A characterization of groups of exponent p which are nilpotent of class at most 2

Domenico Lenzi
Dipartimento di Matematica "E. De Giorgi"
Università degli Studi di Lecce 73100-LECCE
domenico.lenzi@unile.it

Received: 2.8.2009; accepted: 8.11.2010.

Abstract

Let $(\mathbf{G},+)$ be a group of prime exponent $p=2 n+1$. In this paper we prove that $(\mathbf{G},+)$ is nilpotent of class at most 2 if and only if one of the following properties is true: i) \mathbf{G} is also the support of a commutative group $\left(\mathbf{G},+^{\prime}\right)$ such that $(\mathbf{G},+)$ and $\left(\mathbf{G},+^{\prime}\right)$ have the same cyclic cosets [cosets of order p]. ii) the operation \oplus defined on \mathbf{G} by putting $x \oplus y=x / 2+y+x / 2$, gives \mathbf{G} a structure of commutative group.

Keywords: nilpotent groups, group partition
MSC 2000 classification: 03G25

1 Some remarks on the nilpotent groups of class at most 2

We will call quasi-commutative any group $(\mathbf{G},+$) with the following property:

1) $\forall x, z \in \mathbf{G}:-x-z+x+z=x+z-x-z$;

Now we recall that a group $(\mathbf{G},+$) is nilpotent of class at most 2 if and only if the commutator subgroup \mathbf{G}^{\prime} of $(\mathbf{G},+)$ is included in the center $\mathbf{Z}_{\mathbf{G}}$ of $(\mathbf{G},+)$. Obviously, this property is equivalent to the following one:
2) $\forall x, y, z \in \mathbf{G}:-x-z+x+z+y=y-x-z+x+z$.

Therefore any nilpotent group of class at most 2 is quasi-commutative. Indeed, if in 2) we put $y=z+x$, then we easily get property 1).

Remark 1. We point out that a group $(\mathbf{G},+)$ is nilpotent of class at most 2 if and only if the following property holds:
3) $\forall x, y, z \in \mathbf{G}: x+z+y+z+x=z+x+y+x+z$.

Indeed, by 1), property 2) is equivalent to the following one:
4) $\forall x, y, z \in \mathbf{G}:-x-z+x+z+y=y+x+z-x-z$.

Moreover, it is clear that 4) and 3) are equivalent.
In the sequel $(\mathbf{G},+)$ shall be a torsion group with non zero elements of odd order. Thus, if $a \in \mathbf{G}$, there is a unique $d \in \mathbf{G}$, denoted by $a / 2$, such that $2 d=a$. Then we can define on \mathbf{G} an operation \oplus by putting, for any $a, b \in \mathbf{G}$:
6) $a \oplus b=a / 2+b+a / 2$.

Clearly, + and \oplus coincide on the commutative subgroups of $(\mathbf{G},+)$; in particular on the cyclic subgroups. Thus, for any $x \in \mathbf{G}, x \oplus(-x)=0=(-x) \oplus x$.

[^0]Theorem 1. If (\mathbf{G}, \oplus) is a commutative group, then $(\mathbf{G},+)$ and (\mathbf{G}, \oplus) have the same cyclic cosets.

Proof. Indeed $(\mathbf{G},+)$ and (\mathbf{G}, \oplus) have the same cyclic subgroups. Therefore, if \mathbf{H} is such a subgroup, then we have:

$$
\begin{gathered}
a \oplus \mathbf{H}=a / 2+\mathbf{H}+a / 2=a+(-a / 2+\mathbf{H}+a / 2) \\
a+\mathbf{H}=a / 2+(a / 2+\mathbf{H}-a / 2)+a / 2=a \oplus(a / 2+\mathbf{H}-a / 2) .
\end{gathered}
$$

Theorem 2. Let the group $(\mathbf{G},+)$ be nilpotent of class at most 2. Then (\mathbf{G}, \oplus) is a commutative group.

Proof. Being $(\mathbf{G},+)$ nilpotent of class at most $2,+$ is quasi-commutative and hence \oplus is commutative. Therefore, since + and \oplus coincide on the cyclic subgroups of $(\mathbf{G},+)$, in order to prove that (\mathbf{G}, \oplus) is a group, it remains to see that, for any $a, b, c \in \mathbf{G}, a \oplus(c \oplus b)=c \oplus(a \oplus b)$; i. e. $a / 2+c / 2+b+c / 2+a / 2=c / 2+a / 2+b+a / 2+c / 2$. This equality is true by Remark 1.

2 Some remarks on the groups of exponent p

In the sequel we shall consider only groups of prime exponent $p=2 n+1$. We recall that if $(\mathbf{G},+)$ is such a group, then the subgroups of order p represent a group partition of $(\mathbf{G},+)$ [wiz. they encounter only in 0 ; moreover, their union is \mathbf{G} (see [1], p.16)]. Therefore, the set \mathcal{L}_{+}of the cyclic cosets determines a line space $\left(\mathbf{G}, \mathcal{L}_{+}\right)$on \mathbf{G}; precisely, for any two distinct elements $a, b \in \mathbf{G}$, there is a unique cyclic coset containing them.

The elements of \mathbf{G} and \mathcal{L}_{+}are respectively called points and lines of $\left(\mathbf{G}, \mathcal{L}_{+}\right)$. Points on a same line are said collinear.

A subspace of $\left(\mathbf{G}, \mathcal{L}_{+}\right)$is a subset \mathbf{K} of \mathbf{G} such that either its cardinality is less than 2 , or it contains the lines connecting pairs of its distinct points. Thus the set of the subspaces of ($\mathbf{G}, \mathcal{L}_{+}$) is a closure system of \mathbf{G}.

If \mathbf{K} is a set of points, we will represent by $((\mathbf{K}))\left[\left(\left(a_{1}, \ldots, a_{n}\right)\right)\right.$, whenever $\left.\mathbf{K}=\left\{a_{1}, \ldots, a_{n}\right\}\right]$ the minimum subspace containing \mathbf{K} [the subspace generated by \mathbf{K}]. Whenever a and b are points, it is clear that $((a, b))=a+\langle-a+b\rangle$.

A plane is the subspace $((a, b, c))$ generated by three non collinear points a, b and c. Points and lines in a same plane are said coplanar.

Obviously, if \mathbf{l} is a line and a is a point not belonging to \mathbf{l}, then the lowest subspace containing a and \mathbf{l} [in symbols, $((a, \mathbf{l}))]$ is a plane. Indeed, for any distinct points b and c of \mathbf{l}, we have $((a, \mathbf{l}))=((a, b, c))$.

Theorem 3. Let the group $(\mathbf{G},+)$ be nilpotent of class at most 2. Then (\mathbf{G}, \oplus) is a commutative group of exponent p. Moreover, $\left(\mathbf{G}, \mathcal{L}_{+}\right)$and $\left(\mathbf{G}, \mathcal{L}_{\oplus}\right)$ coincide.

Proof. (\mathbf{G}, \oplus) is a commutative group by Theorem 2. The remaining part of the proof is trivial by Theorem 1.

If $a \in \mathbf{G}$, both the left translation l_{a} and the right translation r_{a} of $(\mathbf{G},+)$ are bijective functions on \mathbf{G} that map cyclic cosets in cyclic cosets. This means that l_{a} and r_{a} are automorphisms of $\left(\mathbf{G}, \mathcal{L}_{+}\right)$, hence they map subspaces in subspaces. Also the function [-] that maps any $b \in \mathbf{G}$ in $-b$ is an automorphism.

Clearly, any coset \mathbf{K} of $(\mathbf{G},+)$ is a subspace. But there can be subspaces which are not cosets (see Remark 3 below).

A characterization of groups of exponent p which are nilpotent of class at most 2151

If a and b are two points, then $a+(-a+b) / 2 \in((a, b))$. Indeed $a+(-a+b) / 2 \in a+<$ $(-a+b) / 2>=a+\langle-a+b>=((a, b))$.

Remark 2. Now assume that the group $(\mathbf{G},+)$ is commutative. We have the following properties:
a) Any subspace $\mathbf{K}_{\mathbf{0}}$ containing 0 is a subgroup. Indeed, if $a, b \in \mathbf{K}_{\mathbf{0}}$, then $\left.-a \in<a\right\rangle=$ $((0, a)) \subseteq \mathbf{K}_{\mathbf{0}} ;$ moreover, $a+(-a+b) / 2 \in((a, b)) \subseteq \mathbf{K}_{\mathbf{0}}$, hence $a+b=2[a+(-a+b) / 2] \in$ $((0, a+(-a+b) / 2)) \subseteq \mathbf{K}_{\mathbf{0}}$.

As a consequence, since the translations are automorphisms of $\left(\mathbf{G}, \mathcal{L}_{+}\right)$, any subspace is a coset of $(\mathbf{G},+)$. Thus in the commutative case all the planes have p^{2} points.
$\left.a^{\prime}\right)$ In \mathcal{L}_{+}there is a natural equivalence relation //: the parallelism. Precisely, two lines \mathbf{l} and \mathbf{l}^{\prime} of $\left(\mathbf{G}, \mathcal{L}_{+}\right)$are said to be parallel [in symbols, $\left.\mathbf{l} / / \mathbf{l}^{\prime}\right]$ if and only if \mathbf{l} and \mathbf{l}^{\prime} are cosets of a same [cyclic] subgroup of $(\mathbf{G},+)$.

Since now any plane of $\left(\mathbf{G}, \mathcal{L}_{+}\right)$has p^{2} points, it is easy to verify that \mathbf{l} and \mathbf{l}^{\prime} are parallel if and only if they either coincide or are disjoint and coplanar.

Let the group $(\mathbf{G},+)$ be nilpotent of class at most 2 ; thus $\left(\mathbf{G}, \mathcal{L}_{+}\right)=\left(\mathbf{G}, \mathcal{L}_{\oplus}\right)$. Now if $a, b \in \mathbf{G}$, then $\langle b\rangle / / a \oplus\langle b\rangle=a+(-a / 2+\langle b\rangle+a / 2)$. Hence $a+\langle b\rangle / /<b\rangle$ if and only if a belongs to the normalizer of $\langle b\rangle$.

Remark 3. Now assume that $(\mathbf{G},+)$ is a non abelian group of prime exponent $p=2 n+1$ and order p^{3}. Thus $(\mathbf{G},+$) is an extraspecial p-group (see [3], p.145); hence, since in this case $\mathbf{G}^{\prime}=\mathbf{Z}_{\mathbf{G}},(\mathbf{G},+)$ is nilpotent of class 2. Therefore, if $0, a$ and b are not collinear points, the plane $((0, a, b))$ has p^{2} point. Indeed, by $\left.a\right)$ of Remark $2,((0, a, b))$ is the subgroup generated by a and b in the group (\mathbf{G}, \oplus). On the other hand, $((0, a, b))$ is not a coset of $(\mathbf{G},+)$. Indeed, $0 \in((0, a, b))$, but $((0, a, b))$ is not a subgroup of $(\mathbf{G},+)$, since $\langle a, b\rangle=\mathbf{G}$ and $(\mathbf{G},+)$ has order p^{3}.

3 The characterization

In this section we will prove that, being $(\mathbf{G},+)$ a group of a prime exponent $p=2 n+1$, $(\mathbf{G},+)$ is nilpotent of class at most 2 if and only if one of the properties i) and $i i)$ in Abstract is true.

We emphasize that Theorem 3 above already ensures that if $(\mathbf{G},+)$ is such a group, then both the properties i) and $i i$) hold [in i) the operation $+^{\prime}$ is given by \oplus]. Conversely, if $i i$) is true, then also i) [with $+^{\prime}=\oplus$] is true by Theorem 1. Thus, it remains to prove that property $i)$ implies that $(\mathbf{G},+)$ is nilpotent of class at most 2 .

Remark 4. We point out that property i) is equivalent to the following one:
$\left.i_{0}\right) \mathbf{G}$ is also the support of a commutative group $\left(\mathbf{G},+^{\prime}\right)$ such that $(\mathbf{G},+)$ and $\left(\mathbf{G},+^{\prime}\right)$ have the same zero and the same cyclic cosets.

Indeed, if the zero of $\left(\mathbf{G},+^{\prime}\right)$ is the element a, then we can replace the group $(\mathbf{G},+)$ with the group $(\mathbf{G},+a)$, where $+{ }_{a}$ is defined by putting $b+{ }_{a} c=b-a+c$, for any $b, c \in \mathbf{G}$. Thus, since $(\mathbf{G},+)$ and $\left(\mathbf{G},+{ }_{a}\right)$ are isomorphic and have the same cosets, the claim is true.

We assume that in the sequel the group $(\mathbf{G},+)$ fulfills property i_{0}. Moreover, being ($\mathbf{G},+^{\prime}$) commutative, we will consider - with respect to $\left(\mathbf{G}, \mathcal{L}_{+}^{\prime}\right)$ - the parallelism // of a^{\prime}) in Remark 2.

Now consider the function $d_{a}=l_{a} \circ r_{a} \circ[-]$. Since l_{a}, r_{a} and [-] are automorphisms of $\left(\mathbf{G}, \mathcal{L}_{+}\right)$, also d_{a} is an automorphism. It is easy to verify that d_{a} is an involution; moreover, since p is an odd number, a is the unique fixed point of d_{a}.

Remark 5. Let $a, b \in \mathbf{G}$. Then $d_{a} b \in((a, b))$. Indeed $d_{a} b=a-b+a \in a+<-b+a>$ $=((a, b))$.

Consequently, if \mathbf{K} is a subspace of $\left(\mathbf{G}, \mathcal{L}_{+}\right)$and $a, b \in \mathbf{K}$, then $d_{a} b \in \mathbf{K}$.
Theorem 4. If \mathbf{K} is a subspace of $\left(\mathbf{G}, \mathcal{L}_{+}\right)$and if a is a point, consider the subspace $d_{a} \mathbf{K}$. The following properties hold:

1) If $a \in \mathbf{K}$, then $d_{a} \mathbf{K}=\mathbf{K}$;
2) if $a \notin \mathbf{K}$, then $d_{a} \mathbf{K}$ and \mathbf{K} are disjoint.

Proof. Let b be an arbitrary point of \mathbf{K}.

1) If $a \in \mathbf{K}$, then $d_{a} \mathbf{K} \subseteq \mathbf{K}$ by Remark 5 . Thus, being d_{a} an involution, $d_{a} \mathbf{K}=\mathbf{K}$.
2) If $a \notin \mathbf{K}$, then $a \neq b$ and hence $d_{a} b \neq b$; moreover, the line $((a, b))$ intersects \mathbf{K} only in b. Therefore $d_{a} b \notin \mathbf{K}$; whence the claim.

We point out that in the sequel we will tacitly use the fact that // is an equivalence relation.

Theorem 5. The functions $d_{a},[-]$ and $l_{a} \circ r_{a}$ are dilatations [wiz. they map any line $\mathbf{1}$ in a line $\mathbf{1}^{\prime}$ parallel to $\mathbf{1}$].

Proof. Since $[-]=d_{0}, l_{a} \circ r_{a}=d_{a} \circ[-]$ and $/ /$ is an equivalence relation, then it is sufficient to see that, whenever \mathbf{l} is a line, then $1 / / d_{a} \mathbf{l}$.

Let $d_{a} \mathbf{l} \neq \mathbf{l}$. Thus, by Theorem $4, d_{a} \mathbf{l}$ and \mathbf{l} are disjoint. Therefore, we have to prove that $d_{a} \mathbf{l}$ and \mathbf{l} are coplanar. This is true; indeed, by 1) in Theorem $4, d_{a} \mathbf{l}$ is included in the plane $((a, \mathbf{l}))$.

Theorem 6. Consider a line 1. Then, for any element c of the commutator subgroup \mathbf{G}^{\prime} of $(\mathbf{G},+)$, we have $c+\mathbf{l} / / \mathbf{l} / / \mathbf{l}+c$.

Proof. Obviously, we can limit ourselves to prove that $c+\mathbf{l} / / \mathbf{l}$.
To this purpose, it is sufficient to verify that, for any $x, z \in \mathbf{G}$, we have $-x-z+x+z+\mathbf{l} / / \mathbf{l}$.
This is obvious, since by Theorem 5 we have:

$$
-x-z+x+z+\mathbf{l}=(-x-z)+[x+(z+\mathbf{l}+z)+x]+(-x-z) / / \mathbf{l}
$$

Lemma 1. For any $y \in \mathbf{G}$ and $c \in \mathbf{G}^{\prime}, c+\langle y\rangle=\langle y\rangle+c$.
Proof. If $y=0$, the claim is trivial. Thus let $y \neq 0$, hence the subgroup $<y>$ is a line. Hence, by Theorem 6, we have $c+\langle y\rangle / /\langle y\rangle+c$. Therefore, since c belongs to $(c+\langle y\rangle) \cap(\langle y\rangle+c)$, we obtain $c+\langle y\rangle=\langle y\rangle+c$.

And now we can prove the following Theorem 7, which concludes our characterization.
Theorem 7. If a group $(\mathbf{G},+)$ satisfies property i) above, then it is nilpotent of class at most 2.

Proof. We will prove that, for any $y \in \mathbf{G}$ and $c \in \mathbf{G}^{\prime}, c+y=y+c$.
This is trivial whenever $\langle c\rangle=\langle y\rangle$, or $c=0$, or $y=0$. Therefore assume $\langle c\rangle \neq<$ $y>, c \neq 0$ and $y \neq 0$.

By Lemma 1, we have $c+y=h y+y+c[$ where $h \in \mathbb{N}]$, hence $h y$ is a commutator. We will prove that $h y=0$. To this purpose we consider two cases: $y \notin \mathbf{G}^{\prime}, y \in \mathbf{G}^{\prime}$.

If $y \notin \mathbf{G}^{\prime}$ and $h y \neq 0$, then $y \in<h y>\subseteq \mathbf{G}^{\prime}$. This is absurd.
If $y \in \mathbf{G}^{\prime}$, then in Lemma 1 we can interchange c with y. Therefore $c+y=k c+y+c$ and hence $h y=-k c$. Consequently, $h y=0$.

A characterization of groups of exponent p which are nilpotent of class at most 2153

We conclude by emphasizing that, with respect to the property i_{0}), if \mathbf{H} is a cyclic subgroup of $(\mathbf{G},+)$ and of $\left(\mathbf{G},+^{\prime}\right)$, this fact does not say "a priori" that the groups $(\mathbf{H},+)$ and $\left(\mathbf{H},+^{\prime}\right)$ coincide. Nevertheless, since we have proved that by $\left.i_{0}\right)(\mathbf{G},+$) is nilpotent of class at most 2 , "a posteriori" it is easy to verify that, if \mathbf{G} has more than p elements and hence $\left(\mathbf{G}, \mathcal{L}_{+}\right)$is not a line, then $\left(\mathbf{G},+^{\prime}\right)=(\mathbf{G}, \oplus)$. As a consequence, we get $(\mathbf{H},+)=(\mathbf{H}, \oplus)=\left(\mathbf{H},+^{\prime}\right)$.

References

[1] P. Dembowski: Finite Geometries. Springer-Verlag, Berlin Heidelberg N. York (1968).
[2] D. Lenzi: On the autodistributive Steiner triple systems. Note di Matematica; in print.
[3] D. J. S. Robinson: A Course in the Theory of Groups. Springer-Verlag, N. York (1996).

[^0]: http://siba-ese.unisalento.it/ © 2010 Università del Salento

