�

j=1

�Yj û(ξ, ·)�
2
L2(Tn) =

�

Tn
ĥ(ξ, y)û(ξ, y)dy, ξ ∈ Zm, (7)

where Yj := i
�

m

h=1 ajh(y)ξh +
�

n

k=1 bjk(y)∂yk for every j = 1, . . . , l.
In order to complete the proof we need the following lemma.
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Lemma 1. There exist two positive constants C and L such that

�û(ξ, ·)�2
L2(Tn) ≤ C|ξ|2L�Y1û(ξ, ·)�

2
L2(Tn), ξ ∈ Zm. (8)

Proof. For ξ ∈ Zm fixed let ϕξ ∈ C∞(Tn) and set

Y1ϕξ(y) =

�
i

m�

h=1

ahξh + b
n�

k=1

∂yk

�
ϕξ(y) =: ψξ(y), y ∈ Tn. (9)

Taking partial Fourier transform with respect to y, we obtain

i

�
m�

h=1

ahξh + b
n�

k=1

ηk

�
ϕ̂ξ(η) = ψ̂ξ(η), η ∈ Zn,

and hence,

|b|

�����

m�

h=1

ah

b
ξh +

n�

k=1

ηk

����� |ϕ̂ξ(η)| = |ψ̂ξ(η)|, η ∈ Zn. (10)

Since (a1
b
, a2

b
, . . . , am

b
) is non Liouville vector, there exist two positive constants C and L so

that �����

m�

h=1

ah

b
ξh + η

����� ≥
C
|ξ|L

, ξ ∈ Zm
\ {0}, η ∈ Z. (11)

It follows from (10) and (11) that

|ϕ̂ξ(η)|
2
≤ C�

|ξ|2L|ψ̂ξ(η)|
2, η ∈ Zn. (12)

The last inequality together the Parseval identity imply that
�

Tn
|ϕξ(y)|

2dy =
�

η∈Zn

|ϕ̂ξ(η)|
2
≤ C�

|ξ|2L
�

η∈Zn

|ψ̂ξ(η)|
2

= C�
|ξ|2L

�

Tn
|ψξ(y)|

2dy,

i.e., that

�ϕξ�
2
L2(Tn) ≤ C�

|ξ|2L
�

Tn

�����

�
i

m�

h=1

ahξh + b
n�

k=1

∂yk

�
ϕξ(y)

�����

2

dy. (13)

If we apply (13) with ϕξ(·) = û(ξ, ·) we obtain that

�û(ξ, ·)�2
L2(Tn) ≤ C�

|ξ|2L
�

Tn

�����

�
i

m�

h=1

ahξh + b
n�

k=1

∂yk

�
û(ξ, y)

�����

2

dy

= C�
|ξ|2L�Y1û(ξ, ·)�

2
L2 .

So, the proof is complete. QED

By applying Lemma 1 and identity (7) we deduce

�û(ξ, ·)�2
L2(Tn) ≤ C�

|ξ|2L�Y1û(ξ, ·)�
2
L2≤ C�

|ξ|2L
l�

j=1

�Yj û(ξ, ·)�
2
L2

= C�
|ξ|2L

�

Tn
ĥ(ξ, y)û(ξ, y)dy, ξ ∈ Zm. (14)
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Thus, the Cauchy–Schwarz inequality togheter with (14) imply that

�û(ξ, ·)�2
L2(Tn)≤ C�

|ξ|2L�ĥ(ξ, ·)�L2(Tn)�û(ξ, ·)�L2(Tn), ξ ∈ Zm,

and hence,
�û(ξ, ·)�L2(Tn)≤ C�

|ξ|2L�ĥ(ξ, ·)�L2(Tn), ξ ∈ Zm. (15)

Since h ∈ C∞(Tm+n), for every N ∈ N there exists a positive constant CN so that

�ĥ(ξ, ·)�L2(Tn)≤ CN |ξ|−(N+2L), ξ ∈ Zm
\ {0}. (16)

Combining (15) and (16) we then obtain, that, for every N ∈ N there exists C�
N > 0 such that

�û(ξ, ·)�L2(Tn)≤ C�
N |ξ|−N , ξ ∈ Zm

\ {0}.

Since

û(ξ, η) =
1

(2π)n

�

Tn
û(ξ, y)e−iy·ηdy, η ∈ Zn,

the last inequality and the Cauchy–Schwarz inequality imply that

|û(ξ, η)| ≤ C�
N |ξ|−N , ξ ∈ Zm

\ {0}. (17)

Since the operator P is elliptic at (x, y, 0, η) for every (x, y) ∈ Tm+n and η ∈ Zn
\ {0} by

assumption (i) (see [20, Theorem 8.3.1]), by using standard microlocal elliptic theory we obtain
that for every N ∈ N there exists C��

N > 0 such that

|û(ξ, η)| ≤ C��
N (|ξ|+ |η|)−N , (ξ, η) ∈ Zm

× Zn
\ {0}

which shows that u ∈ C∞(Tm+n). So, the proof of Theorem 1 is complete. QED

Remark 1. The fact that the coefficients {aj0h}
m

h=1 and {bj0k}
n

k=1 satisfy the condition
(ii) in Theorem 1 for some j0 ∈ {1, . . . , l} is not necessary for the global hypoellipticity on
Tm+m of the operator P given by (3) and satisfying condition (i) in Theorem 1 as the next
example shows.

Example 1. Consider the operator P of the following type

P = −(a1∂x + ∂y)
2
− (a2(y)∂x + ∂y)

2 (18)

on T2 with variables (x, y), where a1 ∈ Q \ {0} and a2(y) �≡ 0 on T. If a2 := 1
2π

�
T a2(y)dy

is not a Liouville number, then the operator (18) is globally hypoelliptic on T2. In order to
show this, we proceed as follows. Let u ∈ E

�(T2) satisfy Pu = h ∈ C∞(T2). Taking partial
transform with respect to x ∈ T we obtain

−(ia1ξ + ∂y)
2û(ξ, y)− (ia2(y)ξ + ∂y)

2û(ξ, y) = ĥ(ξ, y), ξ ∈ Z, y ∈ T. (19)

Since the operator in (19) is elliptic with respect to y and ĥ(ξ, ·) ∈ C∞(T) for all fixed ξ ∈ Z,
it follows that û(ξ, ·) ∈ C∞(T) for all fixed ξ ∈ Z. We can then multiply (19) by û(ξ, y) and
integrate by parts with respect to y ∈ T. So, setting Y1 := ia1ξ + ∂y and Y2 := ia2(y)ξ + ∂y,
we obtain

�Y1û(ξ, ·)�
2
L2(T)+�Y2û(ξ, ·)�

2
L2(T)=

�

T
ĥ(ξ, y)û(ξ, y)dy, ξ ∈ Z. (20)

For ξ ∈ Z fixed, let

Y2û(ξ, y) = (ia2(y)ξ + ∂y)û(ξ, y) =: ψξ(y), y ∈ T. (21)
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If we set A2(y) :=
�

y

0
a2(z)dz − a2y and v(ξ, y) := eiA(y)ξû(ξ, y) for y ∈ T, by (21) we obtain

that the function v(ξ, ·) satisfies the equation

∂yv(ξ, y) + ia2ξv(ξ, y) = eiξA(y)ψξ(y) =: gξ(y), y ∈ T. (22)

For ξ �= 0, from (22) it follows

v(ξ, y) =
1

e2πa2ξ − 1

�

T
eia2ξzgξ(z + y)dz, y ∈ T, (23)

where e2πa2ξ − 1 �= 0 as a2 is a not Liouville number and hence, a2 �∈ Q.
For ξ = 0, from (22) it follows

v(0, y) =

�
y

0

g0(z)dz + c, y ∈ T. (24)

Therefore, for ξ �= 0, by (23) we obtain that

v̂(ξ, η) =
1
2π

1
e2πia2ξ − 1

e2πi(a2ξ+η)
− 1

i(a2ξ + η)
ĝξ(η), η ∈ Z, (25)

(see, e.g., [7, §20, (7), p.14]).
Since a2 is a not Liouville number there exist two positive constants C and L such that

|a2ξ + η| ≥
C
|ξ|L

, |e2πia2ξ − 1| ≥
C
|ξ|L

, ξ ∈ Z \ {0}, η ∈ Z,

(for a proof of the second inequality see, e.g., [18, Lemma 3.3]), by (25) we deduce that

|v̂(ξ, η)| ≤ C�
|ξ|2L|ĝξ(η)|, ξ ∈ Z \ {0}, η ∈ Z, (26)

and hence, by Parseval identity, that

�v(ξ, ·)�2
L2(T) ≤ C��

|ξ|4L lg
ξ
(·)�2

L2(T), ξ ∈ Z \ {0}. (27)

If we apply (27) with û(ξ, ·) = e−iA(·)ξv(ξ, ·) we obtain, for every ξ ∈ Z \ {0}, that

�û(ξ, ·)�2
L2(T) =

�

T
|e−iA(y)ξ

|
2
|v(ξ, y)|2dy = �v(ξ, ·)�2

L2(T)

≤ C��
|ξ|4L lg

ξ
(·)�2

L2(T)= C��
|ξ|4L

�

T
|eiA(y)ξ

|
2
|ψξ(y)|

2dy

= C��
|ξ|4L

�

T
|Y2ûξ, y)|

2dy = C��
|ξ|4L�Y2û(ξ, ·)�

2
L2(T).

The last inequality together with (20) imply that

�û(ξ, ·)�2
L2(T)≤ C��

|ξ|4L
�

T
ĥ(ξ, y)û(ξ, y)dy, ξ ∈ Z \ {0}. (28)

So, (28) and Cauchy–Schwartz inequality yield that

�û(ξ, ·)�L2(T)≤ C��
|ξ|4L�ĥ(ξ, ·)�L2(T), ξ ∈ Z \ {0}. (29)

Since ĥ(ξ, ·) ∈ C∞(T), by (29) we can proceed as in the proof of Theorem 1 to show that
u ∈ C∞(T2). Thus, the operator P given in (18) is globally hypoelliptic on T2. QED
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4 Proof of Theorem 2

Proof. Without loss of generality, we may suppose that j0 = 1, i.e., thatX1 =
�

m

h=1 ah∂xh

with the numbers a1, a2, . . . , am satisfying the condition (4).
Let u ∈ E

�(Tm+n) which satisfies Pu = h ∈ C∞(Tm+n). Argumenting as in the proof of
Theorem 1, one shows that the partial Fourier transfom û(ξ, ·) with respect to x of u belongs
to C∞(Tn) for every ξ ∈ Zm and that û(ξ, ·) satisfies the following identity

l�

j=1

�Yj û(ξ, ·)�
2
L2(Tn)=

�

Tn
ĥ(ξ, y)û(ξ, y)dy, ξ ∈ Zm, (30)

where Yj := i
�

m

h=1 ajh(y)ξh +
�

n

k=1 bjk(y)∂yk for every j = 1, . . . , l.
In order to complete the proof we need the following lemma.

Lemma 2. There exist two positive constants C and L such that

�û(ξ, ·)�2
L2(Tn)≤ C|ξ|2L�Y1û(ξ, ·)�

2
L2(Tn), ξ ∈ Zm. (31)

Proof. For ξ ∈ Zm fixed let ϕξ ∈ C∞(Tn) and set

Y1ϕξ(y) =

�
i

m�

h=1

ahξh

�
ϕξ(y) =: ψξ(y), y ∈ Tn. (32)

Taking partial Fourier transform with respect to y, we obtain

i

�
m�

h=1

ahξh

�
ϕ̂ξ(η) = ψ̂ξ(η), η ∈ Zn,

and hence, �����

m�

h=1

ahξh

����� |ϕ̂ξ(η)| = |ψ̂ξ(η)|, η ∈ Zn. (33)

Since the vector (a1, a2, . . . , am) satisfies the condition (4), there exist two positive constants
C and L so that �����

m�

h=1

ahξh

����� ≥
C
|ξ|L

, ξ ∈ Zm
\ {0}. (34)

It follows from (33) and (34) that

|ϕ̂ξ(η)|
2
≤ C�

|ξ|2L|ψ̂ξ(η)|
2, η ∈ Zn. (35)

The last inequality together the Parseval identity imply that
�

Tn
|ϕξ(y)|

2dy =
�

η∈Zn

|ϕ̂ξ(η)|
2
≤ C�

|ξ|2L
�

η∈Zn

|ψ̂ξ(η)|
2 = C�

|ξ|2L
�

Tn
|ψξ(y)|

2dy,

i.e., that

�ϕξ�
2
L2(Tn)≤ C�

|ξ|2L
�

Tn

�����

�
i

m�

h=1

ahξh

�
ϕξ(y)

�����

2

dy. (36)

If we apply (36) with ϕξ(·) = û(ξ, ·) we obtain that

�û(ξ, ·)�2
L2(Tn)≤ C�

|ξ|2L
�

Tn

�����

�
i

m�

h=1

ahξh

�
û(ξ, y)

�����

2

dy = C�
|ξ|2L�Y1û(ξ, ·)�

2
L2 .

So, the proof is complete. QED
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Using Lemma 2 and argumenting as in the end of the proof of Theorem 1, one shows
that the operator P is globally hypoelliptic on Tm+n and so, the proof of Theorem 2 is
complete. QED

Remark 2. We recall the following conjecture of Petronilho [25]:
Let X1, . . . , Xm be a family of real vector fields on TN . If there exist coordinates y on TN

in which the vector field X1 admits the form X1 =
�

N

k=1 λk∂yk with the numbers λ1, . . . , λN

satisfying the following condition: there exist C > 0, K > 0 such that

|

N�

k=1

λkηk| ≥
C

|η|K
, η ∈ ZN

\ {0},

then the operator P = −
�

m

j=1 X
2
j is globally hypoelliptic on TN .

So, our Theorem 2 gives a partial positive answer to the conjecture above and it is hoped
that it also provides some insight into this problem.

5 Proof of Theorem 3

Proof. The condition is clearly necessary. Indeed, if aj ≡ 0 for some j0 ∈ {1, . . . ,m},
then every u(x, y) = u(xj0) ∈ E

�(Tm+n) \ C∞(Tm+n) satisfies Pu = 0.
Suppose that aj �≡ 0 for all j = 1, . . . ,m. In order to show that P is globally hypoelliptic

on Tm+n we proceed as follows. Let u ∈ E
�(Tm+n) such that Pu = h ∈ C∞(Tm+n). Taking

partial Fourier transform with respect to x, we obtain

−∆yû(ξ, y)−
m�

j=1

�
iaj(y)ξj +

n�

k=1

bjk(y)∂yk

�2

û(ξ, y) = ĥ(ξ, y), ξ ∈ Zm. (37)

For every fixed ξ ∈ Zm the operator in (37) is elliptic with respect to y ∈ Tn and ĥ(ξ, ·) ∈

C∞(Tn). It necessarily follows that û(ξ, ·) ∈ C∞(Tn). We can then multiply (37) by û(ξ, y)
and integrate by parts with respect to y ∈ Tn. So, by setting Yj := iaj(y)ξj +

�
n

k=1 bjk(y)∂yk

and using the fact that divBXj ≡ 0 for j = 1, . . . , l, we obtain

n�

k=1

�∂yk û(ξ, ·)�
2
L2(Tn)+

n�

j=1

�Yj û(ξ, ·)�
2
L2(Tn)=

�

Tn
ĥ(ξ, y)û(ξ, y)dy, ξ ∈ Zm. (38)

For each j = 1, . . . ,m and ϕ ∈ C∞(Tn) we set

�ϕ�2j :=

�

Tn
|iaj(y)ϕ(y)|

2dy +
n�

k=1

�∂ykϕ�
2
L2(Tn).

In order to complete the proof we need the following results.

Lemma 3. There exists a positive constant C such that

�ϕ�2
L2(Tn)≤ C�ϕ�2j , ϕ ∈ C∞(Tn), (39)

for all j = 1, . . . ,m.

Proof. Let j ∈ {1, . . . ,m} be fixed. Since aj �≡ 0 on Tn there exists Ij ⊆ Tn with
◦
Ij �= ∅

such that
|aj(y)| ≥ αj > 0, y ∈ Ij . (40)
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So, for y ∈ Tn and z ∈ Ij by the fundamental theorem of calculus we have, for every ϕ ∈

C∞(Tn), that

ϕ(y) = ϕ(z) +
n�

k=1

�
yk

zk

ϕ(z1, . . . , zk−1, τk, yk+1, . . . , yn) dτk.

Applying the Cauchy–Schwarz inequality we obtain

|ϕ(y)|2 ≤ C1

�
|ϕ(z)|2 +

n�

k=1

�

T
|ϕ(z1, . . . , zk−1, τk, yk+1, . . . , yn)|

2 dτk

�

for some suitable constant C1 > 0 independent on ϕ. If we integrate the last inequality first
with respect to y ∈ Tn and then with respect to z ∈ Ij and using the fact that |Ij | > 0, then
we obtain

�ϕ�2
L2(Tn)≤ C�

1

��

Ij

|ϕ(z)|2dz +
n�

k=1

�∂ykϕ�
2
L2(Tn)

�
. (41)

Since by (40) we have
�

Ij

|ϕ(z)|2dz ≤
1
α2
j

�

Ij

|iaj(z)ϕ(z)|
2dz ≤

1
α2
j

�

Tn
|iaj(z)ϕ(z)|

2dz,

inequality (41) implies that there exists a constant Cj > 0 such that

�ϕ�2
L2(Tn)≤ Cj�ϕ�

2
j .

If we set C := maxm

j=1 Cj , then inequality (39) holds for every j = 1, . . . ,m and hence, the
proof of Lemma 3 is complete. QED

Then next result follows from Lemma 3 and permits us to conclude that u ∈ C∞(Tm+n).

Proposition 1. The exists a positive constant D such that

�û(ξ, ·)�2
L2(Tn)≤ D�ĥ(ξ, ·)�2

L2(Tn), ξ ∈ Zm
\ {0}, (42)

where û(ξ, ·) and ĥ(ξ, ·) are as in (38).

Proof. Let ξ ∈ Zm
\ {0}. Then ξj �= 0 for some j ∈ {1, . . . ,m} and hence,

|iaj(y)| ≤ |iaj(y)ξj |, y ∈ Tn.

Using the last inequality and the Cauchy–Schwarz inequality we obtain, for any ϕ ∈ C∞(Tn),
that

�ϕ�2j =

�

Tn
|iaj(y)ϕ(y)|

2dy +
n�

k=1

�∂ykϕ�
2
L2(Tn)

≤

�

Tn
|iaj(y)ξjϕ(y)|

2dy +
n�

k=1

�∂ykϕ�
2
L2(Tn)

=

�

Tn

�����iaj(y)ξjϕ(y) +
n�

k=1

bjk(y)∂ykϕ(y)−
n�

k=1

bjk(y)∂ykϕ(y)

�����

2

dy +

+
n�

k=1

�∂ykϕ�
2
L2(Tn) (43)
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≤ C

�

Tn

�����iaj(y)ξjϕ(y) +
n�

k=1

bjk(y)∂ykϕ(y)

�����

2

dy +

+C
n�

k=1

�

Tn
|bjk(y)∂ykϕ(y)|

2dy +
n�

k=1

�∂ykϕ�
2
L2(Tn)

≤ C�

�
�Yjϕ�

2
L2(Tn)+

n�

k=1

�∂ykϕ�
2
L2(Tn)

�
,

with C� := 1+Cmax{1,maxn

k=1�bjk�∞}. If we apply (43) with ϕ(y) = û(ξ, y), then it follows
that

�û(ξ, ·)�2j≤ C�

�
�Yj û(ξ, ·)�

2
L2(Tn)+

n�

k=1

�∂yk û(ξ, ·)�
2
L2(Tn)

�
. (44)

Combining inequalities (38), (39) and (44) we deduce

�û(ξ, ·)�2
L2(Tn) ≤ C�û(ξ, ·)�2j

≤ CC�

�
�Yj û(ξ, ·)�

2
L2(Tn)+

n�

k=1

�∂yk û(ξ, ·)�
2
L2(Tn)

�

≤ CC�
�

Tn
ĥ(ξ, y)û(ξ, y)dy,

and hence, by the Cauchy–Schwarz inequality that

�û(ξ, ·)�2
L2(Tn)≤ CC�

�ĥ(ξ, ·)�2
L2(Tn).

This completes the proof. QED

Using Proposition 1 and argumenting as in the end of the proof of Theorem 1, one shows
that the operator P is globally hypoelliptic on Tm+n and so, the proof of Theorem 3 is
complete. QED

6 Final Remarks

We point out that Theorems 1, 2 and 3 continue to hold in the setting of analytic and
Gevrey classes. First to give the proper versions of such results, we recall the necessary defi-
nitions.

Let s ≥ 1. A function f ∈ C∞(TN ) is said to belong to the Gevrey class Gs(TN ) of order
s if there exists a constant C > 0 such that |∂αf(x)| ≤ C|α|+1(α!)s for every α ∈ ZN

+ and
x ∈ TN (see, e.g., [28]). In particular, G1(TN ) is the space of all analytic functions on RN

which are 2π–periodic with respect to each variable, usually denoted by Cω(TN ) or by A(TN ).
Therefore, Gs(TN ) can be described as Gs(TN ) = indlimη→0 G

s(TN , η), where

Gs(TN , η) =




ϕ ∈ Gs(TN ); |ϕ; s, η| =
�

α∈Nn
0

��|∂αϕ
��|L2(TN )

η|α|

(α!)s
< ∞




 .

Since the inclusions maps Gs(TN , η) �→ Gs(TN , η�) for all η > η� > 0, are compact, Gs(TN ) is
a dual Fréchet–Schwartz space. We denote by E

�
s(TN ) = (Gs(TN ))� its topological dual.

Using Fourier expansion, one proves that u ∈ E
�
s(TN ) belongs to the Gevrey class Gs(TN )

if and only if there exist two positive constants ε and C such that

|û(ξ)| ≤ Ce−ε|ξ|1/s , ξ ∈ ZN
\ {0}.
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A linear partial differential operator P defined on TN with coefficients in Gs(TN ), s ≥ 1, is
said to be s–globally hypoelliptic (globally analytic hypoelliptic if s = 1) in TN if the conditions
u ∈ E

�
s(T

N ) and Pu ∈ Gs(TN ) imply that u ∈ Gs(TN ).
We also recall that a vector a = (a1, . . . , aN ) ∈ RN

\ QN is said to be an exponentially
non–Liouville vector with exponent s if for any ε > 0 there exists Cε > 0 such that

|a · ξ − η| ≥ Cεe
−ε|ξ|1/s , ξ ∈ ZN

\ {0}, η ∈ Z.

If N = 1, then this is the definition of a not exponentially Liouville number with exponent s.
Now, we can state the Gevrey and analytic proper analogues to Theorems 1, 3 and 2.

Theorem 4. Let P be the operator on Tm+n given by

P = −

l�

j=1

X2
j , (45)

where

Xj =
m�

h=1

ajh(y)∂xh +
n�

k=1

bjk(y)∂yk , j = 1, . . . , l,

with variables (x, y) ∈ Tm
× Tn, and suppose that the coefficients {ajh}

m

h=1 and {bjk}
n

k=1 are
real valued functions in Gs(Tn) with s ≥ 1 and that divBXj :=

�
n

k=1 ∂ykbjk ≡ 0 on Tn.
If the following conditions hold:

(i) the vector fields
�

n

k=1 bjk(y)∂yk , j = 1, . . . , l, span Ty(Tn) for every y ∈ Tn,

(ii) there exists j0 ∈ {1, . . . , l} such that aj0,h ≡ ah for every h = 1, . . . ,m and bj0k ≡ b �= 0
for every k = 1, . . . , n, and the vector (a1

b
, a2

b
, . . . , am

b
) is an exponentially non–Liouville

vector with exponent s,

then the operator P is s–globally hypoelliptic on Tm+n.

Theorem 5. Let P be the operator on Tm+n defined according to (45). If the following
conditions hold:

(i) the vector fields
�

n

k=1 bjk(y)∂yk , j = 1, . . . , l, span Ty(Tn) for every y ∈ Tn,

(ii) there exists j0 ∈ {1, . . . , l} such that aj0,h ≡ ah for every h = 1, . . . ,m and bj0k ≡ 0
for every k = 1, . . . , n, and the numbers a1, a2, . . . , am satisfy the following Diophantine
condition: for any ε > 0 there exists Cε > 0 such that

|

m�

h=1

ahξh| ≥ Cεe
−ε|ξ|1/s , ξ ∈ Zm with |ξ| ≥ Cε, (46)

then the operator P is globally hypoelliptic on Tm+n.

Theorem 6. Let P be the operator on Tm+n given by

P = −∆y −

m�

j=1

X2
j , (47)

where

Xj = aj(y)∂xj +
n�

k=1

bjk(y)∂yk , j = 1, . . . ,m,

with (x, y) ∈ Tm
× Tn, and suppose that the coefficients aj and {bjk}

n

k=1 are real valued
functions in Gs(Tn) with s ≥ 1 and that divBXj :=

�
n

k=1 ∂ykbjk ≡ 0 on Tn.
Then the operator P is globally hypoelliptic on Tm+n if and only if aj �≡ 0 for all j =

1, . . . ,m.
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To prove the above results it suffices to follow the same lines of the proofs of the corre-
sponding theorems in the C∞–setting and hence, we leave the details to the interested reader.
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