A note on $|N, p, q|_{k},(1 \leq k \leq 2)$ summability of orthogonal series

Xhevat Z. Krasniqi
Department of Mathematics and Computer Sciences
Avenue "Mother Theresa " 5, Prishtinë, 10000, Republic of Kosova
xheki00@hotmail.com

Received: 3.6.2010; accepted: 20.9.2010.
Abstract. In this paper we present some results on $|N, p, q|_{k},(1 \leq k \leq 2)$ summability of orthogonal series.

Keywords: Orthogonal series, Nörlund summability.
MSC 2000 classification: Primary 42C15, 40F05, Secondary 40G05.

1 Introduction

Let $\sum_{n=0}^{\infty} a_{n}$ be a given infinite series with its partial sums $\left\{s_{n}\right\}$. Then, let p denotes the sequence $\left\{p_{n}\right\}$. For two given sequences p and q, the convolution $(p * q)_{n}$ is defined by

$$
(p * q)_{n}=\sum_{m=0}^{n} p_{m} q_{n-m}=\sum_{m=0}^{n} p_{n-m} q_{m} .
$$

When $(p * q)_{n} \neq 0$ for all n, the generalized Nörlund transform of the sequence $\left\{s_{n}\right\}$ is the sequence $\left\{t_{n}^{p, q}\right\}$ obtained by putting

$$
t_{n}^{p, q}=\frac{1}{(p * q)_{n}} \sum_{m=0}^{n} p_{n-m} q_{m} s_{m}
$$

The infinite series $\sum_{n=0}^{\infty} a_{n}$ is absolutely summable $(N, p, q)_{k}$ of order k, if for $k \geq 1$ the series

$$
\sum_{n=0}^{\infty} n^{k-1}\left|p_{n}^{p, q}-t_{n-1}^{p, q}\right|^{k}
$$

converges, and we write in brief

$$
\sum_{n=0}^{\infty} a_{n} \in|N, p, q|_{k} .
$$

We note that for $k=1,|N, p, q|_{k}$ summability is the same as $|N, p, q|$ summability introduced by Tanaka [3].

Let $\left\{\varphi_{n}(x)\right\}$ be an orthonormal system defined in the interval (a, b). We assume that $f(x)$ belongs to $L^{2}(a, b)$ and

$$
\begin{equation*}
f(x) \sim \sum_{n=0}^{\infty} a_{n} \varphi_{n}(x) \tag{1}
\end{equation*}
$$

http://siba-ese.unisalento.it/ © 2010 Università del Salento
where $a_{n}=\int_{a}^{b} f(x) \varphi_{n}(x) d x,(n=0,1,2, \ldots)$.
We write (see [4])

$$
R_{n}:=(p * q)_{n}, R_{n}^{j}:=\sum_{m=j}^{n} p_{n-m} q_{m}
$$

and

$$
R_{n}^{n+1}=0, R_{n}^{0}=R_{n} .
$$

Also we put

$$
P_{n}:=(p * 1)_{n}=\sum_{m=0}^{n} p_{m} \quad \text { and } \quad Q_{n}:=(1 * q)_{n}=\sum_{m=0}^{n} q_{m} .
$$

Our main purpose of the present paper is to study the $|N, p, q|_{k}$ summability of the orthogonal series (1), for $1 \leq k \leq 2$, and to deduce as corollaries all results of Y. Okuyama [4].

Throughout this paper K denotes a positive constant that it may depends only on k, and be different in different relations.

2 Main Results

We prove the following theorem.
Theorem 2.1 If for $1 \leq k \leq 2$ the series

$$
\sum_{n=0}^{\infty}\left\{n^{2-\frac{2}{k}} \sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{\frac{k}{2}}
$$

converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x)
$$

is summable $|N, p, q|_{k}$ almost everywhere.
Proof. For the generalized Nörlund transform $t_{n}^{p, q}(x)$ of the partial sums of the orthogonal series $\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x)$ we have that

$$
\begin{aligned}
t_{n}^{p, q}(x) & =\frac{1}{R_{n}} \sum_{m=0}^{n} p_{n-m} q_{m} \sum_{j=0}^{m} a_{j} \varphi_{j}(x) \\
& =\frac{1}{R_{n}} \sum_{j=0}^{n} a_{j} \varphi_{j}(x) \sum_{m=j}^{n} p_{n-m} q_{m} \\
& =\frac{1}{R_{n}} \sum_{j=0}^{n} R_{n}^{j} a_{j} \varphi_{j}(x)
\end{aligned}
$$

where $\sum_{j=0}^{m} a_{j} \varphi_{j}(x)$ are partial sums of order k of the series (1).
As in [4] page 163 one can find that

$$
\triangle t_{n}^{p, q}(x):=t_{n}^{p, q}(x)-t_{n-1}^{p, q}(x)=\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right) a_{j} \varphi_{j}(x) .
$$

Using the Hölder's inequality and orthogonality to the latter equality, we have that

$$
\begin{aligned}
\int_{a}^{b}\left|\triangle t_{n}^{p, q}(x)\right|^{k} d x & \leq(b-a)^{1-\frac{k}{2}}\left(\int_{a}^{b}\left|t_{n}^{p, q}(x)-t_{n-1}^{p, q}(x)\right|^{2} d x\right)^{\frac{k}{2}} \\
& =(b-a)^{1-\frac{k}{2}}\left[\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right]^{\frac{k}{2}} .
\end{aligned}
$$

Hence, the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1} \int_{a}^{b}\left|\triangle t_{n}^{p, q}(x)\right|^{k} d x \leq(b-a)^{1-\frac{k}{2}} \sum_{n=1}^{\infty} n^{k-1}\left[\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right]^{\frac{k}{2}} \tag{2}
\end{equation*}
$$

converges by the assumption. According to the Lemma of Beppo-Levi the proof of the theorem ends.

For $k=1$ in theorem 2.1 we have the following result.
Corollary 2.2 [4] If the series

$$
\sum_{n=0}^{\infty}\left\{\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{\frac{1}{2}}
$$

converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x)
$$

is summable $|N, p, q|$ almost everywhere.
Let us prove now another two corollaries of the Theorem 2.1.
Corollary 2.3 If for $1 \leq k \leq 2$ the series

$$
\sum_{n=0}^{\infty}\left(\frac{n^{1-\frac{1}{k}} p_{n}}{P_{n} P_{n-1}}\right)^{k}\left\{\sum_{j=1}^{n} p_{n-j}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-j}}{p_{n-j}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{\frac{k}{2}}
$$

converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x)
$$

is summable $|N, p|_{k}$ almost everywhere.
Proof. After some elementary calculations one can show that

$$
\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}=\frac{p_{n}}{P_{n} P_{n-1}}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-j}}{p_{n-j}}\right) p_{n-j}
$$

for all $q_{n}=1$, and the proof follows immediately from Theorem 2.1.
Remark 2.4 We note that:

1. If $p_{n}=1$ for all values of n then $|N, p|_{k}$ summability reduces to $|C, 1|_{k}$ summability
2. If $k=1$ and $p_{n}=1 /(n+1)$ then $|N, p|_{k}$ is equivalent to $|R, \log n, 1|$ summability.

Corollary 2.5 If for $1 \leq k \leq 2$ the series

$$
\sum_{n=0}^{\infty}\left(\frac{n^{1-\frac{1}{k}} q_{n}}{Q_{n} Q_{n-1}}\right)^{k}\left\{\sum_{j=1}^{n} Q_{j-1}^{2}\left|a_{j}\right|^{2}\right\}^{\frac{k}{2}}
$$

converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x)
$$

is summable $|\bar{N}, q|_{k}$ almost everywhere.
Proof. From the fact that

$$
\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}=-\frac{q_{n} Q_{j-1}}{Q_{n} Q_{n-1}}
$$

for all $p_{n}=1$, the proof follows immediately from Theorem 2.1.
Also, putting $k=1$ in Corollaries 2.3 and 2.5 we obtain
Corollary 2.6 [1] If the series

$$
\sum_{n=0}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left\{\sum_{j=1}^{n} p_{n-j}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-j}}{p_{n-j}}\right)^{2}\left|a_{j}\right|^{2}\right\}^{\frac{1}{2}}
$$

converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x)
$$

is summable $|N, p|$ almost everywhere.
Corollary 2.7 [2] If the series

$$
\sum_{n=0}^{\infty} \frac{q_{n}}{Q_{n} Q_{n-1}}\left\{\sum_{j=1}^{n} Q_{j-1}^{2}\left|a_{j}\right|^{2}\right\}^{\frac{1}{2}}
$$

converges, then the orthogonal series

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x)
$$

is summable $|\bar{N}, q|$ almost everywhere.
If we put

$$
\begin{equation*}
w^{(k)}(j):=\frac{1}{j^{\frac{2}{k}-1}} \sum_{n=j}^{\infty} n^{\frac{2}{k}}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2} \tag{3}
\end{equation*}
$$

then the following theorem holds true.
Theorem 2.8 Let $1 \leq k \leq 2$ and $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n) / n\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}$ converges. Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be non-negative. If the series $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \Omega^{\frac{2}{k}-1}(n) w^{(k)}(n)$ converges, then the orthogonal series $\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x) \in|N, p, q|_{k}$ almost everywhere, where $w^{(k)}(n)$ is defined by (3).

Proof. Applying Hölder's inequality to the inequality (2) we get that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n^{k-1} \int_{a}^{b}\left|\triangle t_{n}^{p, q}(x)\right|^{k} d x \leq \\
& \leq K \sum_{n=1}^{\infty} n^{k-1}\left[\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right]^{\frac{k}{2}} \\
&=K \sum_{n=1}^{\infty} \frac{1}{(n \Omega(n))^{\frac{2-k}{2}}}\left[n \Omega^{\frac{2}{k}-1}(n) \sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right]^{\frac{k}{2}} \\
& \leq K\left(\sum_{n=1}^{\infty} \frac{1}{(n \Omega(n))}\right)^{\frac{2-k}{2}}\left[\sum_{n=1}^{\infty} n \Omega^{\frac{2}{k}-1}(n) \sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|a_{j}\right|^{2}\right]^{\frac{k}{2}} \\
& \leq K\left\{\sum_{j=1}^{\infty}\left|a_{j}\right|^{2} \sum_{n=j}^{\infty} n \Omega^{\frac{2}{k}-1}(n)\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\right\}^{\frac{k}{2}} \\
& \leq K\left\{\sum_{j=1}^{\infty}\left|a_{j}\right|^{2}\left(\frac{\Omega(j)}{j}\right)^{\frac{2}{k}-1} \sum_{n=j}^{\infty} n^{\frac{2}{k}}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\right\} \\
& \quad=K\left\{\sum_{j=1}^{\frac{k}{2}}\left|a_{j}\right|^{2} \Omega^{\frac{2}{k}-1}(j) w^{(k)}(j)\right\}^{\frac{k}{2}},
\end{aligned}
$$

which is finite by assumption, and this completes the proof.
Finally, as a direct consequence of the theorem 2.8 is the following $(k=1)$.
Corollary 2.9 [4] Let $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n) / n\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}$ converges. Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be non-negative. If the series $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \Omega(n) w^{(1)}(n)$ converges, then the orthogonal series $\sum_{n=0}^{\infty} a_{n} \varphi_{n}(x) \in|N, p, q|$ almost everywhere, where $w^{(1)}(n)$ is defined by

$$
w^{(1)}(j):=\frac{1}{j} \sum_{n=j}^{\infty} n^{2}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}
$$

References

[1] Y. Okuyama, On the absolute Nörlund summability of orthogonal series, Proc. Japan Acad. 54, (1978), 113-118.
[2] Y. Okuyama and T. Tsuchikura, On the absolute Riesz summability of orthogonal series, Analysis Math. 7, (1981), 199-208.
[3] M. Tanaka, On generalized Nörlund methods of summability, Bull. Austral. Math. Soc. 19, (1978), 381-402.
[4] Y. Okuyama, On the absolute generalized Nörlund summability of orthogonal series, Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165.
[5] Y. Okuyama, Absolute summability of Fourier series and orthogonal series, Lecture Notes in Math. No. 1067, Springer-Verlag New York Tokyo 1984.

