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Abstract. In this note we study groups with few non-((locally finite)-by-Baer) subgroups
and we prove that if G is a locally graded group satisfying the minimal condition on non-
((locally finite)-by-Baer) subgroups or having finitely many conjugacy classes of non-((locally
finite)-by-Baer) subgroups, then G is a (locally finite)-by-Baer group. We prove also that if G
is a minimal non-((locally finite)-by-Baer) group then G is a finitely generated perfect group
which has no proper subgroup of finite index and such that G/Frat(G) is an infinite simple
group, where Frat(G) stands for the Frattini subgroup of G.
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1 Introduction

The aim of this paper is to study groups that in some sense have few non-((locally finite)-
by-Baer) subgroups, namely minimal non-((locally finite)-by-Baer) groups, or groups satisfying
the minimal condition on non-((locally finite)-by-Baer) subgroups, or groups having finitely
many conjugacy classes of non-((locally finite)-by-Baer) subgroups. Recall that a group G is
said to be a Baer group if all its cyclic subgroups are subnormal in G.

Let X be a class of groups. A group G is said to be a minimal non-X-group if it is not
an X-group but all of whose proper subgroups are X-groups. Many results have been obtained
on minimal non-X-groups, for various choices of X. In particular, in [5] (respectively, in [9]) it
is proved that if G is a finitely generated minimal non-nilpotent (respectively, non-(finite-by-
nilpotent) group, then G is a perfect group which has no proper subgroup of finite index and
such that G/Frat(G) is an infinite simple group, where Frat(G) denotes the Frattini subgroup
of G. Also in [7] it is proved that if G is a minimal non-(periodic-by-nilpotent) (respectively,
non-((locally finite)-by-nilpotent)) group, then G is a finitely generated perfect group which
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has no proper subgroup of finite index and such that G/Frat(G) is an infinite simple group.
We generalize this last result to minimal non-((locally finite)-by-Baer) groups. We will prove:

Theorem 1. If G is a minimal non-((locally finite)-by-Baer) group, then G is a finitely
generated perfect group which has no proper subgroup of finite index and such that G/Frat(G)
is an infinite simple group.

Groups satisfying the minimal condition on non-X-subgroups or groups having finitely
many conjugacy classes of non-X-subgroups have been studied by several authors for many
choices of X. In particular, in [8] it is proved that if G is a locally graded group satisfying
the minimal condition on non-((locally finite)-by-nilpotent) subgroups or having finitely many
conjugacy classes of non-((locally finite)-by-nilpotent) subgroups, then G is (locally finite)-by-
nilpotent. We generalize this result to (locally finite)-by-Baer groups. We will prove:

Theorem 2. Let G be a locally graded group satisfying the minimal condition on non-
((locally finite)-by-Baer) subgroups. Then G is (locally finite)-by-Baer.

Theorem 3. Let G be a locally graded group having finitely many conjugacy classes of
non-((locally finite)-by-Baer) subgroups. Then G is (locally finite)-by-Baer.

2 Proof of Theorem 1

Lemma 1. Let G = (g, x) be a torsion-free nilpotent group and let n, k be positive integers.
If [{g) sk (2™)] = 1 then [(g) ;& ()] = 1.

Proof. Put Hi = K1 = (g), H» = (z) and K> = (z"). Then H;, K; are subgroups of G
such that K; is a subgroup of H; of finite index. We deduce by [4, Theorem 2.3.3] that
[K1,k K2] = [{g9) ,x (z™)] is of finite index in [H1,x H2] = [(g) ,k (x)]. Thus [{(g) ,x (z)] is of finite
order and hence it is trivial since G is torsion-free. QED

Lemma 2. Let G be a torsion-free locally nilpotent group. If G has a Baer subgroup of
finite index, then G is a Baer group.

Proof. Let H be a normal Baer subgroup of G of finite index, say n. So z" € H for all z € G.
Therefore (x") is subnormal in G and hence [G,; (x™)] = 1 for some positive integer k (see [4,
p-276]). Thus [{(g) ,x ()] = 1 for all g € G. By Lemma 1, we deduce that [(g) ,x (z)] = 1 for
all g € G, hence [G,i, (z)] = 1. It follows that (z) is subnormal in G (see [4, p.276]) which gives
that G is a Baer group.

Proposition 1. Let G be a torsion-free locally graded group. If every proper subgroup of
G is a Baer group, then so is G.

Proof. If G is finitely generated then it is nilpotent-by-finite as it is locally graded. So it
satisfies the maximal condition on subgroups. Consequently, every proper subgroup of G is
nilpotent. Hence G is nilpotent since by [5] a finitely generated minimal non-nilpotent group
has no proper subgroup of finite index. Therefore G is a Baer group. Assume now that G is
not finitely generated. Hence G is locally nilpotent. Let B denotes the Baer radical of G. If G
is not a Baer group, then B is proper in G. Since B contains all subnormal Baer subgroups of
G, G/B must be a simple group. Hence it is cyclic of prime order since it is locally nilpotent
[6, Corollary 1 of Theorem 5.27] and this is a contradiction to Lemma 2. Therefore, G is a
Baer group. QED
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Proposition 2. Let G be a group in which every proper subgroup is (locally finite)-by-
Baer. Then G is (locally finite)-by-Baer if it salisfies one of the following two conditions:

(i) G is finitely generated and has a proper subgroup of finite index, or

(1) G is not finitely generated.

Proof. (i) Suppose that G is finitely generated and let H be a proper normal subgroup of finite
index in G. So H is finitely generated and hence it is (locally finite)-by-nilpotent. It follows
that yx+1(H) is locally finite for some integer k > 0. Clearly, G/vx+1(H) is a finitely generated
nilpotent-by-finite group. So it satisfies the maximal condition on subgroups. Consequently,
every proper subgroup of G /i1 (H) is finite-by-nilpotent. In [2, Lemma 4] it is proved that
a finitely generated locally graded group in which every proper subgroup is finite-by-nilpotent
is itself finite-by-nilpotent. We deduce that G/vk+1(H) is finite-by-nilpotent which gives that
G is (locally finite)-by-nilpotent, as claimed.

(ii) Suppose now that G is not finitely generated and let z,y be two elements of finite
order in G. The subgroup (z, y), being proper in G, is (locally finite)-by-Baer hence it is finite.
Thus zy~ ' is of finite order, so G has a torsion subgroup 7" which is locally finite as G is not
finitely generated. If G/T is not finitely generated, then it is a torsion-free locally nilpotent
group in which every proper subgroup is a Baer group. By Proposition 1, we deduce that
G/T is a Baer group hence G is (locally finite)-by-Baer, as desired. Now if G/T is finitely
generated, then there exists a finitely generated subgroup X of G such that G = XT. We
deduce that G/T is nilpotent since X is proper in G. Therefore, G is (locally finite)-by-
nilpotent, as required. QED

The previous proposition admits the following immediate consequence.

Corollary 1. If G is a locally graded group in which every proper subgroup is (locally
finite)-by-Baer, then G is (locally finite)-by-Baer.

Proof of Theorem 1. Let G be a minimal non-((locally finite)-by-Baer) group. By Proposition
2, G is a finitely generated group which has no proper subgroup of finite index. So G/Frat(G)
is infinite and G has no proper locally graded factor group. In particular, G is perfect. Suppose
that G/Frat(G) is not simple and let N be a normal subgroup of G such that Frat(G) <
N < G. Therefore there is a maximal subgroup M of G such that N £ M hence G = M N.
Now G/N ~ M/M N N is (locally finite)-by-nilpotent hence G/N is locally graded which is a
contradiction by the above remark. Therefore G/Frat(G) is simple.

3 Proof of Theorem 2

Lemma 3. Let G be a torsion-free locally graded group satisfying the minimal condition
on non-Baer subgroups. Then G is a Baer group.

Proof. If G is not a Baer group, then it has a subgroup which is a minimal non-Baer group
and this is a contradiction to Proposition 1. Therefore G is a Baer group.

Proof of Theorem 2. (i) First suppose that G is finitely generated. If G is infinite, there is an
infinite chain of subgroups, G > G1 > G2 > ..., such that |G; : Gi41| is finite for all integers
i. Thus there exists a positive integer k such that Gy is (locally finite)-by-Baer and |G : Gi|
is finite. So G}, is (locally finite)-by-nilpotent. Therefore there is an integer ¢ > 0 such that
Yet+1(Gr) is locally finite. Now G/v.4+1(Gk) is a finitely generated nilpotent-by-finite group.
So it satisfies the maximal condition on subgroups. It follows that G/vc+1(Gy) satisfies the
minimal condition on non-(finite-by-nilpotent) subgroups. But Lemma 4 of [2] can easily be
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extended to that a finitely generated locally graded group which satisfies the minimal condition
on non-(finite-by-nilpotent) subgroups is itself finite-by-nilpotent. Consequently, G /vc+1(Gk)
is finite-by-nilpotent hence G is (locally finite)-by-nilpotent, as required.

(ii) Now assume that G is not finitely generated. So G has a torsion subgroup 7" which is
locally finite. By (i) every finitely generated subgroup of G is (locally finite)-by-nilpotent. So
G has a torsion subgroup T which is locally finite and G/T is a torsion-free locally nilpotent
group satisfying the minimal condition on non-Baer subgroups. It follows by Lemma 3 that
G/T is a Baer group which gives that G is a (locally finite)-by-Baer group. QED

4 Proof of Theorem 3

Lemma 4. Let G be a torsion-free locally graded group having finitely many conjugacy
classes of non-Baer subgroups. Then G is a Baer group.

Proof. In [3, Proposition 3.3] it is proved that if X is a subgroup closed class of groups and K
is a locally graded group having finitely many conjugacy classes of non-X-subgroups, then K
is locally in the class X§, where § denotes the class of finite groups. So every finitely generated
subgroup of G is a Baer-by-finite group hence it is nilpotent-by-finite. So G satisfies locally the
maximal condition on subgroups. Now Lemma 4.6.3 of [1] states that if K is a group locally
satisfying the maximal condition on subgroups and if H is a subgroup of K such that H* < H
for some element x of K, then H® = H. We deduce that G satisfies the minimal condition on
non-Baer subgroups. Now Lemma 3 gives that G is a Baer group. QED

Lemma 5. Let X be a quotient closed class of groups and let G be a group having finitely
many conjugacy classes of non-X-subgroups. If N is a normal subgroup of G then G/N has
finitely many conjugacy classes of non-X-subgroups.

Proof. This follows from the fact that if N < K < G, then
{(K/N)xN N € G/N} C{K"/N:z€G}.

QED

Proof of Theorem 8. (i) First assume that G is finitely generated. So by [3, Proposition 3.3] G
is ((locally finite)-by-nilpotent)-by-finite. Let N be a normal subgroup of G of finite index such
that N is (locally finite)-by-nilpotent and let T its torsion subgroup. So T is locally finite and
G/T is a finitely generated nilpotent-by-finite group having finitely many conjugacy classes of
non-((locally finite)-by-Baer) subgroups by Lemma 5. Hence G/T has finitely many conjugacy
classes of non-(finite-by-nilpotent) subgroups. But in [8, Proposition 1.1] it is proved that a
finitely generated locally graded group which has finitely many conjugacy classes of non-(finite-
by-nilpotent) subgroups is itself finite-by-nilpotent. Consequently, G/T is finite-by-nilpotent,
which gives that G is (locally finite)-by-nilpotent, as claimed.

(ii) Now assume that G is not finitely generated. So by (i) every finitely generated subgroup
of G is (locally finite)-by-nilpotent. Hence G has a torsion subgroup 7T such that T is locally
finite and G/T is a locally nilpotent group having finitely many classes of non-Baer subgroups.
We deduce by Lemma 4 that G/T is a Baer group which implies that G is (locally finite)-by-
Baer, as claimed.
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