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Abstract. In this paper we show that if (G,L) is the Hall triple system associated with a
group of exponent 3 (G,+), then (G,L) is an affine space if and only if (G,+) is nilpotent of
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1 Introduction

Let (G,L) be a pair in which G is a non empty set of points and L is a set of subsets of
G called lines. (G,L) is a Steiner triple system if two different points determine a line and
any line contains precisely three different points.

Any Steiner triple system determines a quasigroup (Steiner quasigroup) (G,▽) if for a 6= b
one puts a▽ b = c, where c is the third point of the line determined by a and b; additionally
one puts a▽ a = a. Hence we have:

(j) ∀x, y ∈ G : x▽ (x▽ y) = y.
Thus the Steiner quasigroup (G,▽) is an idempotent totally symmetric quasigroup (cf. [9],

p. 122; [3], p. 64). Conversely, every idempotent totally symmetric quasigroup is determined
by a unique Steiner triple system.

We point out that if p and l are respectively a point and a line of (G,L), with p /∈ l, then
l and p▽ l are disjoint subsets of G.

A subspace of (G,L) [a subquasigroup of (G,▽)] is a subset of G, which is closed with
respect to the join operation for the points [with respect to ▽]. In particular, the empty set,
the singletons of points and the lines are subspaces.

If a1, ..., an are points, then we represent by ((a1, ..., an)) the minumum subspace con-
taining them [the subspace generated by a1, ..., an]. One calls a plane any subspace generated
by three non-collinear points.

Clearly, if a1 6= a2, then ((a1, a2)) is a line [the line generated by a1 and a2].
If l and l′ are lines of G, then ((l, l′)) shall represent the subspace generated by l ∪ l′;

moreover, if a is a point, then ((a, l)) shall be the subspace generated by {a} ∪ l.

Definition 1. If (G,L) is a Steiner triple system, then one says that two lines l and l′

are parallel [in symbols, l//l′] whenever either l = l′, or l, l′ are disjoint and ((l, l′)) is a plane.
Thus // represents a reflexive and symmetric relation.

If // is also transitive, then one says that (G,L) is affine.
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We recall that a loop [i. e. a quasigroup with an identity 0] G is said a Moufang loop if,
for all x, y, z in G, it satisfies one of the following Moufang identities [which are equivalent
in any loop]: z + (x + (z + y)) = ((z + x) + z) + y, x + (z + (y + z)) = ((x + z) + y) + z,
(z + x) + (y + z) = (z + (x+ y)) + z.

Remark 1. It is known that if (a, b, c) is a triple of elements in a Moufang loop such that
(a+ b)+ c = a+(b+ c), then a, b, c generate an associative subloop; i.e. a group. In particular,
by (a+ b) + 0 = a+ b = a+ (b+ 0), the subloop generated by any two elements of a Moufang
loop is a group.

If (G,L) is a Steiner triple system [(G,▽) is a Steiner quasigroup] and 0 is a fixed element
of G, then it is natural to define another commutative binary operation ⊕ on G by putting,
for any x, y ∈ G:

(1) x⊕ y := 0▽ (x▽ y); then 2x := x⊕ x = 0▽ x.

For any x, y ∈ G, we immediately get the following properties:

(2) x⊕ 0 = x, 2x▽ x = (0▽ x)▽ x = 0 and 2x⊕ x = 0▽ (2x▽ x) = 0.

Hence the set {0, x, 0▽x} is an abelian group with respect to ⊕. One can see that (G,⊕)
is a loop (the Steiner loop of (G,L); cf. [5], p. 23).

2 Some remarks on the Hall triple systems

In this section we will deal with autodistributive Steiner triple systems.

One says that a Steiner triple system (G,L) [a Steiner quasigroup (G,▽)] is autodistribu-
tive whenever the operation ▽ is autodistributive. This is equivalent to say that if p and l are
respectively a point and a line of (G,L), then p▽ l is a line too.

If ⊕ is the operation defined in section 1, then the following properties hold:

(3) 2x⊕ 2y [= (0▽ x)⊕ (0▽ y)] = x▽ y.

(4) By (1) and (3), any subset of G containing 0 is a subspace of (G,L) if and only if it
is closed under ⊕.

Theorem 1. If p is a point and l is a line of (G,L), then p▽ l // l.

Proof. This is obvious if p ∈ l. If p /∈ l, then ((p, l)) is a plane including the line p▽ l,
with p▽ l disjoint from l. Hence we have the claim. QED

An example of autodistributive Steiner triple system is given by a group (G,+) of exponent
3, where the set of the points is G and the set L of the lines is given by the cosets of the
subgroups of order 3. Clearly, it is not necessary to specify if one considers left or right cosets.
Indeed, if H is a subgroup, any left coset b+H coincides with the right coset (b+H− b) + b.

Remark 2. For any x, y ∈ G, we have the following properties:

a) x ▽ y = y − x + y. If x = y, this is trivial, by x ▽ x = x. If x 6= y, the claim is a
consequence of the fact that {y, x, y − x + y} [= {0, x − y, y − x} + y] is the unique coset
containing x and y.

b) If the element 0 fixed in Section 1 is the zero of (G,+), then we get:

(5) x⊕ x = 0▽ x = −x = x+ x;

(6) x⊕ y = 0▽ (x▽ y) = (0▽ x)▽ (0▽ y) = (−x)▽ (−y) = −x+ y − x. �

A Steiner triple system in which any 3 non-collinear points generate a plane over the
Galois field GF (3) is said a Hall triple system. It is clear that every Hall triple system is
autodistributive. A finite Hall triple system has order 3n, but it is not necessarily an affine
space over GF (3). It is known that the smallest Hall system which is not an affine space has
order 81.



A characterization of the affine Hall triple systems defined by groups of exponent 3 99

One can verify that if a Steiner triple system (G,L) is autodistributive, then (G,⊕) is a
commutative Moufang loop of exponent 3. Thus, if a, b ∈ G, the Moufang subloop H of (G,⊕)
generated by a and b is an elementary abelian 3-group [see Remark 1], hence H = ((0, a, b))
[cf. property (4) above].

Therefore, if the points a and b above are not collinear with 0, then H is a plane of (G,L)
with nine points. Moreover, the structure of Steiner triple system (H,L⊕) associated with
(H,⊕), coincides with the structure of H as a plane of (G,L). In fact, if x, y ∈ H, then we
get x⊕ < x ⊕ 2y > = {x, y, 2x ⊕ 2y} = {x, y, x ▽ y} [see property (3) above]. Whence the
assertion. Thus (G,L) is a Hall triple system.

In particular, if ⊕ is associative, then (G,⊕) is a commutative group of exponent 3. Thus
(G,L) coincides with the Hall triple system (G,L⊕) associated with (G,⊕) and hence (G,L)
is an affine space (see Definition 1) over GF (3).

On the contrary, it is known that if (G,L) is affine, then (G,⊕) is a commutative group.
For the benefit of the reader, by means of the following Theorem 2, we will have a direct proof
of this latter property.

Meanwhile we remark that if p is a point and l is a line of an affine Hall triple system,
then p⊕ l // l. Indeed p⊕ l = 0▽ (p▽ l) // p▽ l // l (see Theorem 1). Since // is transitive,
we get p⊕ l // l.

Theorem 2. If (G,L) is an affine Hall triple system, then (G,⊕) is an elementary abelian
3-group.

Proof. We have only to prove that ⊕ is associative. Thus consider three arbitrary points
a, b, c ∈ G and prove that [a⊕ b]⊕ c = a⊕ [b⊕ c].

If 0, a, b, c are coplanar, we already have seen that the claim holds. Hence let 0, a, b, c be
not coplanar. Therefore ((0, a)) and ((0, c)) are distinct and not parallel lines. Moreover, by
Theorem 1 we have:

((b⊕ c, a⊕ [b⊕ c])) // ((0, a)) // ((b, a⊕ b)) // ((b⊕ c, [a⊕ b]⊕ c)).
Thus [a⊕b]⊕c and a⊕ [b⊕c] belong to the line l1 containing b⊕c and parallel to ((0, a)).

Analogously, [a ⊕ b] ⊕ c and a ⊕ [b ⊕ c] belong to the line l2 containing a ⊕ b and parallel to
((0, c)).

Since ((0, a)) and ((0, c)) are not parallel, we have l1 6= l2. As a consequence, [a⊕ b]⊕ c =
a⊕ [b⊕ c]. QED

3 Our characterization of the affine Hall triple sys-
tems associated with groups of exponent 3

In the sequel (G,+) shall be a group of exponent 3. Thus, for any x, z ∈ G, −x+ z− x =
−z + x− z and hence the following property holds:

(7) ∀x, z ∈ G : x+ z − x− z = −x− z + x+ z.

Lemma 1. The following properties are equivalent:
(8) ∀x, y, z ∈ G : −x− z + y − z − x = −z − x+ y − x− z;
(8′) ∀x, y, z ∈ G : x+ z − x− z + y = y − x− z + x+ z;
(8′′) ∀x, y, z ∈ G : −x− z + x+ z + y = y − x− z + x+ z.

Proof. It is trivial that (8) and (8′) are equivalent. On the other hand, (8′) and (8′′) are
equivalent by property (7). QED

Remark 3. We point out that (8”) in Lemma 1 means that (G,+) is a nilpotent group
of class at most 2 (cf. [10], p. 122).

We conclude with the following Theorem 3, which gives our characterization.
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Theorem 3. Let (G,L+) be the Hall triple system associated with (G,+). Then the
following properties are equivalent:

i) G is also the support of an elementary abelian 3-group with the same Hall triple system
as (G,+);

ii) (G,L+) is an affine space;
iii) (G,+) is a nilpotent group of class at most 2.

Proof. i) and ii) are trivially equivalent. In order to prove that also ii) and iii) are
equivalent, it is sufficient to verify that the operation ⊕ is associative if and only if property
(6′′) in Lemma 1 is true [cf. Remark 3].

Being ⊕ commutative, ⊕ is associative if and only if, for any x, y, z ∈ G, x ⊕ (z ⊕ y) =
z ⊕ (x⊕ y). This latter property means that (8) in Lemma 1 holds. Therefore ii) and iii) are
equivalent, since Lemma 1 ensures that (8) and (8′′) are equivalent. QED
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