Groups with few
 non-normal cyclic subgroups

Davide Oggionni
davide_oggionni@alice.it

Gianluca Ponzoni
gianluca.ponzoni@katamail.com

Vittoria Zambelli

Dipartimento di Matematica F. Enriques, Università degli Studi di Milano
vittoria.zambelli@unimi.it

Received: 11.10.2009; accepted: 5.7.2010.

Abstract

R. Brandl in [2] and H. Mousavi in [6] classified finite groups which have respectively just one or exactly two conjugacy classes of non-normal subgroups. In this paper we determine finite groups which have just one or exactly two conjugacy classes of non-normal cyclic subgropus. In particular, in a nilpotent group if all non-normal cyclic subgroups are conjugate, then any two non-normal subgroups are conjugate. In general, if a group has exactly two conjugacy classes of non-normal cyclic subgroups, there is no upper bound for the number of conjugacy classes of non-normal subgroups.

Keywords: conjugacy classes, cyclic subgroup
MSC 2000 classification: 20D25

1 Preliminaries

Notations

$\nu(G)$ will denote the number of conjugacy classes of non-normal subgroups of G.
$\nu_{c}(G)$ will denote the number of conjugacy classes of non-normal cyclic subgroups of G. $G=[A] B$ will denote that G is the semidirect product of A and B, with A normal in G. By $A \sim_{G} B$, with A and B subgroups of G, we mean that A and B are conjugate in G. Let P be a p-group: then $\Omega_{i}(P)=\left\langle x \in P \mid x^{p^{i}}=1\right\rangle, \mho_{i}(P)=\left\langle a^{p^{i}} \mid a \in P\right\rangle$. All groups considered in this paper are finite.

As in [7] Propositions 2.2 and 2.6 one can prove the following
Proposition 1. Let G be a group.
(1) If N is a normal subgroup of G, then $\nu_{c}\left(\frac{G}{N}\right) \leq \nu_{c}(G)$
(2) If $G=A \times B$, then $\nu_{c}(G) \geq \nu_{c}(A) \nu_{c}(B)+\nu_{c}(A) \mu_{c}(B)+\mu_{c}(A) \nu_{c}(B)$, where $\mu_{c}(G)$ denotes the number of normal cyclic subgroups of G; if $(|A|,|B|)=1$, then equality holds.

Proposition 2. If P is a non-abelian p-group with $|P|=p^{n}$ and $\exp P=p^{n-1}$, then $\nu_{c}(P) \leq 2$.

It is $\nu_{c}(P)=1$ if and only if $P \simeq M_{n}(p)=\left\langle a, b \mid a^{p^{n-1}}=b^{p}=1,[a, b]=a^{p^{n-2}}\right\rangle$ where $n \geq 4$ if $p=2$. Moreover, $\nu(P)=1$.

It is $\nu_{c}(P)=2$ if and only if $p=2$ and P is isomorphic to one of the following groups:
i. $D_{n}=\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1,[a, b]=a^{-2}\right\rangle$ where $n \geq 3$; the non-normal cyclic subgroups of D_{n} have order 2 . It is $\nu\left(D_{n}\right)=2 n-4$.
ii. $S_{n}=\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1,[a, b]=a^{-2+2^{n-2}}\right\rangle$ where $n \geq 4$; the non-normal cyclic subgroups of S_{n} have order 2 or 4 . It is $\nu\left(S_{n}\right)=2 n-5$.
iii. $Q_{n}=\left\langle a, b \mid a^{2^{n-1}}=1, a^{2^{n-2}}=b^{2},[a, b]=a^{-2}\right\rangle$ where $n \geq 4$; the non-normal cyclic subgroups of Q_{n} have order 4 . It is $\nu\left(Q_{n}\right)=2 n-6$.
The proof is a straightforward check on the groups Q_{n}, S_{n} and D_{n}, bearing in mind [2] and [7], Prop.2.5.

Proposition 3. Let P be a p-group;
(1) if there exists a subgroup N contained in $Z(P)$ such that $\nu\left(\frac{P}{N}\right)=1$, then $[P: Z(P)]=p^{2}$ and $\left|P^{\prime}\right|=p$;
(2) if $\nu\left(\frac{P}{Z(P)}\right)=0$, then either $\frac{P}{Z(P)}$ is abelian or $\nu_{c}(P) \geq 3$.

Proof. (1) By [1] it is $\frac{P}{N} \simeq M_{r}(p)$, where $r \geq 3$ if p odd, $r \geq 4$ if $p=2$; so $\frac{P}{N}$ has two cyclic maximal subgroups and therefore P has two abelian maximal subgroups. It follows $[P: Z(P)]=p^{2}$. Since P has an abelian maximal subgroup, one has $\left|P^{\prime}\right||Z(P)|=p^{n-1}$, so $\left|P^{\prime}\right|=p$.
(2) if $\frac{P}{Z(P)}$ is non-abelian, then

$$
\frac{P}{Z(P)}=\left\langle\bar{x}, \bar{y} \mid \bar{x}^{4}=1, \bar{x}^{2}=\bar{y}^{2}=[\bar{x}, \bar{y}]\right\rangle \times \bar{E}
$$

where \bar{E} is an elementary abelian 2-group. The subgroups $\langle x\rangle,\langle y\rangle$ and $\langle x y\rangle$ represent three different conjugacy classes in P; hence, if $\nu_{c}(P) \leq 2$, we can assume $\langle x\rangle \triangleleft P$. Then $|x| \geq 2^{3}$; since $[x, y] \in\langle x\rangle$, it is $[x, y]^{2}=\left[x^{2}, y\right]=1$, so $[x, y] \in\left\langle x^{4}\right\rangle \subseteq Z(P)$, a contradiction.

A check on minimal non-abelian groups (see [5]) proves the following
Proposition 4. Let G be a minimal non-abelian group; then
(1) $\nu_{c}(G)=1$ if and only if $\nu(G)=1$;
(2) if G is non-nilpotent (so that $G=[Q] P \simeq G(q, p, n)$ with $|Q|=q^{m},|P|=p^{n}$), one has $\nu_{c}(G)=2$ if and only if $n=1, m \geq 2$ and $p=\frac{q^{m}-1}{q-1}$;
(3) if G is a p-group, one has $\nu_{c}(G)=2$ if and only if $\nu(G)=2$; hence either $G=\left[C_{n}\right] C_{4}=$ $[\langle x\rangle]\langle y\rangle$ with $\left[x, y^{2}\right]=1$ or $G=\left[C_{4}\right] C_{2} \simeq D_{3}$.
Later we shall use the following Proposition on power-automorphisms. An automorphism ϕ of a group G is said to be a power-automorphism if $\phi(H)=H$ for every subgroup H of G.

Proposition 5. ([4], Hilfsatz 5) Let P be a p-group and $\alpha \neq 1$ a p^{\prime}-power automorphism of P. Then P is abelian and for every $a \in P$ it is $\alpha(a)=a^{k}$ where $k \in Z$ does not depend on a.

$2 \quad \nu_{c}=1$

Theorem 1. Let G be a non-nilpotent group; one has $\nu_{c}(G)=1$ if and only if $G=[N] P$, where N is an abelian group of odd order, $P \in \operatorname{Syl}_{p}(G)$ is cyclic and P induces on N a group of fixed-point-free power-automorphisms of order p.

Proof. Assume $\nu_{c}(G)=1$ and $P \in \operatorname{Syl}_{p}(G)$ with $P \nexists G$; let $s \in P$ be such that $\langle s\rangle \nless G$.
For each prime $q \neq p$ and for each q-element $a \in G$ we have $\langle a\rangle \triangleleft G$ and therefore for $Q \in \operatorname{Syl}_{q}(G)$ it is $Q \triangleleft G$. Furthermore $[a, s] \neq 1$ and $q \neq 2$, so s induces a fixed-point-free automorphism on Q; by Proposition 5 the subgroup Q is abelian and s induces a powerautomorphism on Q.

Consequently $G=[N] P$ with N abelian and $C_{N}(s)=\langle 1\rangle$.
For every $b \in P \backslash C_{P}(N)$ it is $\langle b\rangle \nless G$ so that $\langle b\rangle=\left\langle s^{g}\right\rangle$ for some $g \in G$; if $g=n y$ with $n \in N, y \in P$ and $b=g^{-1} s^{l} g$ for some $l \in \mathbb{N}$, then $b=\left[y, s^{-l}\right] s^{l} \in P^{\prime}\langle s\rangle$. Since $P \neq C_{P}(N)$, it is $P=P^{\prime}\langle s\rangle=\langle s\rangle$.

Vice versa, since s induces on N a fixed-point-free automorphism of order p, the conjugates of P are the only non-normal cyclic subgroups of G.

Lemma 1. Let G be a nilpotent group with $\nu_{c}(G)=1$; then
(1) G is a p-group with $\left|\Omega_{1}(G)\right| \geq p^{2}$;
(2) if $\left|G^{\prime}\right|=p$, it is $\left|\Omega_{1}(G)\right|=p^{2}$ and $\Phi(G) \subseteq Z(G)$;
(3) if $p=2$ and $G^{\prime} \subseteq Z(G)$, for any $a \in G \backslash Z(G)$ with $|a|=2$ it is $\Omega_{2}(G) \subseteq C_{G}(a)$ and $\exp G \geq 2^{3}$
Proof. (1) It follows from Propositions 1 and 2.
(2) Consider $\langle a\rangle \nrightarrow G$.

If $|a|=p$, then for any $b \in G$ with $|b|=p$ we have either $\langle b\rangle \notin G$ or $\langle a b\rangle \notin G$, so that respectively either $\langle b\rangle$ or $\langle a b\rangle$ is conjugate to $\langle a\rangle$; it follows $b \in\langle a\rangle G^{\prime}$. Therefore $\Omega_{1}(G) \subseteq\langle a\rangle \times G^{\prime}$ and $\left|\Omega_{1}(G)\right|=p^{2}$.
If $|a|=p^{r}$ with $r \geq 2$, then $\Omega_{1}(G) \subseteq Z(G)$. If it were $\left|\Omega_{1}(G)\right| \geq p^{3}$, then for any $c \in G \backslash\langle a\rangle G^{\prime}$ such that $|c|=p$ it would be $\langle a c\rangle \varkappa_{G}\langle a\rangle$ and so $\langle a c\rangle \triangleleft G$. If $g \notin N_{G}(\langle a\rangle)$, then $1 \neq[a, g]=[a c, g] \in\langle a c\rangle \cap G^{\prime}$ and therefore $G^{\prime} \subseteq \Omega_{1}(\langle a c\rangle) \subseteq\langle a\rangle$, a contradiction. For any $a, b \in G$ it is $1=[a, b]^{p}=\left[a^{p}, b\right]$ and so $\Phi(G)=G^{\prime} \mho_{1}(G) \subseteq Z(G)$.
(3) As above we prove $\Omega_{1}(G) \subseteq\langle a\rangle G^{\prime}$. If $b \in G$ is such that $|b|=4$, then $\langle b\rangle \triangleleft G$; if it were $[a, b] \neq 1$, it would be $(a b)^{2}=1$ and $a b \in \Omega_{1}(G) \subseteq C_{G}(a)$, a contradiction. So $\Omega_{2}(G) \subseteq C_{G}(a)$ and $\exp G \geq 2^{3}$.

Theorem 2. Let P be a p-group; it is $\nu_{c}(P)=1$ (if and) only if it is $\nu(P)=1$, that means $P \simeq M_{n}(p)=\left\langle a, b \mid a^{p^{n-1}}=b^{p}=1,[a, b]=a^{p^{n-2}}\right\rangle$, where $n \geq 4$ if $p=2$.

Proof. Suppose $\nu_{c}(P)=1$ and let P be a minimal counterexample with $|P|=p^{n}$; by Proposition 2 it is $\exp P \leq p^{n-2}$.

Let us consider first the case $p \neq 2$.
Let N be a minimal normal subgroup of P; then $\nu_{c}\left(\frac{P}{N}\right) \leq \nu_{c}(P)=1$.
If $\nu_{c}\left(\frac{P}{N}\right)=0$, then $\frac{P}{N}$ is abelian and $P^{\prime}=N$ has order p. If $\nu_{c}\left(\frac{P}{N}\right)=1$, the minimality of P implies $\nu\left(\frac{P}{N}\right)=1$. By Proposition 3 it is again $\left|P^{\prime}\right|=p$.

By Lemma 1,2) it is $\left|\Omega_{1}(P)\right|=p^{2}$; as P is regular, $\left|\mho_{1}(P)\right|=p^{n-2}$ and $\phi(P)=\mho_{1}(P)=$ $Z(P)$. Then P is a minimal non-abelian group; this contradicts Proposition 4.

Let us suppose now $p=2$.

Step 1: $P^{\prime} \subseteq Z(P)$
By Proposition 3 it is $\nu\left(\frac{P}{Z(P)}\right) \neq 1$ and therefore $\nu_{c}\left(\frac{P}{Z(P)}\right) \neq 1$; then $\nu_{c}\left(\frac{P}{Z(P)}\right)=$ $\nu\left(\frac{P}{Z(P)}\right)=0$ and $\frac{P}{Z(P)}$ is abelian.
Step 2: $\Omega_{1}(P) \nsubseteq Z(P)$
Suppose $\Omega_{1}(P) \subseteq Z(P)$. Since $\nu_{c}\left(Q_{n}\right)=2, P$ has at least two different minimal normal subgroups N_{1} and N_{2} and we may suppose $\frac{P}{N_{1}}$ and $\frac{P}{N_{2}}$ non-abelian.
If $\nu_{c}\left(\frac{P}{N_{1}}\right)=1$, then $\nu\left(\frac{P}{N_{1}}\right)=1$; by Proposition 3 one has $\left|P^{\prime}\right|=2$ and

$$
\frac{P}{N_{1}}=\left\langle\bar{a}, \bar{b} \mid \bar{a}^{2^{n-2}}=\bar{b}^{2}=1,[\bar{a}, \bar{b}]=\bar{a}^{2^{n-3}}\right\rangle
$$

where $n \geq 5$.
Then $\langle b\rangle \nRightarrow P$ so that $|b|=4$ and $N_{1} \subseteq\langle b\rangle$; since $\exp P \leq 2^{n-2}$, it is $|a|=2^{n-2} \geq 2^{3}$ and therefore $\langle a\rangle \triangleleft P$. So $P=\left\langle a, b \mid a^{2^{n-2}}=b^{4}=1,[a, b]=a^{2^{n-3}}\right\rangle$ would be a minimal non-abelian group; this contradicts Proposition 4.
So it must be $\nu_{c}\left(\frac{P}{N_{1}}\right)=\nu_{c}\left(\frac{P}{N_{2}}\right)=0$ and $\frac{P}{N_{1}} \simeq \frac{P}{N_{2}} \simeq Q_{3} \times E$, where E is elementary abelian; it follows $\exp P=4$. Let

$$
\frac{P}{N_{1}}=\left\langle\bar{x}, \bar{y} \mid \bar{x}^{4}=1, \bar{x}^{2}=\bar{y}^{2}=[\bar{x}, \bar{y}]\right\rangle \times\left(\times_{i=1}^{n-4}\left\langle\bar{e}_{i}\right\rangle\right)
$$

Any two of the subgroups $\langle x\rangle,\langle y\rangle,\langle x y\rangle$ are not conjugate; we may suppose $\langle x\rangle \triangleleft P$, $\langle y\rangle \triangleleft P$ and $\langle x, y\rangle \simeq Q_{3}$.
Since P is non-hamiltonian, we may suppose $\left|e_{1}\right|=4, N \subseteq\left\langle e_{1}\right\rangle \triangleleft P$ and $\left[x, e_{1}\right]=$ $\left[y, e_{1}\right]=1$; it follows $\left|x e_{1}\right|=4$ and $\left[x e_{1}, y\right]=[x, y]=x^{2} \notin\left\langle\bar{x} e_{1}\right\rangle$. Therefore $\left\langle x e_{1}\right\rangle \notin P$ and $\left\langle y e_{1}\right\rangle \nless P$; since $\nu_{c}(P)=1$, then $y e_{1} \in\left\langle x e_{1}\right\rangle P^{\prime} \subseteq\left\langle x, e_{1}\right\rangle$, a contradiction.
Step 3: $|Z(P)| \leq 2^{n-3}$
If $[P: Z(P)]=4$, then $\left|P^{\prime}\right|=2$ and $\left|\Omega_{1}(P)\right|=4$ by Lemma 1,2$)$.
Since $\Omega_{1}(P) \nsubseteq Z(P)$, we have $\left|\Omega_{1}(Z(P))\right|=2$ and $Z(P)=\langle z\rangle$ is cyclic; furthermore there exists $a \in P$ such that $|a|=2$ and $\langle a\rangle \nless P$. By Proposition 4 there exists a non-abelian maximal subgroup of P and $\phi(P) \subseteq\left\langle z^{2}\right\rangle$. Let $x \in P \backslash\langle a, z\rangle$; it is $x^{2}=z^{2 r}$ so that $x z^{-r} \in \Omega_{1}(P) \subseteq\langle a, z\rangle$, a contradiction.
Step 4: $Z(P)$ is cyclic.
If $Z(P)$ were not cyclic, there would be at least two minimal normal subgroups N_{1} and N_{2} with $\frac{P}{N_{1}}$ and $\frac{P}{N_{2}}$ non-abelian. By Proposition 3 one would have $\nu\left(\frac{P}{N_{1}}\right) \neq 1$ and $\nu\left(\frac{P}{N_{2}}\right) \neq 1$; since P is a minimal counterexample, then $\nu_{c}\left(\frac{P}{N_{1}}\right)=\nu_{c}\left(\frac{P}{N_{2}}\right)=0$. ¿From $\exp \frac{P}{N_{1}}=\exp \frac{P}{N_{2}}=4$ it would follow $\exp P=4$; this contradicts Lemma 1,3).
Step 5: $\left|P^{\prime}\right|=2$.
Let N be the only minimal normal subgroup of P; one has $\nu_{c}\left(\frac{P}{N}\right)=0$ by Proposition 3 . If it were $N \neq P^{\prime}$, it would be

$$
\frac{P}{N}=\left\langle\bar{x}, \bar{y} \mid \bar{x}^{4}=1, \bar{x}^{2}=\bar{y}^{2}=[\bar{x}, \bar{y}]\right\rangle \times\left(\times_{i=1}^{m}\left\langle\bar{e}_{i}\right\rangle\right) ;
$$

then $[x, y] \in\left\langle x^{2}\right\rangle N=\left\langle y^{2}\right\rangle N=P^{\prime} \simeq C_{4}$ and $[x, y]^{2}=\left[x^{2}, y\right]=1$, a contradiction.

Conclusion : Since $\left|P^{\prime}\right|=2$, for any $a, b \in P$ it is $\left[a^{2}, b\right]=[a, b]^{2}=1$ and $\mho_{1}(G) \subseteq Z(P)$; from $|Z(P)| \leq 2^{n-3}$ it follows that every maximal subgroup of P is non-abelian.
Since $\Omega_{1}(P) \nsubseteq Z(P)$, there exists an element $a \in P$ such that $\langle a\rangle \nless P,|a|=2$ and $\Omega_{1}(P)=\langle a\rangle \times P^{\prime} \subseteq C_{P}(a)$.
For every $b \in P \backslash C_{P}(a)$ it is $[a, b]=c$, where $P^{\prime}=\langle c\rangle$; then it follows $\left[P: C_{P}(a)\right]=2$, $P=\langle b\rangle C_{P}(a)$ and $C_{P}(a) \neq\langle a\rangle Z(P)$.
Let $d \in C_{P}(a) \backslash\langle a\rangle Z(P)$: from $b^{2}, d^{2} \in Z(P)$ it follows either $\left\langle b^{2}\right\rangle \subseteq\left\langle d^{2}\right\rangle$ or $\left\langle d^{2}\right\rangle \subseteq\left\langle b^{2}\right\rangle$. If $b^{2}=d^{2 r}$, then $\left(b d^{-r}\right)^{4}=1$ and $b d^{-r} \in \Omega_{2}(P) \subseteq C_{P}(a)$ by Lemma 1,3$)$; this contradicts $b \notin C_{P}(a)$.
If $d^{2}=b^{4 s}$, then $d b^{-2 s} \in \Omega_{1}(P) \subseteq\langle a\rangle Z(P)$, whence $d \in\langle a\rangle Z(P)$, a contradiction.
$Q E D$
$3 \quad \nu_{c}=2$

3.1 Direct products

Proposition 6. If G is a direct product of proper subgroups and $\nu_{c}(G)=2$, then $G=$ $A \times B$ where $\nu_{c}(A)=1$ and $|B|=q$ for some prime q.

Moreover, if q divides $|A|$, then $q=2$.
Proof. Suppose $G=A \times B$ with A and B proper subgroups of G. Proposition 1 implies either $\nu_{c}(A)=0$ or $\nu_{c}(B)=0$. Suppose $\nu_{c}(B)=0$; then $\mu_{c}(B) \geq 2$ and either $\nu_{c}(A)=0$ or $\nu_{c}(A)=1$.

If $\nu_{c}(A)=0$, we may suppose A non-abelian, so that $A \simeq Q_{3} \times E$, where E is an elementary abelian 2-group. Since $\nu_{c}\left(Q_{3} \times Q_{3}\right)>2, B$ is abelian and there exists $b \in B$ such that $|b|=4$. Let $A=\left\langle x, y \mid x^{4}=1, x^{2}=y^{2}=[x, y]\right\rangle \times E$: the three subgroups $\langle x b\rangle,\langle y b\rangle$ and $\langle x y b\rangle$ are non-normal and non-conjugate, a contradiction.

It must be $\nu_{c}(A)=1$ and $\mu_{c}(B)=2$. So $B=\langle b\rangle \simeq C_{q}$ for some prime q.
Suppose q divides $|A|$. If A is non-nilpotent, then $A=[N] P$ as in Theorem 1 and the subgroups $P=\langle x\rangle$ and $\langle x b\rangle$ are non-normal and non-conjugate. If q divides $|N|$, for any $a \in N$ such that $|a|=q$ we would have $\langle a b\rangle \nexists G$ so that $\nu_{c}(G) \geq 3$; therefore $q=p$.

In any case, if $q \neq 2$, there exists $y \in A$ such that the subgroups $\langle y\rangle,\langle y b\rangle$ and $\left\langle y^{2} b\right\rangle$ are non-normal and pairwise non-conjugate, so that $\nu_{c}(G) \geq 3$.

Corollary 1. If G is nilpotent and it is not a p-group, then $\nu_{c}(G)=2$ if and only if $G \simeq M_{n}(p) \times C_{q}$, where p, q are distinct primes and $n \geq 4$ if $p=2$.

$3.2 p$-groups with $\nu_{c}=2$

Lemma 2. Let P be a non-abelian p-group; if $\exp P=p$, then $\nu_{c}(P) \geq 4$.
Proof. Let $|P|=p^{n}$. If P^{\prime} is the only minimal normal subgroup of P, P has $\frac{p^{n}-p}{p-1}$ non-normal cyclic subgroups of order p and each of them has p conjugates. Then $\nu_{c}(P) \geq \frac{p^{n}-p}{(p-1) p} \geq p+1 \geq$ 4.

Otherwise, if N is a minimal normal subgroup of P with $N \neq P^{\prime}$, by induction $\nu_{c}(P) \geq$
$\left.\frac{P}{N}\right) \geq 4$. $\nu_{c}\left(\frac{P}{N}\right) \geq 4$.

Proposition 7. If P is a p-group with $\nu_{c}(P)=2$, then $p=2$.

Proof. Suppose $p \neq 2, P$ a minimal counterexample. If $|P|=p^{n}$, then $n \geq 4$ and $p^{2} \leq \exp P \leq$ p^{n-2}.

For every minimal normal subgroup N of P we have $\nu_{c}\left(\frac{P}{N}\right) \leq 1$.
If P^{\prime} were the only minimal normal subgroup of P, one would have $\mho_{1}(P) \subseteq Z(P)$. Therefore every non-normal cyclic subgroup would have order p and would have p conjugates; moreover P would be regular and $\exp \Omega_{1}(P)=p$. Then $\Omega_{1}(P)$ would contain exactly $2 p+1$ cyclic subgroups; a calculation on the order of $\Omega_{1}(P)$ shows that this is impossible.

So there exists a minimal normal subgroup N of P with $\nu_{c}\left(\frac{P}{N}\right)=1$; that means

$$
\frac{P}{N}=\left\langle\bar{a}, \bar{b} \mid \bar{a}^{p^{n-2}}=\bar{b}^{p}=1,[\bar{a}, \bar{b}]=\bar{a}^{p^{n-3}}\right\rangle,
$$

$\left|P^{\prime}\right|=p,|Z(P)|=p^{n-2}$ and $Z(P)=\left\langle a^{p}, N\right\rangle$ with $|a|=p^{n-2}=\exp P$.
If $|b|=p^{2}$, then $Z(P)=\left\langle a^{p}, b^{p}\right\rangle=\Phi(P)$ and P would be a minimal non-abelian group; this contradicts Proposition 4. So $|b|=p$.

If $N=\langle y\rangle$, the subgroups $\langle b\rangle,\langle b y\rangle$ and $\left\langle b^{2} y\right\rangle$ are non-normal and pairwise non-conjugate, a contradiction.

If G is not a Dedekind group, let $R(G)$ denote the intersection of all non normal subgroups of G; the groups with $R(G) \neq\langle 1\rangle$ are determined in [1].

Lemma 3. Let P be a non-Dedekind 2-group with $R(P) \neq\langle 1\rangle,|P|=2^{n}$ and $\exp P \leq$ 2^{n-2}. If $\nu_{c}(P)=2$, then $P=[\langle a\rangle]\langle b\rangle$ with $|a|=2^{n-2},|b|=4$.

Proof. It is $\nu_{c}\left(Q_{3} \times C_{4}\right)=3$ and $\nu_{c}\left(Q_{3} \times Q_{3}\right)=9$. Then by [1], Theorem 1 it is

$$
\left.P=\langle A, x| A \text { is abelian, } x^{4}=1,1 \neq x^{2} \in A,[x, a]=a^{2} \text { for any } a \in A\right\rangle .
$$

For any $y \in A$ it is $(y x)^{2}=x^{2}$. If $\langle y x\rangle \triangleleft P$, for any $a \in A$ one would have $a^{2}=[y x, a]=x^{2}$, so $\Phi(A)=\left\langle x^{2}\right\rangle$; it would follow $A \simeq C_{4} \times E$ with $\Phi(E)=1$ and $P \simeq Q_{3} \times E$ hamiltonian. So $\langle y x\rangle \nexists P$ for every $y \in A$.

Since $P^{\prime}=\Phi(A)=\mho_{1}(A)$, then for any $y_{1}, y_{2} \in A$ the subgroups $\left\langle y_{1} x\right\rangle$ and $\left\langle y_{2} x\right\rangle$ are conjugate if and only if $y_{1}^{-1} y_{2} \in\left\langle x^{2}\right\rangle \Phi(A)$, so $\left[A:\left\langle x^{2}\right\rangle \Phi(A)\right]=2$. If $a \in A \backslash\left\langle x^{2} \Phi(A)\right\rangle$ it is $A=\left\langle a, x^{2}, \Phi(A)\right\rangle=\left\langle a, x^{2}\right\rangle$.

Since $\exp A \leq \exp P \leq 2^{n-2}$, we have $x^{2} \notin\langle a\rangle$, hence $P=[\langle a\rangle]\langle x\rangle$ with $|a|=2^{n-2}$, $|x|=4$.

Remark 1. If $P=[\langle a\rangle]\langle b\rangle$, with $|a|=2^{n-2},|b|=4,\left[a, b^{2}\right]=1 \neq[a, b]$ and $n \geq 4$, then $\nu_{c}(P)=2$: if $[a, b]=a^{2^{n-3}}$, the non normal cyclic subgroups not conjugate to $\langle b\rangle$ are conjugate to $\left\langle a^{2^{n-4}} b\right\rangle$, otherwise they are conjugate to $\langle a b\rangle$.

Theorem 3. Let P be a non abelian 2-group, which is not a direct product of proper subgroups, with $|P|=p^{n}$, $\exp P \leq 2^{n-2}$. Then $\nu_{c}(P)=2$ if and only if $P=[\langle a\rangle]\langle b\rangle$, with $|a|=2^{n-2},|b|=4,\left[a, b^{2}\right]=1$ and $n \geq 4$.

Proof. We see that if $P=[\langle a\rangle]\langle b\rangle$ with $|a|=2^{n-2},|b|=4$ and $\left[a, b^{2}\right] \neq 1$, then $b^{-1} a b=$ $a^{1+2^{n-4}}$ or $b^{-1} a b=a^{-1+2^{n-4}}$; the subgroups $\langle b\rangle,\left\langle b^{2}\right\rangle$ and respectively $\left\langle a^{2^{n-3}} b\right\rangle$ in the first case and $\langle b a\rangle$ in the second case are non normal and pairwise non-conjugate. So it will suffice to prove that, if $\nu_{c}(P)=2$, then $P=[\langle a\rangle]\langle b\rangle$ with $|a|=2^{n-2}$ and $|b|=4$.

First of all, note that for any minimal normal subgroup T of P we may suppose $\nu_{c}\left(\frac{P}{T}\right) \neq 1$. Indeed, if it were

$$
\frac{P}{T}=\left\langle\bar{a}, \bar{b} \mid \bar{a}^{2^{n-2}}=\bar{b}=1,[\bar{a}, \bar{b}]=\bar{a}^{2^{n-5}}\right\rangle
$$

with $n \geq 5$, then $P=\langle a, b\rangle \times T$ if $|b|=2$ and $P=[\langle a\rangle]\langle b\rangle$ if $|b|=4$.
By Lemma 3, we may suppose $R(P)=\langle 1\rangle$. Let P be a minimal counterexample and let $H=\langle h\rangle, K=\langle k\rangle$ be two non-conjugate non-normal cyclic subgroups of P, with $|H| \leq|K|$.

If $H \not 又 K$, since $\nu_{c}(P)=2$, then $H \cap K \triangleleft P$. It follows $H \cap K \leq H_{P} \cap K_{P}=R(P)=\langle 1\rangle$. Then either $H \leq K$ or $H^{g} \cap K=\langle 1\rangle$ for every $g \in P$.

If $H \leq K$, then $|H|=2,|K|=4$ and $h=k^{2}$.
Let T be a minimal normal subgroup of P . It is $\frac{K T}{T} \nrightarrow \frac{P}{T}$ with $\frac{K T}{T}=4$ and $\nu_{c}\left(\frac{P}{T}\right)=2$. If $\frac{S}{T_{P}}=\langle s T\rangle \nless \frac{P}{T}$ with $\frac{S}{T}$ non-conjugate to $\frac{K T}{T}$, then $\langle s\rangle$ is conjugate to H and $\frac{H T}{T} \nexists \frac{P}{T}$. So $\frac{P}{T}$ has two non-normal cyclic subgroups $\frac{H T}{T}$ and $\frac{K T}{T}$ of order respectively 2 and 4 , with $\frac{H T}{T} \leq \frac{K T}{T}$. This implies that $\frac{P}{T}$ is not a direct product and $\exp \frac{P}{T} \leq 2^{n-3}$.

By minimality of $P, \frac{P}{T}=[\langle a T\rangle]\langle b T\rangle \simeq\left[C_{2^{n-3}}\right] C_{4}$ with $n \geq 5$. But $\langle b\rangle \nless P$, so $|b|=4$, $|a|=2^{n-3} \geq 4$. Since $\langle a\rangle$ is not conjugate to $\langle b\rangle$, then $\langle a\rangle \triangleleft P$ and $P=\langle a, b\rangle \times T$, contrary to the hypothesis.

So $H^{g} \cap K=\langle 1\rangle$ for every $g \in P$. We distinguish two cases.
Case 1: $|K| \geq 4$.
Every proper subgroup of K is normal in P; for $T \leq K$ with $|T|=2$ one has $\nu_{c}\left(\frac{P}{T}\right)=2$. If $\exp \frac{P}{T}=2^{n-2}$, then $\frac{P}{T}$ is isomorphic to D_{n-1} or S_{n-1}, because the non-normal cyclic subgroups of Q_{n-1} have non-trivial intersection. Then $\frac{P}{T}$ has a non-normal cyclic subgroup $\frac{S}{T}=\langle s T\rangle$ of order 2, and $P=\langle a, s, T\rangle$ with $|a|=2^{n-2}$. Since P is not a direct product, we have $P=\langle a, s\rangle=[\langle a\rangle]\langle s\rangle$ and $|s|=4$, against our hypothesis.
Then $\exp \frac{P}{T} \leq 2^{n-3}$.
If $\frac{P}{T}$ were a direct product of proper subgroups, we would have

$$
\left.\frac{P}{T}=\left.\langle\bar{x}, \bar{y}|\right|^{2^{n-3}}=\bar{y}^{2}=1,[\bar{x}, \bar{y}]=\bar{x}^{2^{n-4}}\right\rangle \times\left\langle\bar{z} \mid \bar{z}^{2}=1\right\rangle
$$

where $n \geq 6$; we can suppose $\frac{K}{T}=\langle\bar{y}\rangle$ and $\frac{H T}{T}=\langle\overline{y z}\rangle$ and so $K=\langle y\rangle, H=\langle y z\rangle$ with $|K|=4,|H|=2$.
The subgroup $\langle z\rangle$ is conjugate neither to K nor to H, so $\langle z\rangle \triangleleft P$. Since P is not a direct product, it is $|z|=4$. It follows $y^{2}=z^{2}$ and $[y, z]=1$, so $P^{\prime} \leq\langle x\rangle$.
If it were $T \leq\langle x\rangle$, it would be $T \leq P^{\prime}=\left\langle x^{2^{n-4}}\right\rangle \leq\left\langle x^{4}\right\rangle$ and $1=[x, y]^{4}=\left[x^{4}, y\right]$; then $1=\left[x, y^{2}\right]=[x, y]^{2}$, so $[x, y] \in T$, a contradiction.
So $T \nexists\langle x\rangle$ and $[x, z]=1$; it would follow $P=\langle x, y z\rangle \times\langle z\rangle$, a contradiction.
By the minimality of P one has $\frac{P}{T}=[\langle a T\rangle]\langle b T\rangle \simeq\left[C_{2^{n-3}}\right] C_{4}$ and $\left[a, b^{2}\right] \in T$. By the previous Remark we may suppose $K=\langle b\rangle$ and $|K|=8, H=\langle a b\rangle$ with $|H|=4$. It follows $\langle a\rangle \triangleleft P$, so $\left[a, b^{2}\right] \in\langle a\rangle \cap T$.
If $T \leq\langle a\rangle$ then $P=[\langle a\rangle]\langle a b\rangle \simeq\left[C_{2^{n-2}}\right] C_{4}$.
If $T \not \leq\langle a\rangle,\left[a, b^{2}\right]=1$ and $P=[\langle a\rangle]\langle b\rangle$. Since $\left\langle\bar{a} \bar{b}^{2}\right\rangle \triangleleft \frac{P}{T}$, the subgroup $\left\langle a b^{2}\right\rangle$ is conjugate neither to K nor to H, hence $\left\langle a b^{2}\right\rangle \triangleleft P$, a contradiction.
Case 2: $|K|=|H|=2$
Let T be a minimal normal subgroup of P.
If $\nu_{c}\left(\frac{P}{T}\right)=2$, the non normal cyclic subgroups of $\frac{P}{T}$ are conjugate either to $\frac{H T}{T}$ or to $\frac{K T}{T}$, so their order is 2. By the minimality of P one has $\frac{P}{T} \simeq D_{n-1}$ or $\frac{P}{T} \simeq M_{n-2}(2) \times C_{2}$. If $\frac{P}{T}=\left\langle\bar{a}, \bar{b} \mid \bar{a}^{2^{n-2}}=\bar{b}^{2}=1,[\bar{b}, \bar{a}]=\bar{a}^{2}\right\rangle$, then $P=\langle a, b\rangle \times T$.

Let $\frac{P}{T}=\left\langle\bar{a}, \bar{b} \mid \bar{a}^{2^{n-3}}=\bar{b}^{2}=1,[\bar{a}, \bar{b}]=\bar{a}^{2^{n-4}}\right\rangle \times\left\langle\bar{c} \mid \bar{c}^{2}=1\right\rangle$ with $n \geq 6$. We can suppose $K=\langle b\rangle, H=\langle b c\rangle$. Since $\langle\bar{c}\rangle$ is conjugate neither to $\langle\bar{b}\rangle$ nor to $\langle\bar{b} \bar{c}\rangle$, it is $\langle c\rangle \triangleleft P$
If $|c|=2$, then $P=\langle a, b, T\rangle \times\langle c\rangle$.
So $|c|=4$ and $T=\left\langle c^{2}\right\rangle$; from $1=(b c)^{2}=c^{2}[b, c]$ it follows $[b, c]=c^{2}$.
If $T \npreceq\langle a, b\rangle$, we have $[a, c]=1$ and $|a|=2^{n-3}$; thus $\left|c a^{2^{n-5}}\right|=4$ and $\left\langle c a^{2^{n-5}}\right\rangle \triangleleft P$, but $\left[b, c a^{2^{n-5}}\right]=\left[b, a^{2^{n-5}}\right][b, c]=c^{2} \notin\left\langle c a^{2^{n-5}}\right\rangle$.
If $T \leq\langle a, b\rangle$, then $T \leq\langle a\rangle$ and $|a|=2^{n-2}$. ¿From $[a, c] \in T$ it follows $\left[a, c^{2}\right]=1$, so $\left(a^{2^{n-4}} c\right)^{2}=1$. Since $\left[a^{4}, b\right]=1$ and $n \geq 6$, then $\left[a^{2^{n-4}} c, b\right]=c^{2} \neq 1$, so $\left\langle a^{2^{n-4}} c\right\rangle \nrightarrow P$, but $\left\langle a^{2^{n-4}} c\right\rangle$ is conjugate neither to $\langle a\rangle$ nor to $\langle b c\rangle$.
So $\nu_{c}\left(\frac{P}{T}\right)=0$ for every minimal normal subgroup T of P. Since $H T \triangleleft P$, then $T=\langle[h, g]\rangle$ for any $g \in P \backslash N_{P}(H)$; it follows that P has just one minimal normal subgroup T.
For $\frac{P}{T}=\langle x T, y T\rangle \times E$ with $\langle x T, y T\rangle \simeq Q_{3}$ and $\Phi(E)=\langle 1\rangle$ we may suppose $\langle x\rangle \triangleleft P$, hence $[x, y]^{2}=\left[x^{2}, y\right]=1$, so $[x, y] \in T$, a contradiction.
Then $\frac{P}{T}$ is abelian, $P^{\prime}=T=\langle t\rangle \leq Z(P)$ and $Z(P)$ is cyclic. Since H and K are not conjugate, it is $h k \neq t$. If $[h, k]=1$, then $|h k|=2,\langle h k\rangle \notin P$ and so $\nu_{c}(P) \geq 3$. Therefore $(h k)^{2}=[h, k]=t$.
Let $Z(P)=\langle z\rangle$ with $|Z(P)|=2^{s}$. If $s \geq 2$, it is $\left(z^{2^{s-2}} h k\right)^{2}=1$, thus $L=\left\langle z^{2^{s-2}} h k\right\rangle \nrightarrow P$ with L neither conjugate to H nor to K, a contradiction.
We conclude that $Z(P)=P^{\prime}=\langle t\rangle ; P$ is an extraspecial group and P is a central product $P=S_{1} * S_{2} * \ldots * S_{r}$, with S_{1} isomorphic either to D_{3} or to $Q_{3}, S_{i} \simeq D_{3}$ for $2 \leq i \leq r$ and $\left|S_{i} \cap S_{j}\right|=2$ for $i \neq j$ (see [8], 5.3).
Let $S_{2}=\left\langle a, b \mid a^{4}=b^{2}=1,[a, b]=a^{2}\right\rangle$. If $S_{1}=\left\langle c, d \mid c^{4}=d^{2}=1,[c, d]=c^{2}\right\rangle$, the subgroups $\langle b\rangle,\langle d\rangle$ and $\langle b d\rangle$ are non-normal and pairwise non-conjugate. If $S_{1}=\langle c, d| c^{4}=$ $\left.1, c^{2}=d^{2}=[c, d]\right\rangle$, the subgroups $\langle b\rangle,\langle a c\rangle$ and $\langle a d\rangle$ are non-normal and pairwise non-conjugate.

Remark 2. If $P=[\langle a\rangle]\langle b\rangle$, with $|a|=2^{n-2},|b|=4,\left[a, b^{2}\right]=1$ and $n \geq 4$ it is $\nu(P)=2$ if and only if $a^{b}=a^{1+2^{n-3}}$; this follows from Theorem I in [6].

3.3 Non nilpotent groups with $\nu_{c}=2$

Proposition 8. Let G be a non-nilpotent group such that $\nu_{c}(G)=2$. If H and K are non-normal, non-conjugate cyclic subgroups, then one of the following cases holds:
(1) $|H|=p^{\alpha},|K|=p^{\beta}$
(2) $|H|=p^{\alpha},|K|=q^{\beta}$
(3) $|H|=p^{\alpha},|K|=p^{\alpha} q$
where p, q are distinct primes.
The third case holds only if $G=A \times B$, where A and B are proper subgroups of G and $(|A|,|B|)=1$.

Proof. Obviously there exists a cyclic subgroup $H=\langle h\rangle$ such that $H \nrightarrow G$ and $|H|=p^{\alpha}$, where p is a prime. If $|K|$ is not a prime power, then $K=R \times S$, where $(|R|,|S|)=1$ and $R \notin G$, so that R is conjugate to H. Let q be a prime and T a subgroup of S such that $|T|=q$;
since $R \times T \nrightarrow G$ and $\nu_{c}(G)=2$, then $R \times T=K$ and $|K|=p^{\alpha} q$. For any prime $w \neq p$ and any w-element $y \in G$ one has $\langle y\rangle \triangleleft G$ and any Sylow w-subgroup is normal.

Since $[H, T]=\langle 1\rangle$, by Proposition 5 it is $[H, Q]=\langle 1\rangle$. Suppose $H \subseteq P \in \operatorname{Syl}_{p}(G)$; if it were $[P, Q] \neq\langle 1\rangle$, for any $a \in P$ such that $[a, Q] \neq\langle 1\rangle$ it would be $\langle a\rangle \nless G$, consequently $\langle a\rangle \sim_{G} H$, a contradiction.

So $Q \subseteq Z(G)$ and Q is a direct factor of G.
$Q E D$
Lemma 4. Let G be a non-nilpotent group with $\nu_{c}(G)=2$. If there exists a unique prime p such that the Sylow p-subgroups are non-normal and there are two non-normal cyclic subgroups H and K whose orders are coprime (i.e. $|H|=p^{\alpha},|K|=q^{\beta}$), then G is a minimal non-abelian group.

Proof. By Proposition $6 G$ is not a direct product of proper subgroups.
Let $H=\langle h\rangle \subseteq P \in \operatorname{Syl}_{p}(G)$ and $K=\langle k\rangle \subseteq Q \in \operatorname{Syl}_{q}(G)$ and $Q \triangleleft G$. For any prime r different from p and q and for any non trivial r-element $a \in G$ one would have $\langle a\rangle \triangleleft G$ and $\langle k a\rangle=\langle k\rangle \times\langle a\rangle \nrightarrow G$, against the hypothesis $\nu_{c}(G)=2$; so $G=[Q] P$.

In a similar way one proves $C_{Q}(H)=\langle 1\rangle=C_{P}(K)$ and therefore $N_{G}(P)=P$ and $C_{P}(Q)=\langle 1\rangle$. So for any $b \in P \backslash\langle 1\rangle$ it is $\langle b\rangle \notin G$ and $\langle b\rangle$ is conjugate to H; this means $|H|=p=\exp P$. We may suppose $H \subseteq Z(P)$; then any $\langle b\rangle$ would be conjugated to H by an element of Q and therefore $G=Q H$ with $H=P$. It will suffice to prove that Q is a minimal normal subgroup of G.

By the Frattini Argument $P \Phi(Q) \nRightarrow G$, so that $\nu_{c}\left(\frac{G}{\Phi(Q)}\right) \neq 0$. We distinguish two cases: $\nu_{c}\left(\frac{G}{\Phi(Q)}\right)=1$ and $\nu_{c}\left(\frac{G}{\Phi(Q)}\right)=2$.

Case $1: \nu_{c}\left(\frac{G}{\Phi(Q)}\right)=1$
Every q-subgroup of $\frac{G}{\Phi(Q)}$ is normal.
It is $\nu_{c}\left(\frac{G}{\Phi(K)}\right)=2$. If $\Phi(K) \neq\langle 1\rangle$, by induction on the order of the group, $\frac{G}{\Phi(K)}$ would be a minimal non-abelian group, $\frac{Q}{\Phi(K)}$ would be elementary abelian and $\Phi(Q)=\Phi(K)$, which contradicts $\nu_{c}\left(\frac{G}{\Phi(Q)}\right)=1$. Therefore $|K|=q$.
Since $K \Phi(Q) \triangleleft G, K^{G} \neq Q$. Let $y \in Q \backslash K^{G}$, then $\langle y\rangle \triangleleft G$ and $\langle k y\rangle \triangleleft G$. Hence $\langle y, k\rangle \triangleleft G$, so that $K^{G} \subseteq \Omega_{1}(\langle y, k\rangle) \triangleleft G$.
By Theorem 1, $q \neq 2$ and either $\langle y, k\rangle \simeq M_{s}(q)$ or $\langle y, k\rangle$ is abelian; this implies $\left|\Omega_{1}(\langle y, k\rangle)\right|=q^{2}$ and $K^{G}=\Omega_{1}(\langle y, k\rangle)$. It follows that K has q conjugates.
We may suppose $H=P \subseteq N_{G}(K)$.
Since $\nu_{c}(Q)=1$, it is $Q=\left\langle a, k \mid a^{q^{l}}=k^{q}=1,[a, k]=a^{q^{l-1}}\right\rangle$ and $K^{G}=\left\langle k, a^{q^{l-1}}\right\rangle$.
Since $\nu_{c}\left(\frac{G}{\Phi(Q)}\right)=1$, one has $h^{-1} a h=a^{r} f_{1}$ and $h^{-1} k h=k^{r} f_{2}$ where $f_{1}, f_{2} \in \Phi(Q)$.
Since $h \in N_{G}(K)$, it is $f_{2}=1$; furthermore $h^{-1} a^{q^{l-1}} h=a^{r q^{l-1}}$ and the automorphism induced by h on Q fixes every non-normal subgroup of Q. From $[h, k] \neq 1$ it follows that h induces a non-identity q^{\prime}-automorphism which fixes every subgroup of Q; a contradiction by Proposition 5.
Case $2: \nu_{c}\left(\frac{G}{\Phi(Q)}\right)=2$
Suppose $\Phi(Q) \neq\langle 1\rangle$.
The subgroups $\frac{H \Phi(Q)}{\Phi(Q)}$ and $\frac{K \Phi(Q)}{\Phi(Q)}$ are non-normal in $\frac{G}{\Phi(Q)}$. By induction $\frac{G}{\Phi(Q)}$ is a minimal non-abelian group of order $q^{m} p$, with $m \geq 2$.

There is no normal subgroup of G of order q. Indeed, if $\langle y\rangle \triangleleft G$ with $|y|=q$, then the subgroup $H\langle y\rangle$ cannot be cyclic, so that $q \equiv 1(\bmod p)$, but m is the least integer such that $q^{m} \equiv 1(\bmod p)$.
It follows $|K|=q$ and $\exp Q=q$.
The proper cyclic subgroups of Q are conjugate in G, then they are contained in $Z(Q)$ and Q is elementary abelian, a contradiction.
So $\Phi(Q)=\langle 1\rangle$.
If $Q=K^{G} \times T$, for any $1 \neq t \in T$ it would be $h^{-1} t h=t^{r}$ and $h^{-1}(k t) h=k^{s} t^{s}$; it would follow $h^{-1} k h=k^{s}$ and $\langle k\rangle \triangleleft G$. So $Q=K^{G}$.
Let A be a proper subgroup of Q normal in G. Since $Q=K^{G},\langle a\rangle \triangleleft G$ for any $a \in A$. By Maschke's Theorem $Q=A \times B$, where $B \triangleleft G$. Then $h^{-1} a h=a^{r}$ for any $a \in A$ and $h^{-1} b h=b^{s}$ for any $b \in B$, with $r \not \equiv s(\bmod q)$; this means $\langle a b\rangle \nless G$ for $a \neq 1$ and $b \neq 1$. Let $k=\bar{a} \bar{b}, \bar{a} \in A$ and $\bar{b} \in B$. Since $\langle a b\rangle$ is conjugate to $\langle k\rangle$, it is $\langle a\rangle=\langle\bar{a}\rangle$ and $\langle b\rangle=\langle\bar{b}\rangle$, therefore $|Q|=q^{2}$ and K has $q-1$ conjugates. Then $q=3$ and either $r \equiv 1(\bmod q)$ or $s \equiv 1(\bmod q)$; it follows respectively $A \subseteq C_{Q}(H)$ or $B \subseteq C_{Q}(H)$, which contradicts $C_{Q}(H)=\langle 1\rangle$.
So Q is a minimal normal subgroup of G.

Proposition 9. If G is a non-nilpotent group with $\nu_{c}(G)=2$, then there exists just one prime p such that the Sylow p-subgroups of G are not normal.

Proof. Let G be a minimal counterexample.
Let $P \in \operatorname{Syl}_{p}(G)$ and $Q \in \operatorname{Syl}_{q}(G)$ be non-normal in G. There exist two non-normal subgroups $H=\langle h\rangle \subseteq P$ and $K=\langle k\rangle \subseteq Q$; since $\nu_{c}(G)=2$, one has $[h, k] \neq 1$, thus $[P, Q] \neq\langle 1\rangle$.

For any prime $r \notin\{p, q\}$ and for any r-element $x \in G$ we have $\langle x\rangle \triangleleft G$; therefore if $R \in \operatorname{Syl}_{r}(G)$, then $R \triangleleft G$ and R is abelian.

Let N be the product of all the normal Sylow subgroups of $G ; N$ is abelian, P and Q induce on N power automorphisms, so that $[P, Q] \subseteq C_{G}(N)$ and $[P, Q] \triangleleft G$.

We can suppose $G=[N](P Q)$ with $C_{N P}(Q)=C_{N Q}(P)=\langle 1\rangle$. If $N \neq\langle 1\rangle$ then $P[P, Q] \notin$ G and $Q[P, Q] \nexists G$ and $\nu_{c}\left(\frac{G}{[P, Q]}\right)=2$ against the minimality of G.

So $N=\langle 1\rangle$ and $G=P Q$.
Suppose $P_{G} \neq\langle 1\rangle$; by minimality of G it is $\frac{Q P_{G}}{P_{G}} \triangleleft \frac{G}{P_{G}}$, so $G=\left[P_{G}\right] N_{G}(Q)$. Then $P=$ $\left[P_{G}\right] N_{P}(Q)$ and without loss of generality we may suppose $H \leq N_{P}(Q)$.

Every subgroup of P is normal in G; since $C_{P_{G}}(Q)=\langle 1\rangle$, it is $p \neq 2, P_{G}$ is abelian and Q induces on P_{G} a group of power-automorphisms. If $a \in P_{G},|a|=\exp P_{G}$, then $C_{Q}\left(P_{G}\right)=$ $C_{Q}(a)$ and $\frac{Q}{C_{Q}\left(P_{G}\right)}$ is cyclic; we may suppose $Q=K C_{Q}\left(P_{G}\right)$. Now, $\left\langle k^{q}\right\rangle \triangleleft G$, so $\left[Q: C_{Q}\left(P_{G}\right)\right]=q$ and q divides $p-1$. Since $N_{P}(Q) \leq N_{G}\left(C_{Q}\left(P_{G}\right)\right)$, then $C_{Q}\left(P_{G}\right) \triangleleft G$.

If $\nu_{c}\left(\frac{G}{P_{G}}\right)=2$, by Lemma 4 it is $N_{G}(Q) \simeq \frac{G}{P_{G}} \simeq G(q, p, 1)$ and $|Q| \geq q^{2} . Q$ would be a minimal normal subgroup of $N_{G}(Q)$. Since $\left[Q, P_{G}\right] \neq\langle 1\rangle$, one has $C_{Q}\left(P_{G}\right)=\langle 1\rangle$, against $\left[Q: C_{Q}\left(P_{G}\right)\right]=q$.

If $\nu_{c}\left(\frac{G}{P_{G}}\right)=1$, then $\frac{G}{P_{G}}=\left[\frac{Q P_{G}}{P_{G}}\right] \frac{P}{P_{G}}$ with $Q \simeq \frac{Q P_{G}}{P_{G}}$ abelian and $\frac{P}{P_{G}}$ cyclic. For $\frac{P}{P_{G}}=$ $\left\langle x P_{G}\right\rangle$ we have $\langle x\rangle \nless G$, hence $\left\langle x^{p}\right\rangle \triangleleft G$; this means $\left|\frac{P}{P_{G}}\right|=p=\left|N_{P}(Q)\right|$ and $H=N_{P}(Q)$.

We have $\left|\frac{Q H}{C_{Q}\left(P_{G}\right)}\right|=p q$; as $q<p$, one has $Q \leq N_{G}\left(H C_{Q}\left(P_{G}\right)\right)$, so $[Q, H] \subseteq H C_{Q}\left(P_{G}\right) \cap$ $Q=C_{Q}\left(P_{G}\right)$. Since $[Q] H=N_{G}(Q) \simeq \frac{G}{P_{G}}$, it is $\nu_{c}(Q H)=1$ and for every $b \in Q$ one has
$h^{-1} b h=b^{s}$ for some $s \in \mathbb{N}$; as $[h, Q] \neq\langle 1\rangle$ it is also $\left[h, \Omega_{1}(Q)\right] \neq\langle 1\rangle$, so $s \not \equiv 1(\bmod q)$. Then $Q=[h, Q] \leq C_{Q}\left(P_{G}\right)$, against $C_{P}(Q)=\langle 1\rangle$.

Theorem 4. Let G be a non-nilpotent group which is not a direct product of proper subgroups. Then $\nu_{c}(G)=2$ if and only if G is isomorphic to one of the following groups:

1) the minimal non-abelian group $[Q] C_{p}$ where Q is elementary abelian of order $q^{n}, n \geq 2$ and $\left|C_{p}\right|=p ;$
2) $\langle x, A| x^{p^{n}}=1_{G}, a^{x}=a^{r}$ for any $\left.a \in A\right\rangle$, p prime, $n \geq 2$, A abelian, $(|A|, p)=1$, $\left(r\left(r^{p}-1\right),|A|\right)=1, r^{p^{2}} \equiv 1(\bmod \exp A) ;$
3) $[A] D_{n}=\langle x, y, A| x^{2^{n-1}}=y^{2}=1_{G}, x^{y}=x^{-1},[a, x]=1_{G}, a^{y}=a^{-1}$ for any $\left.a \in A\right\rangle$, where A is abelian, $|A|$ is odd and $n \geq 3$;
4) $[A] S_{n}=\langle x, y, A| x^{2^{n-1}}=y^{2}=1_{G}, x^{y}=x^{-1+2^{n-2}},[a, x]=1_{G}, a^{y}=a^{-1} \quad$ for any $\left.a \in A\right\rangle$, where A is abelian, $|A|$ is odd and $n \geq 4$;
5) $[A] Q_{n}=\langle x, y, A| x^{2^{n-1}}=1_{G}, y^{2}=x^{2^{n-2}}, x^{y}=x^{-1},[a, x]=1_{G}, a^{y}=a^{-1} \quad$ for any $\left.a \in A\right\rangle$, where A is abelian, $|A|$ is odd and $n \geq 4$;
6) $\langle x, y, A| x^{2^{n-2}}=y^{4}=1_{G}, x^{y}=x^{-1},[a, x]=1_{G}, a^{y}=a^{-1}$ for any $\left.a \in A\right\rangle$, where A is abelian, $|A|$ is odd and $n \geq 4$;
7) $\langle x, y, A| x^{2^{n-2}}=y^{4}=1_{G}, x^{y}=x^{2^{n-3}-1},[a, x]=1_{G}, a^{y}=a^{-1}$ for any $\left.a \in A\right\rangle$, where A is abelian, $|A|$ is odd and $n \geq 5$.

Proof. Let $\nu_{c}(G)=2$ and $P \in \operatorname{Syl}_{p}(G)$ with $P \nexists G$.
Suppose G is not the minimal non-abelian group 1); there exist two non-normal nonconjugate cyclic subgroups $H=\langle h\rangle$ and $K=\langle k\rangle$ contained in P.

By Proposition 9 it is $G=[A] P$, where A is abelian and P induces on A a group of powerautomorphisms; furthermore $C_{A}(H)=C_{A}(K)=\langle 1\rangle$, which implies $N_{A}(H)=N_{A}(K)=\langle 1\rangle$.

If P is cyclic, then without loss of generality $K=P, H=\Phi(P)$ and G is isomorphic to 2).

Suppose P non-cyclic.
If $a \in A$ is such that $a^{-1} H a \leq P$ or $a^{-1} K a \leq P$, then $a^{-1} H a \leq\langle a\rangle H \cap P=H$ (respectively $a^{-1} K a \leq\langle a\rangle K \cap P=K$), so $a=1$. It follows that every subgroup of P_{G} is normal in G and for $g \in G$ it is $g^{-1} H g \subseteq P$ (respectively $g^{-1} K g \subseteq P$) if and only if $g \in P$; this implies $\nu_{c}(P) \leq 2$

If $S=\langle s\rangle \leq P_{G}$ and $S \nless G$, then $S \sim_{G} H$ or $S \sim_{G} K$, so $H \leq P_{G}$ or $K \leq P_{G}$; since $\left[A, P_{G}\right]=\langle 1\rangle$, one would have $A=C_{A}(H)$ or $A=C_{A}(K)$, a contradiction. So a subgroup T of P_{G} is normal in G if and only if $T \leq P_{G}$.

Suppose $H \nrightarrow P$ and $K \nrightarrow P$. Then $\nu_{c}(P)=2$ and by Proposition 7 it is $p=2$.
If $P=M_{n-1}(2) \times C_{2}$, then $G=A M_{n-1}(2) \times C_{2}$ and G would be a direct product of proper subgroups, against the hypothesis.

If $\exp P=2^{n-1}=|x|$ with $x \in P$, it is $\langle x\rangle \triangleleft G ; P$ is isomorphic to D_{n}, S_{n} or Q_{n} with $n \geq 4$ and G is isomorphic to 3), 4) or 5) with $n \geq 4$.

Otherwise $P=[\langle x\rangle]\langle y\rangle \simeq\left[C_{2^{n-2}}\right] C_{4}$ with $x^{y} \in\left\{x^{-1}, x^{-1+2^{n-3}}, x^{1+2^{n-3}}\right\}$. If $x^{y}=x^{1+2^{n-3}}$ with $n \geq 5$ it is $\langle x y\rangle \triangleleft P$, then $P=\langle x, x y\rangle \triangleleft G$, a contradiction. In the other two cases G is isomorphic to 6) or 7).

Now we prove that $\frac{P}{P_{G}}$ is cyclic.
It is $N_{G}(P)=P \times C_{A}(P)$; since $C_{A}(P) \leq C_{A}(H)=\langle 1\rangle$, then $N_{G}(P)=P$.

Let $g \in G \backslash P$ and $T=g^{-1} P g \cap P$. If $t \in T$ and $\langle t\rangle \nexists G$, then $\langle t\rangle=a^{-1} H a$ or $\langle t\rangle=a^{-1} K a$ for some $a \in P$. Since $g\langle t\rangle g^{-1} \leq P$, then $g a^{-1} H a g^{-1} \leq P$ or $g a^{-1} K^{-1} a g^{-1} \leq P$, so $a g^{-1} \in P$ and $g \in P$, a contradiction. Then for any $g \in G \backslash P$ one has $P \cap g^{-1} P g \triangleleft G$, so $P \cap g^{-1} P g=P_{G}$ and $\frac{G}{P_{G}}$ is a Frobenius group with complement $\frac{P}{P_{G}}$ (see [8], 10.5). It follows $\frac{P}{P_{G}}$ cyclic or $\frac{P}{P_{G}} \simeq Q_{r}$.

If $\frac{P}{P_{G}}=\left\langle\bar{x}, \bar{y} \mid \bar{x}^{2^{r-1}}=1, \bar{x}^{2^{r-2}}=\bar{y}^{2},[\bar{y}, \bar{x}]=\bar{x}^{2}\right\rangle \simeq Q_{r}$, the subgroups $\langle x\rangle,\left\langle x^{2}\right\rangle$ and $\langle y\rangle$ would be non-normal in G (because they are not contained in P_{G}) and pairwise non-conjugate in G, but then $\nu_{c}(G) \geq 3$.

So $\frac{P}{P_{G}}$ is cyclic and $P_{G} \not \leq \Phi(P)$.
Without loss of generality we may distinguish two cases: either $H \leq K$, or neither H nor K contains properly a non-normal subgroup of G (equivalently, $\Phi(H) \triangleleft G$ and $\Phi(K) \triangleleft G)$.

Case $1: H \leq K$.
In this case one has $H=\Phi(K), \Phi(H) \triangleleft G$ and $\Phi(H)=H \cap P_{G}=K \cap P_{G}$.
Since $\frac{P}{P_{G}}$ is cyclic, it is $P=K P_{G}$. Since P is not cyclic, $\Phi(H) \neq P_{G}$. Let $\Phi(H) \leq L \leq P_{G}$ with $\left[P_{G}: L\right]=p$; then $\frac{G}{L}=\frac{A K L}{L} \times \frac{P_{G}}{L}$. By Proposition 1 it follows $\nu_{c}\left(\frac{A K}{\Phi(H)}\right)=$ $\nu_{c}\left(\frac{A K L}{L}\right)=1$.
If $\frac{K}{\Phi(H)} \triangleleft \frac{A K}{\Phi(H)}$, then $[A, K] \leq A \cap \Phi(H)=\langle 1\rangle$, a contradiction to $C_{A}(K)=\langle 1\rangle$. So $\frac{K}{\Phi(H)} \nexists \frac{A K}{\Phi(H)}$ and analogously $\frac{H}{\Phi(H)} \nexists \frac{A K}{\Phi(H)}$, so $\nu_{c}\left(\frac{A K}{\Phi(H)}\right) \geq 2$, a contradiction.
Case $2: \Phi(H) \triangleleft G$ and $\Phi(K) \triangleleft G$.
It is $\Phi(H)=H \cap P_{G}$ and $\Phi(K)=K \cap P_{G}$, so $\left|\frac{H P_{G}}{P_{G}}\right|=\left|\frac{K P_{G}}{P_{G}}\right|=p$. For $\frac{P}{P_{G}}=\left\langle s P_{G}\right\rangle$, one has $\langle s\rangle \sim_{P} H$ or $\langle s\rangle \sim_{P} K$, so $P=H P_{G}$ or $P=K P_{G}$. It follows $\left|\frac{P}{P_{G}}\right|=p$, so $P=H P_{G}=K P_{G}$.
Without loss of generality we may suppose $H \triangleleft P$, so $\frac{P}{\Phi(H)}=\frac{H}{\Phi(H)} \times \frac{P_{G}}{\Phi(H)}$ and $\frac{G}{\Phi(H)}=$ $\frac{A H}{\Phi(H)} \times \frac{P_{G}}{\Phi(H)} ;$ it follows $\Phi(H) \neq\langle 1\rangle$.
It is $\frac{H}{\Phi(H)} \nexists \frac{A H}{\Phi(H)}$, so $\nu_{c}\left(\frac{A H}{\Phi(H)}\right) \geq 1$. It must be $\mu_{c}\left(\frac{P_{G}}{\Phi(H)}\right)=2$ and $\nu_{c}\left(\frac{P_{G}}{\Phi(H)}\right)=0$, so $\left|\frac{P_{G}}{\Phi(H)}\right|=p,\left|\frac{P_{G}}{\Phi(H)}\right|=p^{2}$ and $\Phi(P)=\Phi(H) \triangleleft G$.
Let $x \in P \backslash \Phi(H)$ be such that $\langle x \Phi(H)\rangle \neq \frac{P_{G}}{\Phi(H)}$ and $\langle x \Phi(H)\rangle \neq \frac{H}{\Phi(H)}$; then $\langle x\rangle \notin G$ and $\langle x\rangle \varkappa_{G} H$ and so $\langle x\rangle \sim_{G} K$ and $\langle x \Phi(H)\rangle=\frac{K \Phi(H)}{\Phi(H)}$. Therefore $\frac{P}{\Phi(H)}$ has only three proper subgroups and $p=2$.
Suppose $\Phi(K) \neq \Phi(H)$; let $\Phi(K) \leq J \leq \Phi(H)$ with $[\Phi(H): J]=2$. Then $\left|\frac{K J}{J}\right|=2$ and $\frac{P}{J}=\left[\frac{H}{J}\right] \frac{K J}{J}$ would be either abelian or isomorphic to D_{3}.
Since $\left|\frac{P_{G}}{J}\right|=4$ and every subgroup of $\frac{P_{G}}{J}$ is normal in $\frac{G}{J}, \frac{P}{J}$ cannot be isomorphic to D_{3}. If $\frac{P}{P_{J}}$ were abelian, then $\frac{G}{J}=\frac{A K J}{J} \times \frac{P_{G}}{J}$ with $\mu_{c}\left(\frac{P_{G}}{J}\right) \geq 3$, a contradiction by Proposition 1.
We conclude that $\Phi(H)=\Phi(K)=\Phi(P), K \triangleleft P$ and P is a Dedekind group with $|H|=|K| \geq 4$.
If there exists $C \leq P$ with $|C|=2$ and $C \cap H=\langle 1\rangle$, then $P=H \times C$ with $C \triangleleft G$, so $G=A H \times C$, a contradiction. Then P is isomorphic to Q_{3} and G is as in 5) with $n=3$.

Remark 3. Theorem I in [6] shows that among the groups presented in Theorem 4 only the alternating group A_{4} and the groups of type 2) with $|A|=q$ (q prime) have just two conjugacy classes of non-normal subgroups.

References

[1] N. Blackburn: Finite groups in which the non-normal subgroups have nontrivial intersection, J.Algebra, 3 (1996), 30-37
[2] R. Brandl: Groups with few non-normal subgroups, Comm. Alg., 23 (1995), 2091-2098
[3] D. Gorenstein: Finite groups, Harper and Row, New York (1968)
[4] B. Huppert: Zur Sylowstruktur auflosbarer Gruppen, Arch. Math., 12 (1961), 161-169
[5] G. A. Miller, H. Moreno: Non-abelian groups in which every proper subgroup is abelian, Trans. Am. Math. Soc., 4 (1903), 398-404
[6] H. Mousavi: On finite groups with few non-normal subgroups, Comm. Alg., 27 (7) (1999), 3143-3151
[7] J. Poland, A. Rhemtulla: The number of conjugacy classes of non-normal subgroups in nilpotent groups, Comm.Alg., 24 (1996), 3237-3245
[8] D. J. S. Robinson: A course in the Theory of Groups, Springer Verlag, New York (1982)

