Note di Matematica Note Mat. **30** (2010) no. 2, 149–153.

A characterization of groups of exponent pwhich are nilpotent of class at most 2

Domenico Lenzi

Dipartimento di Matematica "E. De Giorgi" Università degli Studi di Lecce 73100-LECCE domenico.lenzi@unile.it

Received: 2.8.2009; accepted: 8.11.2010.

Abstract. Let $(\mathbf{G}, +)$ be a group of prime exponent p = 2n + 1. In this paper we prove that $(\mathbf{G}, +)$ is nilpotent of class at most 2 if and only if one of the following properties is true:

i) **G** is also the support of a commutative group $(\mathbf{G}, +')$ such that $(\mathbf{G}, +)$ and $(\mathbf{G}, +')$ have the same cyclic cosets [cosets of order p].

ii) the operation \oplus defined on **G** by putting $x \oplus y = x/2 + y + x/2$, gives **G** a structure of commutative group.

Keywords: nilpotent groups, group partition

MSC 2000 classification: 03G25

1 Some remarks on the nilpotent groups of class at most 2

We will call *quasi-commutative* any group $(\mathbf{G}, +)$ with the following property:

1) $\forall x, z \in \mathbf{G} : -x - z + x + z = x + z - x - z;$

Now we recall that a group $(\mathbf{G}, +)$ is nilpotent of class at most 2 if and only if the commutator subgroup \mathbf{G}' of $(\mathbf{G}, +)$ is included in the center $\mathbf{Z}_{\mathbf{G}}$ of $(\mathbf{G}, +)$. Obviously, this property is equivalent to the following one:

2) $\forall x, y, z \in \mathbf{G} : -x - z + x + z + y = y - x - z + x + z.$

Therefore any nilpotent group of class at most 2 is quasi-commutative. Indeed, if in 2) we put y = z + x, then we easily get property 1).

Remark 1. We point out that a group $(\mathbf{G}, +)$ is nilpotent of class at most 2 if and only if the following property holds:

3) $\forall x, y, z \in \mathbf{G} : x + z + y + z + x = z + x + y + x + z$. Indeed, by 1), property 2) is equivalent to the following one: 4) $\forall x, y, z \in \mathbf{G} : -x - z + x + z + y = y + x + z - x - z$. Moreover, it is clear that 4) and 3) are equivalent.

In the sequel $(\mathbf{G}, +)$ shall be a torsion group with non zero elements of odd order. Thus, if $a \in \mathbf{G}$, there is a unique $d \in \mathbf{G}$, denoted by a/2, such that 2d = a. Then we can define on \mathbf{G} an operation \oplus by putting, for any $a, b \in \mathbf{G}$:

6) $a \oplus b = a/2 + b + a/2$.

Clearly, + and \oplus coincide on the commutative subgroups of $(\mathbf{G}, +)$; in particular on the cyclic subgroups. Thus, for any $x \in \mathbf{G}$, $x \oplus (-x) = 0 = (-x) \oplus x$.

http://siba-ese.unisalento.it/ © 2010 Università del Salento

Theorem 1. If (\mathbf{G}, \oplus) is a commutative group, then $(\mathbf{G}, +)$ and (\mathbf{G}, \oplus) have the same cyclic cosets.

PROOF. Indeed $(\mathbf{G}, +)$ and (\mathbf{G}, \oplus) have the same cyclic subgroups. Therefore, if **H** is such a subgroup, then we have:

$$a \oplus \mathbf{H} = a/2 + \mathbf{H} + a/2 = a + (-a/2 + \mathbf{H} + a/2);$$

 $a + \mathbf{H} = a/2 + (a/2 + \mathbf{H} - a/2) + a/2 = a \oplus (a/2 + \mathbf{H} - a/2).$

QED

Theorem 2. Let the group $(\mathbf{G}, +)$ be nilpotent of class at most 2. Then (\mathbf{G}, \oplus) is a commutative group.

PROOF. Being $(\mathbf{G}, +)$ nilpotent of class at most 2, + is quasi-commutative and hence \oplus is commutative. Therefore, since + and \oplus coincide on the cyclic subgroups of $(\mathbf{G}, +)$, in order to prove that (\mathbf{G}, \oplus) is a group, it remains to see that, for any $a, b, c \in \mathbf{G}$, $a \oplus (c \oplus b) = c \oplus (a \oplus b)$; i. e. a/2 + c/2 + b + c/2 + a/2 = c/2 + a/2 + b + a/2 + c/2. This equality is true by Remark 1.

2 Some remarks on the groups of exponent *p*

In the sequel we shall consider only groups of prime exponent p = 2n + 1. We recall that if $(\mathbf{G}, +)$ is such a group, then the subgroups of order p represent a group partition of $(\mathbf{G}, +)$ [wiz. they encounter only in 0; moreover, their union is \mathbf{G} (see [1], p.16)]. Therefore, the set \mathcal{L}_+ of the cyclic cosets determines a line space $(\mathbf{G}, \mathcal{L}_+)$ on \mathbf{G} ; precisely, for any two distinct elements $a, b \in \mathbf{G}$, there is a unique cyclic coset containing them.

The elements of **G** and \mathcal{L}_+ are respectively called *points* and *lines* of (**G**, \mathcal{L}_+). Points on a same line are said *collinear*.

A subspace of $(\mathbf{G}, \mathcal{L}_+)$ is a subset **K** of **G** such that either its cardinality is less than 2, or it contains the lines connecting pairs of its distinct points. Thus the set of the subspaces of $(\mathbf{G}, \mathcal{L}_+)$ is a closure system of **G**.

If **K** is a set of points, we will represent by $((\mathbf{K}))$ [$((a_1, ..., a_n))$, whenever $\mathbf{K} = \{a_1, ..., a_n\}$] the minimum subspace containing **K** [the subspace generated by **K**]. Whenever a and b are points, it is clear that $((a, b)) = a + \langle -a + b \rangle$.

A *plane* is the subspace ((a, b, c)) generated by three non collinear points a, b and c. Points and lines in a same plane are said *coplanar*.

Obviously, if **l** is a line and *a* is a point not belonging to **l**, then the lowest subspace containing *a* and **l** [in symbols, $((a, \mathbf{l}))$] is a plane. Indeed, for any distinct points *b* and *c* of **l**, we have $((a, \mathbf{l})) = ((a, b, c))$.

Theorem 3. Let the group $(\mathbf{G}, +)$ be nilpotent of class at most 2. Then (\mathbf{G}, \oplus) is a commutative group of exponent p. Moreover, $(\mathbf{G}, \mathcal{L}_+)$ and $(\mathbf{G}, \mathcal{L}_\oplus)$ coincide.

PROOF. (\mathbf{G}, \oplus) is a commutative group by Theorem 2. The remaining part of the proof is trivial by Theorem 1.

If $a \in \mathbf{G}$, both the left translation l_a and the right translation r_a of $(\mathbf{G}, +)$ are bijective functions on **G** that map cyclic cosets in cyclic cosets. This means that l_a and r_a are automorphisms of $(\mathbf{G}, \mathcal{L}_+)$, hence they map subspaces in subspaces. Also the function [-] that maps any $b \in \mathbf{G}$ in -b is an automorphism.

Clearly, any coset \mathbf{K} of $(\mathbf{G}, +)$ is a subspace. But there can be subspaces which are not cosets (see Remark 3 below).

150

A characterization of groups of exponent p which are nilpotent of class at most 2 151

If a and b are two points, then $a + (-a+b)/2 \in ((a,b))$. Indeed $a + (-a+b)/2 \in a + < (-a+b)/2 > = a + < -a+b > = ((a,b))$.

Remark 2. Now assume that the group $(\mathbf{G}, +)$ is commutative. We have the following properties:

a) Any subspace $\mathbf{K}_{\mathbf{0}}$ containing 0 is a subgroup. Indeed, if $a, b \in \mathbf{K}_{\mathbf{0}}$, then $-a \in \langle a \rangle = ((0,a)) \subseteq \mathbf{K}_{\mathbf{0}}$; moreover, $a + (-a + b)/2 \in ((a,b)) \subseteq \mathbf{K}_{\mathbf{0}}$, hence $a + b = 2[a + (-a + b)/2] \in ((0,a + (-a + b)/2)) \subseteq \mathbf{K}_{\mathbf{0}}$.

As a consequence, since the translations are automorphisms of $(\mathbf{G}, \mathcal{L}_+)$, any subspace is a coset of $(\mathbf{G}, +)$. Thus in the commutative case all the planes have p^2 points.

a') In \mathcal{L}_+ there is a natural equivalence relation //: the *parallelism*. Precisely, two lines **l** and **l**' of (**G**, \mathcal{L}_+) are said to be *parallel* [in symbols, **l**//**l**'] if and only if **l** and **l**' are cosets of a same [cyclic] subgroup of (**G**, +).

Since now any plane of $(\mathbf{G}, \mathcal{L}_+)$ has p^2 points, it is easy to verify that \mathbf{l} and \mathbf{l}' are parallel if and only if they either coincide or are disjoint and coplanar.

Let the group $(\mathbf{G}, +)$ be nilpotent of class at most 2; thus $(\mathbf{G}, \mathcal{L}_+) = (\mathbf{G}, \mathcal{L}_\oplus)$. Now if $a, b \in \mathbf{G}$, then $\langle b \rangle //a \oplus \langle b \rangle = a + (-a/2 + \langle b \rangle + a/2)$. Hence $a + \langle b \rangle //\langle b \rangle$ if and only if a belongs to the normalizer of $\langle b \rangle$.

Remark 3. Now assume that $(\mathbf{G}, +)$ is a non abelian group of prime exponent p = 2n+1and order p^3 . Thus $(\mathbf{G}, +)$ is an extraspecial *p*-group (see [3], p.145); hence, since in this case $\mathbf{G}' = \mathbf{Z}_{\mathbf{G}}, (\mathbf{G}, +)$ is nilpotent of class 2. Therefore, if 0, *a* and *b* are not collinear points, the plane ((0, a, b)) has p^2 point. Indeed, by *a*) of Remark 2, ((0, a, b)) is the subgroup generated by *a* and *b* in the group (\mathbf{G}, \oplus) . On the other hand, ((0, a, b)) is not a coset of $(\mathbf{G}, +)$. Indeed, $0 \in ((0, a, b))$, but ((0, a, b)) is not a subgroup of $(\mathbf{G}, +)$, since $\langle a, b \rangle = \mathbf{G}$ and $(\mathbf{G}, +)$ has order p^3 .

3 The characterization

In this section we will prove that, being $(\mathbf{G}, +)$ a group of a prime exponent p = 2n + 1, $(\mathbf{G}, +)$ is nilpotent of class at most 2 if and only if one of the properties *i*) and *ii*) in Abstract is true.

We emphasize that Theorem 3 above already ensures that if $(\mathbf{G}, +)$ is such a group, then both the properties i) and ii) hold [in i) the operation +' is given by \oplus]. Conversely, if ii) is true, then also i) [with $+' = \oplus$] is true by Theorem 1. Thus, it remains to prove that property i) implies that $(\mathbf{G}, +)$ is nilpotent of class at most 2.

Remark 4. We point out that property i) is equivalent to the following one:

 i_0) **G** is also the support of a commutative group (**G**, +') such that (**G**, +) and (**G**, +') have the same zero and the same cyclic cosets.

Indeed, if the zero of $(\mathbf{G}, +')$ is the element *a*, then we can replace the group $(\mathbf{G}, +)$ with the group $(\mathbf{G}, +_a)$, where $+_a$ is defined by putting $b+_a c = b - a + c$, for any $b, c \in \mathbf{G}$. Thus, since $(\mathbf{G}, +)$ and $(\mathbf{G}, +_a)$ are isomorphic and have the same cosets, the claim is true.

We assume that in the sequel the group $(\mathbf{G}, +)$ fulfills property i_0 . Moreover, being $(\mathbf{G}, +')$ commutative, we will consider – with respect to $(\mathbf{G}, \mathcal{L}'_+)$ – the parallelism // of a') in Remark 2.

Now consider the function $d_a = l_a \circ r_a \circ [-]$. Since l_a , r_a and [-] are automorphisms of $(\mathbf{G}, \mathcal{L}_+)$, also d_a is an automorphism. It is easy to verify that d_a is an involution; moreover, since p is an odd number, a is the unique fixed point of d_a .

Remark 5. Let $a, b \in \mathbf{G}$. Then $d_a b \in ((a, b))$. Indeed $d_a b = a - b + a \in a + \langle -b + a \rangle = ((a, b))$.

Consequently, if **K** is a subspace of $(\mathbf{G}, \mathcal{L}_+)$ and $a, b \in \mathbf{K}$, then $d_a b \in \mathbf{K}$.

Theorem 4. If **K** is a subspace of $(\mathbf{G}, \mathcal{L}_+)$ and if a is a point, consider the subspace $d_a\mathbf{K}$. The following properties hold:

1) If $a \in \mathbf{K}$, then $d_a \mathbf{K} = \mathbf{K}$;

2) if $a \notin \mathbf{K}$, then $d_a \mathbf{K}$ and \mathbf{K} are disjoint.

PROOF. Let b be an arbitrary point of **K**.

1) If $a \in \mathbf{K}$, then $d_a \mathbf{K} \subseteq \mathbf{K}$ by Remark 5. Thus, being d_a an involution, $d_a \mathbf{K} = \mathbf{K}$.

2) If $a \notin \mathbf{K}$, then $a \neq b$ and hence $d_a b \neq b$; moreover, the line ((a, b)) intersects \mathbf{K} only in b. Therefore $d_a b \notin \mathbf{K}$; whence the claim.

We point out that in the sequel we will tacitly use the fact that // is an equivalence relation.

Theorem 5. The functions d_a , [-] and $l_a \circ r_a$ are dilatations [wiz. they map any line 1 in a line 1' parallel to 1].

PROOF. Since $[-] = d_0$, $l_a \circ r_a = d_a \circ [-]$ and // is an equivalence relation, then it is sufficient to see that, whenever \mathbf{l} is a line, then $\mathbf{l}//d_a \mathbf{l}$.

Let $d_a \mathbf{l} \neq \mathbf{l}$. Thus, by Theorem 4, $d_a \mathbf{l}$ and \mathbf{l} are disjoint. Therefore, we have to prove that $d_a \mathbf{l}$ and \mathbf{l} are coplanar. This is true; indeed, by 1) in Theorem 4, $d_a \mathbf{l}$ is included in the plane $((a, \mathbf{l}))$.

Theorem 6. Consider a line 1. Then, for any element c of the commutator subgroup \mathbf{G}' of $(\mathbf{G}, +)$, we have c + 1/(1/(1+c)).

PROOF. Obviously, we can limit ourselves to prove that c + 1 / / 1.

To this purpose, it is sufficient to verify that, for any $x, z \in \mathbf{G}$, we have -x-z+x+z+1//1. This is obvious, since by Theorem 5 we have:

$$-x - z + x + z + \mathbf{l} = (-x - z) + [x + (z + \mathbf{l} + z) + x] + (-x - z) // \mathbf{l}.$$

QED

Lemma 1. For any $y \in \mathbf{G}$ and $c \in \mathbf{G}'$, $c + \langle y \rangle = \langle y \rangle + c$.

PROOF. If y = 0, the claim is trivial. Thus let $y \neq 0$, hence the subgroup $\langle y \rangle$ is a line. Hence, by Theorem 6, we have $c + \langle y \rangle //\langle y \rangle + c$. Therefore, since c belongs to $(c + \langle y \rangle) \cap (\langle y \rangle + c)$, we obtain $c + \langle y \rangle = \langle y \rangle + c$.

And now we can prove the following Theorem 7, which concludes our characterization.

Theorem 7. If a group $(\mathbf{G}, +)$ satisfies property i) above, then it is nilpotent of class at most 2.

PROOF. We will prove that, for any $y \in \mathbf{G}$ and $c \in \mathbf{G}'$, c + y = y + c.

This is trivial whenever $\langle c \rangle = \langle y \rangle$, or c = 0, or y = 0. Therefore assume $\langle c \rangle \neq \langle y \rangle$, $c \neq 0$ and $y \neq 0$.

By Lemma 1, we have c + y = hy + y + c [where $h \in \mathbb{N}$], hence hy is a commutator. We will prove that hy = 0. To this purpose we consider two cases: $y \notin \mathbf{G}'$, $y \in \mathbf{G}'$.

If $y \notin \mathbf{G}'$ and $hy \neq 0$, then $y \in \langle hy \rangle \subseteq \mathbf{G}'$. This is absurd.

If $y \in \mathbf{G}'$, then in Lemma 1 we can interchange c with y. Therefore c + y = kc + y + c and hence hy = -kc. Consequently, hy = 0.

152

A characterization of groups of exponent p which are nilpotent of class at most 2 153

We conclude by emphasizing that, with respect to the property i_0), if **H** is a cyclic subgroup of $(\mathbf{G}, +)$ and of $(\mathbf{G}, +')$, this fact does not say "a priori" that the groups $(\mathbf{H}, +)$ and $(\mathbf{H}, +')$ coincide. Nevertheless, since we have proved that by i_0) $(\mathbf{G}, +)$ is nilpotent of class at most 2, "a posteriori" it is easy to verify that, if **G** has more than p elements and hence $(\mathbf{G}, \mathcal{L}_+)$ is not a line, then $(\mathbf{G}, +') = (\mathbf{G}, \oplus)$. As a consequence, we get $(\mathbf{H}, +) = (\mathbf{H}, \oplus) = (\mathbf{H}, +')$.

References

- [1] P. DEMBOWSKI: Finite Geometries. Springer-Verlag, Berlin Heidelberg N. York (1968).
- [2] D. LENZI: On the autodistributive Steiner triple systems. Note di Matematica; in print.
- [3] D. J. S. ROBINSON: A Course in the Theory of Groups. Springer-Verlag, N. York (1996).