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Abstract. In this paper we examine Γ0(N)-orbits on Q̂ and the suborbital graphs for Γ0(N).
Each such suborbital graph is a disjoint union of subgraphs whose vertices form a block of
imprimitivity for Γ0(N). Moreover, these subgraphs are shown to be vertex Γ0(N)-transitive
and edge Γ0(N)-transitive. Finally, necessary and sufficient conditions for being self-paired
edge are provided.

Keywords: Congruence groups, Transitive and Imprimitive action, Suborbital graphs.

MSC 2000 classification: primary 05C25, secondary 20H05

Introduction

Let PSL(2,R) denote the group consisting of the Möbius transformations

T : z →
az + b

cz + d
,where a, b, c and d are real and ad− bc = 1.

This is the automorphism group of the upper half planeH := {z ∈ C : Im(z) > 0}.
Γ will denote the modular group, a special subgroup of PSL(2,R) with integral
coefficients. Γ is a Fuchsian group whose fundamental domain has finite area,
so it has a signature consisting of the geometric invariants

(g;m1, . . . ,mr, s) (1)

where g is the genus of the compactified quotient space, m1, . . . ,mr are the
periods of the elliptic elements and s is the parabolic class number. The principal
congruence subgroup of Γ, denoted by Γ(N), is defined to be the subgroup

{(

a b
c d

)

∈ Γ : a ≡ d ≡ 1modN, b ≡ c ≡ 0modN

}

. (2)
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A subgroup of Γ is called a congruence group provided it contains the principal
congruence group Γ(N). Congruence groups have been of great interest in many
fields of mathematics, such as number theory, group theory, etc. This article is
based on the idea of the suborbital graphs of a permutation group G acting on
a set ∆ introduced by Sims[9]. Some applications of this method can be found
in papers [2],[3],[5],[6],[7]. Especially in [3],[6], authors give some results about
a connection between the periods of elliptic elements of a chosen permutation
group with the circuits in suborbital graphs of it. Our results for Γ0(N) may
help to confirm the above idea. The congruence groups

Γ0(N) =

{(

a b
c d

)

∈ Γ : b ≡ 0modN

}

(3)

are well known [8]. In this study, we define Γ∗(N) as the group obtained by

adding the stabilizer of 0 to Γ(N); that is, Γ∗(N) :=

〈(

1 0
1 1

)

,Γ(N)

〉

. It is

easily seen that Γ∗(N) is equal to

{(

1 + aN bN
c 1 + dN

)

: a, b, c, d ∈ Z

}

(4)

1 The Action of Γ0(N) on Q̂

Every element of Q̂ can be represented as a reduced fraction
x

y
, with x, y ∈ Z

and (x, y) = 1. We represent 0 as
0

1
=

0

−1
. The action of the matrix

(

a b
c d

)

∈ Γ

on
x

y
is

(

a b
c d

)

:
x

y
→

ax+ by

cx+ dy
.

Theorem 1. The action of Γ0(N) on Q̂ is not transitive.

Proof. For

(

a bN
c d

)

∈ Γ0(N),

(

a bN
c d

)(

N
1

)

=
aN + bN

cN + d
is a reduced frac-

tion, so N is not sent to N + 1 under the action of Γ0(N).

In this case, we will find a maximal subset of Q̂ on which Γ0(N) acts tran-
sitively. For this, we first prove one of our results in the following theorem:

Theorem 2. Let k/s be an arbitrary rational number with (k, s) = 1. Then
there exists some element A ∈ Γ0(N) such that A(k, s) = (k1, s1) with k1|N .
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Proof.

(

a bN
c d

)(

k
s

)

=

(

ak + bsN
ck + ds

)

. We find a pair
{

a, b
}

, for which the

equation

ak + bsN = (N, k) (5)

holds. Let k1 = (N, k). Since (k/k1, sN/k1) = 1, there exists a pair
{

a0, b0
}

so
that (5) is satisfied. Therefore, the general solution of (5) is

a = a0 + sNn/k1 and b = b0 + kn/k1, where n ∈ Z (6)

Let N = qα0
0
qα1
1

· · · p
αs0
s0 be the prime power decomposition of N . We must

show that there exists a pair
{

a∗, b∗
}

satisfying (6) such that (a∗, Nb∗) = 1.
If (N, a0) = 1, there is nothing to prove. If (N, a0) > 1, then a0 does have
a common factor with N , say q0. From (5) we get (q0, Ns/k1) = 1. Therefore,
assuming n to be 1 in (6), we obtain an integer a1, such that q0|a1. If (N, a1) > 1,
then a1 has a common factor with N , say q1. Let a2 = a1 − q0Ns/k1 = 1.
Then a2 does not have q1 as a factor. If (N, a2) > 1, then a2 has a common
factor with N , say q2. Therefore, we first obtain a3 = a2 − q0q1Ns/k1 = 1
and by induction as0+1 = as0 − q0q1 · · · qs0−1Ns/k1 has no q0, q1 · · · , qs0 as
factors. Hence (N, as0+1) = 1. Let a0 = as0+1 with the corresponding b, b∗. So
(a∗, Nb∗) = 1. This shows that there exits an element (in fact, infinitely many)
A ∈ Γ0(N) such that A(k, s) = (k1, s1) with k1|N .

Theorem 3. Let a|N and (a, e) = (a, f) = 1. Then

(

a
e

)

≈

(

a
f

)

are

conjugate under Γ0(N) if and only if e ≡ fmod(a,N/a).

Proof. The necessary part is obvious by Theorem 2. Let A =

(

α βN
γ δ

)

∈

Γ0(N). Then A

(

a
e

)

=

(

αa+ βeN
γa+ δe

)

=

(

a
f

)

. Therefore γa + δe = f , and so

δe− f ≡ 0(moda). Then

α+ βeN/a = 1 and δe− f ≡ 0mod(a,N/a) (7)

From detA, we have αδ ≡ 1mod(a,N/a), and from the above, α ≡ 1mod(a,N/a).
Consequently, δ ≡ 1mod(a,N/a).

Theorem 4. Let a|N . Then the orbit

(

a
e

)

of a/e under Γ0(N) is the set
{

x/y ∈ Q̂ : (N, x) = a, e ≡ y x
a
mod(a,N/a)

}

. Furthermore, the number of orbits
(

a
e

)

with a|N under Γ0(N) is just ϕ(a,N/a), where ϕ is Euler function.
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Proof. Theorems 2 and 3 complete the proof.

Without loss of generality, for making calculations easier, N will be a prime
throughout the paper.

Corollary 1. The orbits of Γ0(p) are

(

1
1

)

and

(

p
1

)

.

It is clear that Γ0 < Γ∗(p) < Γ0(p), so Γ0 is not maximal in Γ0(p) and hence

the action of Γ0(p) on

(

p
1

)

is imprimitive. Then we have

Corollary 2. (Γ0(p),

(

p
1

)

) is an imprimitive permutation group.

Γ0(p) acts transitively and imprimitively on the set

(

p
1

)

. Let ≈ denote the

Γ0(p)-invariant equivalnce relation induced on

(

p
1

)

by Γ0(p) as follows:

If v =
b1p

d1
and w =

b2p

d2
are elements of

(

p
1

)

, then v = g(0) and w = g′(0)

for elements g, g′ ∈ Γ0(p) of the form

(

a1 b1p
c1 d1

)

and

(

a2 b2p
c2 d2

)

, respectively.

Now v ≈ w iff g−1g′ ∈ Γ∗(p); that is,

g−1g′ =

(

d1a2 − p(c2b1) p(d1b2 − b1d2)
a1c2 − c1a2 a1d2 − p(c1b2)

)

∈ Γ∗(p)

iff d1a2 ≡ 1(modp) and a1d2 ≡ 1(modp). Then d1a1d2 ≡ d1(modp) and so d2 ≡
d1(modp). Hence we see that

v ≈ w ⇐⇒ d1 ≡ d2(modp). (8)

The number η(p) of equivalence class under ≈ is given by η(p) = |Γ0(p) : Γ∗(p)|.

Since

(

1 0
1 1

)p

∈ Γ(p), |Γ∗(p) : Γ(p)| = p. From [8], we know that |Γ : Γ(N)| =

N3
∏

p|N

(

1−
1

p2

)

and |Γ : Γ0(N)| = N
∏

p|N

(

1 +
1

p

)

. Calculating for N = p and

using the equation |Γ : Γ(p)| = |Γ : Γ0(p)| · |Γ0(p) : Γ∗(p)| · |Γ∗(p) : Γ(p)|, we
have that

(

p
1

)

=

[

p
1

]

∪

[

p
2

]

· · ·

[

p
p− 1

]

.

From (8), it is clear that

[

p
1

]

=

{

xp

1 + yp
: x, y ∈ Z

}

=

[

0
1

]

= [0]
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2 Suborbital Graphs

Let (G,Ω) be a transitive permutation group. Then G acts on Ω × Ω by
g(α, β) = (g(α), g(β))(g ∈ G,α, β ∈ Ω).

The orbits of this action are called suborbitals of G. The orbit containing
(α, β) is denoted by O(α, β). From O(α, β) we can form a suborbital graph
G(α, β) : its vertices are the elements of Ω, and there is a directed edge from γ
to δ if (γ, δ) ∈ O(α, β). A directed edge from γ to δ is denoted by (γ → δ). If
(γ, δ) ∈ O(α, β), then we will say that there exists an edge (γ → δ) in G(α, β).
These ideas were first introduced by Sims [9].

If α = β, then the corresponding suborbital graph G(α, α) is self-paired : it
consists of a loop based at each vertex α ∈ Ω. By a circuit(or a closed edge
path), we mean a sequence ν1 → ν2 → · · · → νm → ν1, where m ≥ 3. If m = 3
or 4 then the circuit is called a triangle or a rectangle.

In this final section, we determine the suborbital graphs for Γ0(p) on

(

p
1

)

.

Since Γ0(p) acts transitively on

(

p
1

)

, each suborbital contains a pair (0, v) for

some v ∈

(

p
1

)

; i.e., v =
p

u
. We denote this suborbital by Op,u and corresponding

suborbital graph by Gp,u which is a disjoint union of η(p) subgraphs forming
blocks with respect to ≈ -Γ0(p) invariant equivalence relation. Γ0(p) permutes
these blocks transitively and these subgraphs are all isomorphic. Therefore, it
is sufficient to do the calculations only for the block [0]. Let Fp,u denote the
subgraph of Gp,u whose vertices form the block [0].

Theorem 5. Let r/s and x/y be in block [0]. Then there is an edge r/s →
x/y in Fp,u iff x ≡ ±ur(modp) : r ≡ 0(modp), y ≡ ±us(modp) : s ≡ 1(modp),
and ry − sx = ∓p.

( Plus and minus signs correspond to r/s > x/y and r/s < x/y, respectively.)

Proof. Since r/s → x/y ∈ Fp,u, then there exists some T ∈ Γ∗(p) such that, T

sends the pair

(

0

1
,
p

u

)

to the pair

(

r

s
,
x

y

)

; that is,

T

(

0

1

)

=
r

s
and T

(p

u

)

=
x

y
for

(

1 + ap bp
c 1 + dp

)

∈ Γ∗(p), detT = 1.

From these equations, it is clear that x ≡ ur(modp) : r ≡ 0(modp), y ≡

us(modp) : s ≡ 1(modp). Furthermore,

(

1 + ap bp
c 1 + dp

)(

0 p
1 u

)

=

(

r x
s y

)

,

so that ry − sx = −p.

Conversely, let be x ≡ ur(modp) : r ≡ 0(modp), y ≡ us(modp) : s ≡
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1(modp) and ry − sx = −p. Then there are a, c ∈ Z such that x = ur + ap
and y = us + cp. If we put these equivalences in ry − sx = −p, we obtain
r(us+ cp)− s(ur + ap) = −p. Since

(

a r
c s

)(

0 p
1 u

)

=

(

r ur + ap
s us+ cp

)

,

we have as − rc = 1. As as − rc = 1(modp) and r ≡ 0(modp), as ≡ 1(modp).
Since s ≡ 1(modp), we obtain a ≡ 1(modp). Consequently,

A =

(

a r
c s

)

, detA = 1, a ≡ s ≡ 1(modp) and r ≡ 0(modp),

and so A ∈ Γ∗(p). The proof for (-) is similar.

Theorem 6. Γ∗(p) permutes the vertices and the edges of Fp,u transitively.

Proof. Suppose that u, v ∈ [0]. As Γ0(p) acts on

(

p
1

)

transitively, g(u) = v

for some g ∈ Γ0(p). Since u ≈ 0 and ≈ is Γ0(p)-invariant equivalence relation,
g(u) ≈ g(0); that is, v ≈ g(0). Thus, as g(0) ∈ [0], g ∈ Γ∗(p).

Assume that v, w ∈ [0]; x, y ∈ [0] and v → w, x → y ∈ Fp,u. Then (v, w) ∈
Op,u and (x, y) ∈ Op,u. Therefore, for some S, T ∈ Γ0(p)

S(0) = v and S(p/u) = w; T (0) = x and T (p/u) = y.

Hence, S, T ∈ Γ∗(p), as S(0), T (0) ∈ [0]. Furthermore, TS−1(v) = x and
TS−1(w) = y; that is, TS−1 ∈ Γ∗(p).

Lemma 1. Let r/s and x/y be rational numbers such that r/s−x/y = −1,
where s ≥ 1, y ≥ 1. Then there exist no integers between r/s and x/y.

Proof. Let k be an integer such that r/s < k < x/y. Then r < sk and x > ky.
Thus 1 = sx− ry > sx− sky = s(x− ky) ≥ s, which is a contradiction.

Theorem 7. No edges of Fp,u cross in H.

Proof. Without loss of generality, because of the transitive action, we can take

the edges 0 →
p

u
,

x1p

1 + y1p
→

x2p

1 + y2p
and

x1p

1 + y1p
<

p

u
<

x2p

1 + y2p
, where all

letters are positive integers. It is easily seen that (1+y1p)/x1 > u > (1+y2p)/x2.
On the other hand, x1 − x2 − p(x1y2 − x2y1) = −1 by Theorem 5. Lemma 1
completes the proof.

Theorem 8. Fp,u has a self-paired edge iff u2 ≡ −1(modp).
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Figure 1. Examples of subgraph

Proof. Because of the transitive action, the form of a self-paired edge can be
taken of 0/1 → p/u → 0/1. The condition follows immediately from the second
edge by Theorem 5.

Corollary 3. Fp,u has a self-paired edge iff p ≡ 1(mod4) or p = 2.

Example 1. Let p = 5. Since |U5| = ϕ(5) = 4, u = 1, 2, 3 or 4. It is clear
that Fp,u has a self-paired edge only for u = 2, 3.( It is a well-known fact that
there are at most two solution for all p such that p ≡ 1(mod4)). We can draw
these graphs as in Figure 1. For p < 100, another subgraph which has a self
paired edge is as following; 5, 13, 17, 29, 37, 41, 53, 61, 73, 79, 97.

Theorem 9. Fp,u contains no triangles.

Proof. Since Γ∗(p) permutes the vertices transitively, we may suppose that the
triangle has the form 0/1 → p/u → p/v → 0/1. From the second edge, we have
that v−u = ±1. Then v = u±1. From the second and third edges, we have that
u ≡ 1(modp) and v ≡ 1(modp) respectively. It follows from the last equation
that these congruences contradict each other.
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