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Abstract. We consider a four compartmental epidemic model which generalizes some tuber-
culosis models from the literature. We will obtain sufficient conditions for the global stability
of the endemic equilibrium by using a generalization of the Poincaré-Bendixson criterion for
systems of n ordinary differential equations.
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1 Introduction

In the context of tuberculosis (TB) mathematical modelling, [12], in 2005 A. Ssematimba
and his coworkers, [26], formulated a mathematical model based on previous work by Z. Feng,
C. Castillo-Chavez and coauthors, [11, 13, 14]. In [26] the study focalizes on the size of the
area occupied by a population affected by TB in order to eradicate the disease. The results are
then applied to the case of Internally Displaced People’s Camps (IDPCs) in North Uganda.
More recently, C. P. Bhunu and his coworkers, [4], considered a more general tuberculosis
model including the exogeneous reinfection and the treatment. The importance to take into
account of exogenous reinfection has been stressed in [13]. Indeed, a TB model with reinfection
is more realistic and its dynamics is richer. For example, backward bifurcation can occur. The
treatment is represented by extra linear terms in the model.

In [4] the problem of finding conditions ensuring the global stability of endemic equilibria
is left open.

In [10], a four compartments tuberculosis model has been introduced which can be thought
as a generalization of the models considered in [4, 26]. In fact, it incorporates and combines
(i) the mechanism of the exogeneous reinfection as in [4]; (ii) a parameter for the size of the
area occupied by the population as in [26]. In [10], the analysis focalizes mainly on bifurcation
theory. In particular, sufficient conditions ensuring the occurrence of a backward or a forward
bifurcation have been obtained. The application to IDPCs given in [26] has been then revisited.

An important epidemiological issue is to evaluate if the disease may be eradicated or not
from the community. This issue may be mathematically attained by performing a stability
analysis of peculiar solutions as steady states, or equilibria. The so-called geometric approach
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to global stability is a powerful tool to obtain sufficient conditions for global stability of endemic
equilibria, namely equilibria with all positive components. It is a generalization of the Poincaré-
Bendixson criterion for systems of n ordinary differential equations, due to M. Li and J.
Muldowney [19, 20, 22]. The majority of applications refer to epidemic models, as SIR, SEIR,
SEIS, SEIRS models (see, e.g., [1, 5, 9, 21, 23, 27]) although applications to other population
dynamics context may be found, [3, 6].

In a recent analysis on general three dimensional systems, it has been shown that the
mathematical structure of SEIR-like systems appears to be particularly suitable for the ap-
plications of the method, [7, 8]. Applications to four dimensional systems are still few in the
literature, [2, 16].

In [10], some results concerning with the global stability of endemic equilibria - obtained
through the geometric approach - have been provided. When dealing with four order differential
systems, this procedure becomes analytically quite involved so that in [10] it has been only
sketched.

In this paper, we reconsider the model introduced in [10] and perform the global stability
analysis through the geometric approach in all the details.

The paper is organized as follows. In Sec. 2 the TB model is introduced and some basic
properties are recalled. In Sect. 3, the Li-Muldowney geometric approach is used to study the
global stability of the endemic equilibrium. The results are discussed in the concluding section,
Sect. 4.

2 The model and its basic properties

In this section we will introduce the four compartmental TB model and summarize the basic
properties obtained in [10].

A community affected by tuberculosis is divided into four compartments: susceptibles
(S), treated but still susceptibles (T ), infectious (I), and exposed (E) (i.e. infected but not
infectious). The total population size at time t is:

N(t) = S(t) + T (t) + I(t) + E(t). (1)

By using the mass action law, the infection rate is:

λi = ci xi I, i = 1, 2, 3, (2)

where x1 = S, x2 = T , x3 = E, ci is the effective contact rate between the infectious and the
individuals of the compartment xi, i=1,2,3. The dynamics of the disease is described by the
following system: 




Ṡ = Λ− c1 S I − µS

Ṫ = r1E + r2I − c2 T I − µT

Ė = c1 S I + c2 T I − c3 E I − (µ+ r1 + k)E

İ = kE − (µ+ r2 + d)I + c3 E I,

(3)

where the upper dot denotes the time derivative, d·/dt, and the terms not yet described are: the
recruitment rate, Λ; the natural death, µ; the treatment rates for the exposed and infectious
individuals, r1 and r2; the rate at which the exposed become infectious, k; the disease-induced
death rate, d.

The solutions of (3) corresponding to non negative initial values remain non negative for
all time. Moreover, Ṅ = Λ− µN − d I, so that we can study the model in the region:

D =

{
(S, T,E, I) ∈ R4

+ : S + T + E + I ≤ Λ

µ

}
. (4)
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It can be easily seen that system (3) admits the disease free equilibrium

P0 =

(
Λ

µ
, 0, 0, 0

)
, (5)

on the boundary of D. If we set

R0 =
kc1Λ

µ(µ+ r1 + k)(µ+ r2 + d)
, (6)

the following stability theorem for P0 may be proved [10]:

Theorem 1. The disease free equilibrium P0 is locally asymptotically stable when R0 < 1,
and unstable for R0 > 1.

Now denote with P ∗ = (S∗, T ∗, E∗, I∗) the generic constant equilibrium with positive
components. From (3) it follows:

S∗ =
Λ

c1 I∗ + µ
, (7)

T ∗ =
[r1(µ+ r2 + d) + r2k + r2c3 I

∗] I∗

(c2 I∗ + µ) (c3 I∗ + k)
, (8)

E∗ =
(µ+ r2 + d) I∗

(c3 I∗ + k)
, (9)

and I∗ given by the real positive solutions of the following algebraic equation:

Ax3 +B x2 + C x+D = 0, (10)

where,
A = −(µ+ d)c1c2c3,

B =
c2c3µα0α1

k
R0 − c1µα0 (c2 + c3)− c2 (µ+ d) (c1k + c3µ) ,

C =
µα1α0

k
R0 (c2k + c3µ)− µα0 [µ (c2 + c3) + α1c1]− (µ+ d) kµc2, (11)

D = µ2α0α1 (R0 − 1) ,

and α0 = µ+ d+ r2, α1 = µ+ r1 + k.
The existence of endemic equilibria, according to the values of R0, is described by the

following theorem [10].

Theorem 2. Let inequality

c1 < c2 + c3
µ

k
− c2k

µ+ d

α0α1
− µ

c2 + c3
α1

, (12)

holds. Then system (3) admits zero or two endemic equilibria when R0 < 1, whereas it admits
a unique endemic equilibrium when R0 > 1.

3 Global stability of the endemic equilibrium

In this section, we will use the geometric approach to study the global stability of the
endemic equilibrium [19, 20, 22]. Due to technical difficulties, applications to four dimensional
systems are still few in the literature, [2, 16]. Here we follow the approach used in [16] for a
SVEIR model of severe acute respiratory syndrome (SARS) epidemic spread.

As far as we know, all the applications available in the literature do not completely report
all the involved theoretical cases into details. Here we choose to explicitly report all of them,
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in order to give an exhaustive framework to those interested in applying the method to similar
models.

Consider the autonomous dynamical system:

ẋ = f(x), (13)

where f : D → Rn, D ⊂ Rn open set and simply connected and f ∈ C1(D). Let x∗ be an
equilibrium of (13), i.e. f(x∗) = 0. We recall that x∗ is said to be globally stable in D if it is
locally stable and all trajectories in D converge to x∗.

Let Q(x) be a (n2 )× (n2 ) matrix-valued function that is C1 on D and consider

A = QfQ
−1 +QM Q−1,

where the matrix Qf is

(qij(x))f = (∂qij(x)/∂x)
T · f(x) = ∇qij · f(x),

and the M is the second additive compound matrix of the Jacobian matrix J . Consider the
Lozinskĭı measure µ of A with respect to a vector norm || · || in R(n2 ), that is:

µ(A) = lim
h→0+

||I + hA||
h

.

We will apply the following [20]:

Theorem 3. [20] If D1 is a compact absorbing subset in the interior of D, and there exist
γ > 0 and a Lozinskĭı measure µ(A) ≤ −γ for all x ∈ D1, then every omega limit point of
system (3) in the interior of D is an equilibrium in D1.

Theorem 2 states that R0 > 1 and (12) imply the existence and uniqueness of the endemic
equilibrium E. Further, we know that R0 > 1 implies that the disease free equilibrium E0 is
unstable. The instability of E0, together with E0 ∈ ∂D, imply the uniform persistence of the
state variables, [15], i.e. there exists a constant c > 0 such that:

lim inft→∞xi(t) > c, i = 1, 2, 3, 4.

The uniform persistence, together with boundedness of D, is equivalent to the existence of a
compact set in the interior of D which is absorbing for (3), see [17]. Hence Theorem 3 may be
applied, with D = D.

Remark 1. As we have shown in [10], model (3) may admit backward bifurcation. As
stressed in [1], for cases in which the model exhibits bistability, the compact absorbing set
required in Theorem 3 does not exist and an alternative approach must be used. That is, a
sequence of surfaces that exists for time ǫ > 0 and minimizes the functional measuring surface
area must be considered. The analysis of the global dynamics in the bistability region may be
approached as it has been done in [1] for a three dimensional model.

According to [24], the Lozinskĭı measure in Theorem 3 can be evaluated as:

µ(A) = inf
{
k : D+||z|| ≤ k||z||, for all solutions of z′ = Az

}
,

where D+ is the right-hand derivative. When R0 > 1 the endemic equilibrium is locally stable.
Hence, in order to apply Theorem 3 and get the global asymptotic stability, it is necessary to
find a norm || · || such that µ(A) < 0 for all x in the interior of D.

We begin by recalling that, for a general 4× 4 matrix,



a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


 ,
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the second additive compound matrix is given by:



a11 + a22 a23 a24 −a13 −a14 0
a32 a11 + a33 a34 a12 0 −a14
a42 a43 a11 + a44 0 a12 a13
−a31 a21 0 a22 + a33 a34 −a24
−a41 0 a21 a43 a22 + a44 a23
0 −a41 a31 −a42 a32 a33 + a44



.

Hence, the second additive compound matrix of J is given by:

M =




M11 M12 M13 0 M15 0
M21 M22 M23 0 0 M26

0 M32 M33 0 0 0
M41 0 0 M44 M45 M46

0 0 0 M54 M55 M56

0 0 M63 0 M65 M66



,

where,

M11 = −c1I − c2I − 2µ; M21 = c2I; M41 = −c1I; M12 = r1;
M22 = −c1I − c3I − 2µ− r1 − k; M32 = k + c3I; M13 = r2 − c2T ;
M33 = −c1I + c3E − 2µ− r2 − d; M63 = c1I; M44 = −c2I − c3I − 2µ− r1 − k;
M54 = k + c3I; M15 = c1S; M45 = c1S + c2T − c3E; M23 = c1S + c2T − c3E;
M55 = −c2I + c3E − 2µ− r2 − d; M65 = c2I; M26 = c1S;
M46 = −r2 + c2T ; M56 = r1; M66 = −c3I + c3E − 2µ− r1 − k − r2 − d.

Consider now the matrix:

Q =




1/E 0 0 0 0 0
0 1/E 0 0 0 0
0 0 0 1/E 0 0
0 0 1/I 0 0 0
0 0 0 0 1/I 0
0 0 0 0 0 1/I




(14)

Then we get the matrix A = QfQ
−1+QMQ−1, where Qf is the derivative of Q in the direction

of the vector field f . More precisely, we have:

QfQ
−1 = −diag(Ė/E, Ė/E, Ė/E, İ/I, İ/I, İ/I)

QMQ−1 =




M11 M12 0 M13
I
E

M15
I
E

0
M21 M22 0 M23

I
E

0 M26
I
E

M41 0 M44 0 M45
I
E

M46
I
E

0 M32
E
I

0 M33 0 0
0 0 M54

E
I

0 M55 M56

0 0 0 M63 M65 M66




Hence, taking into account that,

Ė

E
= c1 S

I

E
+ c2 T

I

E
− c3 I − (µ+ r1 + k),

İ

I
= k

E

I
− (µ+ r2 + d) + c3 E,
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we obtain:

A =




A11 A12 0 A14 A15 0
A21 A22 0 A24 0 A26

A31 0 A33 0 A35 A36

0 A42 0 A44 0 0
0 0 A53 0 A55 A56

0 0 0 A64 A65 A66




where,

A11 = −c1 S I
E
− c2 T

I
E
+ (c3 − c1 − c2)I + r1 + k − µ;

A21 = c2I; A31 = −c1I; A31 = −c1I, A12 = r1;
A22 = −c1 S I

E
− c2 T

I
E
− c1I − µ; A42 = kE

I
+ c3E;

A33 = −c1 S I
E
− c2 T

I
E
− c2I − µ; A53 = kE

I
+ c3E; A14 = (r2 − c2T )

I
E
;

A24 = (c1S + c2T )
I
E
− c3I; A44 = −kE

I
− c1I − µ; A64 = c1I; A15 = (c1S)

I
E
;

A35 = (c1S + c2T )
I
E
− c3I; A55 = −kE

I
− c2I − µ; A65 = c2I; A26 = (c1S)

I
E
;

A36 = (−r2 + c2T )
I
E
; A56 = r1;

A66 = −kE
I
− c3I − µ− r1 − k.

As in [16], we consider the following norm on R6:

‖z‖ = max {U1, U2} , (15)

where z ∈ R6, with components zi, i = 1, . . . , 6, and

U1(z1, z2, z2) =





max {|z1|, |z2|+ |z3|} if sgn(z1) = sgn(z2) = sgn(z3)
max {|z2|, |z1|+ |z3|} if sgn(z1) = sgn(z2) = −sgn(z3)
max {|z1|, |z2|, |z3|} if sgn(z1) = −sgn(z2) = sgn(z3)
max {|z1|+ |z3|, |z2|+ |z3|} if −sgn(z1) = sgn(z2) = sgn(z3)

U2(z4, z5, z6) =





|z4|+ |z5|+ |z6| if sgn(z4) = sgn(z5) = sgn(z6)
max {|z4|+ |z5|, |z4|+ |z6|} if sgn(z4) = sgn(z5) = −sgn(z6)
max {|z5|, |z4|+ |z6|} if sgn(z4) = −sgn(z5) = sgn(z6)
max {|z4|+ |z6|, |z5|+ |z6|} if −sgn(z4) = sgn(z5) = sgn(z6)

In the next, we will use the following inequalities:

|z2| < U1, |z3| < U1, |z2 + z3| < U1,

and
|zi|, |zi + zj |, |z4 + z5 + z6| ≤ U2(z); i = 4, 5, 6; i 6= j.

Moreover, we assume that:
c1 > c2 > c3. (16)

These inequalities will be used to get the estimates on D+||z||. However, some more restrictive
conditions will be adopted in the statement of the global stability theorem later (inequalities
(49))

Case 1: U1 > U2, z1, z2, z3 > 0, and |z1| > |z2|+ |z3|. Then:

‖z‖ = |z1|, (17)

so that

D+ ‖z‖ = z′1
= A11z1 +A12z2 +A14z4 +A15z5
≤
[
−c1 S I

E
− c2 T

I
E
+ (c3 − c1 − c2)I + r1 + k − µ

]
|z1|+

+r1 |z2|+
[
(r2 + c2T )

I
E

]
|z4|+ (c1S)

I
E
|z5|.
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Using |z4| < U2 < |z1|, |z5| < U2 < |z1|, |z2| < |z1|, and (17), it follows:

D+ ‖z‖ ≤
[
2r1 + k − µ+ (c3 − c1 − c2)I + r2

I
E

]
‖z‖ . (18)

Case 2: U1 > U2, z1, z2, z3 > 0, and |z1| < |z2|+ |z3|. Then:

‖z‖ = |z2|+ |z3|, (19)

so that

D+ ‖z‖ = z′2 + z′3
≤ (c2 − c1)I |z1|+

[
−c1 S I

E
− c2 T

I
E
− c1I − µ

]
|z2|+

+
[
−c1 S I

E
− c2 T

I
E
− c2I − µ

]
|z3|+

+
[
c1 S

I
E
+ c2 T

I
E

]
|z4 + z5 + z6|+ c3I |z4 + z5|+ r2

I
E
|z6|.

Using now |z4+ z5+ z6| < U2 < |z2|+ |z3|, |z4+ z5| < U2 < |z2|+ |z3|, |z6| < U2 < |z2|+ |z3|,
and taking into account of (16) and (19), one has:

D+ ‖z‖ ≤
[
−µ+ r2

I
E

]
‖z‖ . (20)

Case 3: U1 > U2, z1 < 0, z2, z3 > 0, and |z1| > |z2|. Then:

‖z‖ = |z1|+ |z3|, (21)

so that

D+ ‖z‖ = −z′1 + z′3
≤
[
−c1 S I

E
− c2 T

I
E
+ (c3 − c2)I + r1 + k − µ

]
|z1| − r1|z2|+

+
[
−c1 S I

E
− c2 T

I
E
− c2I − µ

]
|z3|+ c2 T

I
E
|z4 + z5 + z6|+

+r2
I
E
|z4 + z6|+ c3I |z5|.

Using |z4 + z5 + z6| < U2 < |z1|+ |z3|, |z4 + z6| < U2 < |z1|+ |z3|, |z5| < U2 < |z1|+ |z3|,
and −r1|z2| ≤ r1|z2| < r1|z1| and taking into account of (21), it follows:

D+ ‖z‖ ≤
[
k + 2r1 − µ+ (2c3 − c2) I + r2

I
E

]
‖z‖ . (22)

Case 4: U1 > U2, z1 < 0, z2, z3 > 0, and |z1| < |z2|. Then:

‖z‖ = |z2|+ |z3|, (23)

so that

D+ ‖z‖ = z′2 + z′3
≤ (c1 − c2)I |z1|+

[
−c1 S I

E
− c2 T

I
E
− c1I − µ

]
|z2|+

+
[
−c1 S I

E
− c2 T

I
E
− c2I − µ

]
|z3|+

+
[
c1 S

I
E
+ c2 T

I
E

]
|z4 + z5 + z6|+ c3I |z4 + z5|+ r2

I
E
|z6|.

Using |z4 + z5 + z6| < U2 < |z2| + |z3|, |z4 + z5| < U2 < |z2| + |z3|, |z6| < U2 < |z2| + |z3|,
and in view of |z1| < |z2|, (16), (23), it follows:

D+ ‖z‖ ≤
[
(c3 − c2)I − µ+ r2

I
E

]
‖z‖ . (24)

Case 5: U1 > U2, z1, z2 > 0, z3 < 0, and |z2| > |z1|+ |z3|. Then:

‖z‖ = |z2|, (25)



90 B. Buonomo and D. Lacitignola

so that
D+ ‖z‖ = z′2

≤ c2I |z1|+
[
−c1 S I

E
− c2 T

I
E
− c1I − µ

]
|z2|+

+
[
c1 S

I
E

]
|z4 + z6|+

[
c2 T

I
E
+ c3I

]
|z4|.

Using |z4 + z6| < U2 < |z2|, |z4| < U2 < |z2| together with |z1| < |z2| and (25), it follows:

D+ ‖z‖ ≤ [(c2 + c3 − c1)I − µ] ‖z‖ . (26)

Case 6: U1 > U2, z1, z2 > 0, z3 < 0, and |z2| < |z1|+ |z3|. Then:

‖z‖ = |z1|+ |z3|, (27)

so that

D+ ‖z‖ = z′1 − z′3
≤
[
−c1 S I

E
− c2 T

I
E
+ (c3 − c2)I + r1 + k − µ

]
|z1|+ r1|z2|+

+
[
−c1 S I

E
− c2 T

I
E
− c2I − µ

]
|z3|+ c2 T

I
E
|z4 + z5 + z6|+

+r2
I
E
|z4 + z6|+ c3I |z5|.

Using |z4 + z5 + z6| < U2 < |z1| + |z3|, |z4 + z6| < U2 < |z1| + |z3|, |z5| < U2 < |z1| + |z3|,
r1|z2| < r1(|z1|+ |z3|) and taking into account of (27), it follows:

D+ ‖z‖ ≤
[
k + 2r1 − µ+ (2c3 − c2) I + r2

I
E

]
‖z‖ . (28)

Case 7: U1 > U2, z1, z3 > 0, z2 < 0, and |z1| > max {|z2|, |z3|}. Then:

‖z‖ = |z1|, (29)

so that

D+ ‖z‖ = z′1
≤
[
−c1 S I

E
− c2 T

I
E
+ (c3 − c1 − c2)I + r1 + k − µ

]
|z1|+ r1|z2|+

+
[
(r2 + c2T )

I
E

]
|z4|+

(
c1 S

I
E

)
|z5|.

Using |z4| < U2 < |z1|, |z5| < U2 < |z1| and r1|z2| < r1|z1|, it follows:

D+ ‖z‖ ≤
[
k + 2r1 − µ+ (c3 − c1 − c2) I + r2

I
E

]
‖z‖ . (30)

Case 8: U1 > U2, z1, z3 > 0, z2 < 0, and |z2| > max {|z1|, |z3|}. Then:

‖z‖ = |z2|, (31)

so that
D+ ‖z‖ = −z′2

≤ c2I |z1|+
[
−c1 S I

E
− c2 T

I
E
− c1I − µ

]
|z2|+

+
[
c1 S

I
E

]
|z4 + z6|+

[
c2 T

I
E
+ c3I

]
|z4|.

Using |z4 + z6| < U2 < |z2|, |z4| < U2 < |z2| and in view of |z1| < |z2|, (31), one has:

D+ ‖z‖ ≤ [(c2 + c3 − c1)I − µ] ‖z‖ . (32)

Case 9: U1 > U2, z1, z3 > 0, z2 < 0, and |z3| > max {|z1|, |z2|}. Then:

‖z‖ = |z3|, (33)

so that
D+ ‖z‖ = z′3

≤ −c1I |z1|+
[
−c1 S I

E
− c2 T

I
E
− c2I − µ

]
|z3|+

+c2 T
I
E
|z5 + z6|+

(
c1 S

I
E
+ c3I

)
|z5|+ r2

I
E
|z6|.
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Use |z5 + z6| < U2 < |z3|, |z5| < U2 < |z3|, |z6| < U2 < |z3|, and in view of −c1I |z1| < 0,
(16), (33), it follows:

D+ ‖z‖ ≤
[
(c3 − c2)I − µ+ r2

I
E

]
‖z‖ . (34)

Case 10: U1 < U2, z4, z5, z6 > 0. Then:

‖z‖ = |z4|+ |z5|+ |z6|, (35)

so that
D+ ‖z‖ = z′4 + z′5 + z′6

≤
(
kE

I
+ c3E

)
|z2 + z3|+

(
−kE

I
− µ

)
(|z4|+ |z5|)+

+
(
−kE

I
− µ− k − c3I

)
|z6|.

Using |z2 + z3| < U1 < |z4|+ |z5|+ |z6|, along with −(c3I + k)|z6| < 0 and (35), it follows:

D+ ‖z‖ ≤ (c3E − µ) ‖z‖ . (36)

Case 11: U1 < U2, z4, z5 > 0, z6 < 0, and |z5| > |z6|. Then:

‖z‖ = |z4|+ |z5|, (37)

so that
D+ ‖z‖ = z′4 + z′5

≤
(
kE

I
+ c3E

)
|z2 + z3|+

(
−kE

I
− µ

)
(|z4|+ |z5|)+

−c1I|z4| − c2I|z5|+ r1|z6|.
Using |z2 + z3| < U1 < |z4|+ |z5|, |z6| < |z5|+ |z4|, and in view of −c1I|z4| < 0, −c2I|z5| < 0
and (37), one has:

D+ ‖z‖ ≤ (c3E + r1 − µ) ‖z‖ . (38)

Case 12: U1 < U2, z4, z5 > 0, z6 < 0, and |z5| < |z6|. Then:

‖z‖ = |z4|+ |z6|, (39)

so that

D+ ‖z‖ = z′4 − z′6
≤
(
kE

I
+ c3E

)
|z2| −

(
kE

I
+ µ

)
(|z4|+ |z6|)− 2c1I|z4| − c2I |z5|+

− (r1 + k + c3I) |z6|.

By using |z2| < U1 < |z4|+ |z6| and from (39), it follows:

D+ ‖z‖ ≤ (c3E − µ) ‖z‖ . (40)

Case 13: U1 < U2, z4, z6 > 0, z5 < 0, and |z5| > |z4|+ |z6|. Then:

‖z‖ = |z5|, (41)

so that
D+ ‖z‖ = −z′5

≤
(
kE

I
+ c3E

)
|z3| −

(
kE

I
+ c2I + µ

)
|z5| − r1|z6|.

By using |z3| < U1 < |z5| and from (41), it follows:

D+ ‖z‖ ≤ (c3E − µ) ‖z‖ . (42)

Case 14: U1 < U2, z4, z6 > 0, z5 < 0, and |z5| < |z4|+ |z6|. Then:

‖z‖ = |z4|+ |z6|, (43)
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so that
D+ ‖z‖ = z′4 + z′6

≤
(
kE

I
+ c3E

)
|z2| −

(
kE

I
+ µ

)
(|z4|+ |z6|)+

−c2I |z5| − (r1 + k + c3I) |z6|.
By using |z2| < U1 < |z4|+ |z6| and from (43), it follows:

D+ ‖z‖ ≤ (c3E − µ) ‖z‖ . (44)

Case 15: U1 < U2, z5, z6 > 0, z4 < 0, and |z5| < |z4|. Then:

‖z‖ = |z4|+ |z6|, (45)

so that
D+ ‖z‖ = −z′4 + z′6

≤
(
kE

I
+ c3E

)
|z2| −

(
kE

I
+ µ

)
(|z4|+ |z6|)+

+c2I |z5| − 2c1I |z4| − (r1 + k + c3I) |z6|.
By using |z2| < U1 < |z4|+ |z6|, and |z5| < |z4|, taking into account of (16) and from (45), it
follows:

D+ ‖z‖ ≤ (c3E − µ) ‖z‖ . (46)

Case 16: U1 < U2, z5, z6 > 0, z4 < 0, and |z5| > |z4|. Then:

‖z‖ = |z5|+ |z6|, (47)

so that
D+ ‖z‖ = z′5 + z′6

≤
(
kE

I
+ c3E

)
|z3| − c1I |z4|+

−
(
kE

I
+ µ

)
(|z5|+ |z6|)− (c3I + k) |z6|.

By using |z3| < U1 < |z5|+ |z6| and from (47), one has:

D+ ‖z‖ ≤ (c3E − µ) ‖z‖ . (48)

Now let us assume that:

c1 > c2 + c3, c2 > 2c3. (49)

Such inequalities are stronger than (16) and implies that the linear coefficient of I in the
sixteen estimates of D+||z|| above, are negative. In this way, the inequalities (18), (20), (22),
(24), (26), (28), (30), (32), (34), (36), (38), (40), (42), (44), (46), (48) may be combined to get
the following:

D+ ‖z‖ ≤ max
{
−µ+ r1 + c3E, −µ+ 2r1 + k + r2

I
E

}
‖z‖ . (50)

We can summarize the results obtained above with the following sufficient conditions for
the global asymptotic stability of the endemic equilibrium:

Theorem 4. For R0 > 1, system (3) admits an unique endemic equilibrium which is
globally asymptotically stable in the interior of D, provided that inequalities (12) and (49) are
satisfied, and that:

max

{
−µ+ r1 + c3 sup

t∈(0,∞)

E, −µ+ 2r1 + k + r2 sup
t∈(0,∞)

I

E

}
< −ν (51)

for some positive constant ν.
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4 Discussion

This paper deals with a specific aspect of a tuberculosis model: the global asymptotic
stability of the endemic equilibrium. Biologically speaking, this analysis gives the conditions,
written in terms of the parameters of the system, under which the TB cannot be eliminated
from the community. From a mathematical point of view, it represents a quite difficult task
because of the high dimensionality of the system. Here, we have applied the method of Li and
Muldowney, say the geometric approach to global stability for n dimensional systems.

Following the strategy of costructing a suitable norm on R6, described into details in [25]
and developed in [16] for a SVEIR model of SARS epidemic spread, we have obtained the
sufficient conditions for the global stability of the endemic equilibrium contained in Theorem
4.

In view of (51) it sufficies to set:

µ > max

{
r1 + c3 sup

t∈(0,∞)

E, 2r1 + k + r2 sup
t∈(0,∞)

I

E

}
. (52)

Some of the sufficient conditions required by Theorem 4, precisely (49) and (51), or equivalently
(52), arise from the application of the method and numerical simulations suggest that they
are not necessary.

We can also show that some of the required inequalities are somewhat counterintuitive. In
fact, let us consider the case of no reinfection, i.e. let us set c3 = 0, and assume further that
r2 = 0, that is only the latentely infected are treated (through chemoprophylaxis, case 2 in
[4]). Then, the assumption R0 > 1 becomes:

k >
µ(µ+ r1)(µ+ d)

c1Λ− µ(µ+ d)
; (53)

further, inequalities (49) reduce to c1 > c2 and (52) implies µ > k. This last suggests that
the global stability of the endemic state is supported by a small rate of progression to active
TB, which is in contrast with (53). A similar result is obtained also in [16] and well represents
the drawbacks of the geometric stability method, when it is applied to system with complex
structure.

However, we stress that the sufficient conditions for global stability we found here might
in principle be improved. In fact, the geometric approach to stability is based on two crucial
choices: the entries of the matrix Q and the vector norm in R(n2 ). In our case, (14) and (15).

It can be seen, [22], that the stability condition stated in Theorem 3 is ensured by taking
the Lyapunov function V (x, z) = ‖Q(x)z‖ on the n+ (n2 ) - dimensional system given by (13)
and the second compound equation:

ż = J [2](x)z. (54)

In fact, V̇ negative definite is equivalent to condition µ(A) ≤ −γ in Theorem 3, [22].

As finding Lyapunov functions is a matter of experience, thus the best choice for the
matrix and the vector norm can not be determined through a general way. Obviously, different
choices of the matrix Q and of the vector norm may lead, in principle, to better sufficient
conditions than the ones we found here, in the sense that the restrictions on the parameters
may be weakened.

Finally, we stress that the dynamics of model (3) may be very rich, including backward
bifurcation and bistability. Such issues have been investigated in details in [10], where this
model has been applied to the case study considered in [26].
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